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The spectral dimension of random brushes
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Abstract. We consider a class of random graphs, called random brushes,which are con-

structed by adding linear graphs of random lengths to the vertices ofZd viewed as a graph.

We prove that ford = 2 all random brushes have spectral dimensionds = 2. Ford = 3

we have5
2
≤ ds ≤ 3 and ford ≥ 4 we have3 ≤ ds ≤ d.
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1 Introduction

The generic structure of random geometrical objects is of interest in many branches of

physics ranging from condensed matter physics to quantum gravity, see e.g. [1] and [2].

One of the methods used to analyze such objects is to study diffusion or random walk.

Diffusion allows us to define a notion of dimension, the spectral dimension, for random

geometrical objects. In recent years the spectral dimension of triangulations has been

studied numerically in quantum gravity [5, 6, 7, 8, 9] and analytically for certain classes

of random trees [10, 3, 4]. In [3] the spectral dimension of various ensembles of random

combs was calculated. In this article we generalize the monotonicity results of [3] which

allows us to find bounds on the spectral dimensions of a class of graphs which we call

brushes and define below.

Let G be a connected, locally finite (i.e. each vertex has finitely many nearest neigh-

bours) rooted graph. All graphs that we consider will be assumed to have this property.

Let pG(t) be the probability that a simple random walk onG which starts at the root is

back at the root aftert steps. If

pG(t) ∼ t−ds/2 (1)

ast → ∞ then we say thatds is the spectral dimension of the graphG. The existence

of ds is not guaranteed for individual graphs but its ensemble average can be shown to be

well defined in many cases [3, 4]. It is easy to see that if the spectral dimension exists

then it is independent of the starting site of the random walk.

Let us viewZ
d as a graph withj, k ∈ Z

d neighbours if their distance is 1 and let the

origin of Z
d be the root. It is well known that the spectral dimension ofZ

d is d. Let Nl

be a linear chain of lengthℓ, i.e., the graph obtained be connecting nearest neighboursin

{0, 1, . . ., ℓ} with a link. Let 0 be the root ofNℓ. Similarly, letN∞ be the infinite linear

chain with root at0. A d-brush is a graph constructed by attaching one of the graphsNℓ to

each vertex ofZd by identifying the root ofNℓ with a vertex inZ
d, ℓ ∈ N0 ∪ {∞}, ℓ = 0

corresponding to the empty chain. In a brushB we will refer toZ
d as the base and the

linear chains as bristles. A random brush is defined by letting the length of the bristles be

identically and independently distributed by a probability measure onN0 ∪ {∞}. We see
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that the cased = 1 corresponds to the combs studied in [3] which were shown to have a

spectral dimension in the interval[1, 3
2
].

For d > 1 we will show that the spectral dimensions of random brushes satisfy the

following:

ds = 2, if d = 2,

5

2
≤ ds ≤ 3, if d = 3, (2)

3 ≤ ds ≤ d, if d ≥ 4.

Some comments are in order. We see that whend ≥ 3, attaching the bristles to the

base serves to lower the spectral dimension since the spectral dimension ofZd is equal

to d. This is opposite to the case of combs where the linear chainstended to increase the

spectral dimension. Intuitively this can be understood in the following way. If there is

a very long bristle somewhere, a random walk can go up it and spend a long time there

before returning to the base which it must do eventually since the bristles are recurrent.

Once it returns to the base it will go back to the root with nonzero probability. We will

indeed see below that adding a single infinite bristle toZ
d with d ≥ 4 will bring the

spectral dimension down to3. The two dimensional case is special becauseZ
2 is only

marginally recurrent and the generating function forpZ2(t) has a logarithmic singularity

which is not changed by the presence of bristles. Assuming that the spectral dimension

of random brushes can be calculated by mean field theory we show that the full range of

exponents in (2) is realized.

The paper is organized as follows. In the next section we define the generating func-

tions used to analyze the spectral dimension. We then establish generalized monotonicity

lemmas which are shown to imply the stated bounds onds in Section 4. Section 5 contains

a discussion of mean field theory for brushes. A final section contains some comments.
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2 Generating Functions

Let G be a graph andp1
G(t) the probability that a random walk is at the root at timet for

the first time aftert = 0. We define the return generating function

QG(z) =

∞
∑

t=0

pG(t)zt (3)

and the first return generating function

PG(z) =
∞

∑

t=0

p1
G(t)zt. (4)

The generating functions are related by

QG(z) =
1

1 − PG(z)
. (5)

If G has a spectral dimensionds then

Q
(n)
G (z) ∼

{

1 if n = ds/2 − 1
(1 − z)ds/2−1−n otherwise

(6)

wheren is the smallest nonnegative integer for whichQ
(n)
G (z) diverges asz → 1. Sim-

ilarly, the behaviour (6) implies that the spectral dimension is ds. Heref(y) ∼ yα as

y → 0 means that for anyǫ > 0 there exist positive constantsc1 and c2, which may

depend onǫ, such that

c1y
α+ǫ ≤ f(y) ≤ c2y

α−ǫ (7)

for y small enough. Note thatf(y) ∼ 1 allowsf to have a logarithmic singularity at0.

The functionPG(z) is analytic in the unit disc and|P (z)| < 1 for |z| < 1. If PG(z) →
1 asz → 1 thenQG(z) clearly diverges in which case the random walk is recurrent and

ds ≤ 2. If PG(z) 6→ 1 asz → 1 then the random walk is transient andds ≥ 2. In the latter

case we see that if some derivativeQ(n)(z) diverges asz → 1 thenQ
(n)
G (z) ∼ P

(n)
G (z) as

z → 1.

If a graph has the property that every random walk which begins and ends at the root

has an even number of steps, as is the case for brushes and bristles, we have to replace

pG(t) with pG(2t) in (1) andz with z2 on the right hand side of (6). Then it is convenient

to introduce a variablex = 1 − z2 ∈ [0, 1]. We will use the variablez for general graphs

but the variablex when dealing with brushes and bristles.
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We will need the following first return generating functionsfor the graphsNl andN∞

[3]

Pl(x) = 1 −
√

x
(1 +

√
x)l − (1 −√

x)l

(1 +
√

x)l + (1 −√
x)l

(8)

and

P∞(x) = 1 −
√

x. (9)

Let µ be a probability measure onN0 ∪ {∞}. LetBd be the set of alld-brushes. We

define a probability measureπ on Bd by letting the measure of the set ofd-brushesΩ

which have bristles atn1, n2, ..., nk ∈ Z
d of lengthℓ1, ℓ2, ..., ℓk be

π(Ω) =
k

∏

i=1

µ(li). (10)

The setBd together withπ defines a random brush ensemble. We define the averaged

generating functions

P (x) = 〈PB(x)〉π (11)

and

Q(x) = 〈QB(x)〉π (12)

where〈·〉π denotes expectation with respect toπ. We say that a random brush has spectral

dimensionds if Q(x) obeys the relation (6) (after replacingz with z2 on the right hand

side).

3 Monotonicity

Here we present the monotonicity results in a slightly more general setting than is needed

for the applications below. This is both for clarity and potential applications to random

graphs different from the brushes.

Let G1 andG2 be graphs such thatG1 can be constructed fromG2 by attaching rooted

graphsF (i) by their roots to sitesi 6= r of G2. Let the roots ofG1 andG2 be the same

vertex (regardingG2 as a subgraph ofG1). The following result is a generalization of the

Monotonicity Lemma of [3].
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Figure 1: An example of a graphG1 constructed fromG2 and theF (i)’s.

Lemma 1 WithG1 andG2 defined as above andG1 6= G2 we have

PG1(z) ≤ PG2(z) (13)

with equality if and only if all theF (i)’s are recurrent and z = 1.

Proof: For any graphG we can writePG(z) as a weighted sum over all random walksω

onG which start and end at the root without intermediate visits to the root (this condition

is denoted ’ω: FR onG’). Each walkω has a weight

WG(ω) =

|ω|−1
∏

t=0

σG(ωt)
−1 (14)

whereσG(ωt) is the order of the vertexωt on G where the walk is located at timet and

|ω| is the number of steps inω. Each step of a walk has a factorz associated with it so

PG(z) =
∑

ω: FR onG

WG(ω)z|ω|. (15)

Now consider a random walkω′ onG1 which starts at the root. Letω be the subwalk of

ω′ which only travels onG2. If we look at the walkω at timet and locationωt thenω can
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be a subwalk of many different walksω′ which correspond to all possible excursions into

the graphF (ωt) before returning back to the walk onG2. The weight of these excursions

is
∞

∑

n=0

(σF (ωt)(ωt)

σG1(ωt)
PF (ωt)(z)

)n

=
1

1 −
(

σF (ωt)
(ωt)

σG1
(ωt)

PF (ωt)(z)
) (16)

wheren counts the number of visits toωt before the walk leavesωt for another vertex on

G2 and the factor in front ofPF (ωt)(z) changes the order of the root ofF (ωt) toσG1(ωt) =

σG2(ωt)+σF (ωt)(ωt). The weight of the first step back intoG2 after all the visits toF (ωt)

is
z

σG1(ωt)
. (17)

Now replace the original weightσG2(ωt)
−1z of ω at each pointωt 6= ω0 by the product of

the factors (16) and (17). This newly weightedω then accounts for every random walk on

G1 which hasω as a subwalk onG2. Thus we can write

PG1(z) =
∑

ω: FR onG2

σG2(ω0)
−1z

|ω|−1
∏

t=1

( z

σG2(ωt) + σF (ωt)(ωt)(1 − PF (ωt)(z))

)

=
∑

ω: FR onG2

KG1,G2(z; ω)WG2(ω)z|ω| (18)

where in the last step we defined

KG1,G2(z; ω) =

|ω|−1
∏

t=1

( σG2(ωt)

σG2(ωt) + σF (ωt)(ωt)(1 − PF (ωt)(z))

)

. (19)

SincePF (ωt)(z) ≤ 1 with equality if and only ifF (ωt) is recurrent andz = 1 it is clear

thatKG1,G2(z; ω) ≤ 1 for all z with equality if and only if all the graphsF (ωt) for a given

ω onG2 are recurrent andz = 1. The inequality (13) follows.

�

Lemma 2 Let n ∈ Z
+ be such thatP (n−1)

G2
(z) is continuous on the closed interval[0, 1].

If all the F (i)’s are recurrent then for a givenz ∈]0, 1[ there exists aξ ∈]z, 1[ such that

P
(n)
G1

(ξ) ≥ P
(n)
G2

(ξ). (20)
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Proof: We define

HG1,G2(z; n) =
∑

ω: FR onG2

KG1,G2(z; ω)WG2(ω)
dn−1

dzn−1
z|ω| (21)

whereKG1,G2 is defined as above. Every derivative of a (first) return generating function

is a positive increasing function ofz ∈ [0, 1[ since the power series have no negative

coefficients. It is easy to verify that the functionKG1,G2 has the same property. Therefore

we get by differentiating (18)n times

P
(n)
G1

(z) =

n
∑

i=0

(

n

i

)

∑

ω: FR onG2

K
(i)
G1,G2

(z; ω)WG2(ω)
(

z|ω|
)(n−i)

≥
∑

ω: FR onG2

KG1,G2(z; ω)WG2(ω)
(

z|ω|
)(n)

+ n
∑

ω: FR onG2

K ′
G1,G2

(z; ω)WG2(ω)
(

z|ω|
)(n−1)

≥
∑

ω: FR onG2

KG1,G2(z; ω)WG2(ω)
(

z|ω|
)(n)

+
∑

ω: FR onG2

K ′
G1,G2

(z; ω)WG2(ω)
(

z|ω|
)(n−1)

= H ′
G1,G2

(z; n). (22)

With the same argument as in the proof of Lemma 1 it holds that

HG1,G2(z; n) ≤ P
(n−1)
G2

(z) with equality whenz = 1 since all theF (i)’s are recurrent

and becauseP (n−1)
G2

(z) and therefore alsoHG1,G2(z; n) are continuous on[0, 1]. Since

HG1,G2(z; n) andP
(n−1)
G2

(z) are positive and increasing functions ofz we find that

HG1,G2(1; n) − HG1,G2(z; n)

P
(n−1)
G2

(1) − P
(n−1)
G2

(z)
≥ 1. (23)

By a generalized mean-value theorem there exists aξ ∈]z, 1[ such that

HG1,G2(1; n) − HG1,G2(z; n)

P
(n−1)
G2

(1) − P
(n−1)
G2

(z)
=

H ′
G1,G2

(ξ; n)

P
(n)
G2

(ξ)
. (24)

In view of (22) the Lemma follows.

�

Theorem 1 Assume that all theF (i)’s are recurrent and thatG1 andG2 have spectral

dimensionsds1 andds2 respectively. IfG2 is recurrent thenG1 is recurrent andds1 ≥ ds2 .

If G2 is transient thenG1 is transient andds1 ≤ ds2.
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Proof: Since all theF (i)’s are recurrent we havePG1(1) = PG2(1) and therefore ifG2 is

transient/recurrent then so isG1. First assume thatG2 is recurrent. Then by using Lemma

1 and Equations (5), (6) and (7) we find that for anyǫ > 0 there exist positive constants

c1 andc2 which may depend onǫ such that

c1(1 − z)ds1/2−1+ǫ ≤ QG1(z) ≤ QG2(z) ≤ c2(1 − z)ds2/2−1−ǫ (25)

for z close to 1. Ifds1 6= ds2 we chooseǫ < 1
4
|ds2 − ds1| and sendz → 1 to conclude

thatds1 > ds2. WhenG2 is transient we use Lemma 2 and similar arguments as above to

show thatds1 ≤ ds2.

�

4 The Spectral Dimension

Thed-brush where every bristle isN∞ we call the fulld-brush and denote it∗d. We can

relate the generating function of the fulld-brush to the generating functions ofZ
d and

N∞. We use the same argument as in the proof of Lemma 1. Replacingall the graphs

F (i) with N∞ and noting that the order of every point inZ
d is 1/2d we get

P∗d(x) =
(

1 +
1 − P∞(x)

2d

)

PZd(xren(x)) (26)

wherexren is defined by

√
1 − xren =

√
1 − x

1 + 1−P∞(x)
2d

. (27)

We see thatxren =
√

x/d + O(x). By differentiating (26) once and comparing with (6)

we find the spectral dimension of the full brush

d∗ =

{

d
2

+ 1 if 1 ≤ d ≤ 4
3 if d ≥ 4.

(28)

If we replace the infinite bristles with finite ones, all of which have the same length, then

with the same calculation we see that the spectral dimensionremains equal tod. These

are special cases of a more general result obtained in [11] for so called bundled structures.

There, the baseZd can be replaced by any graphB and the infinite bristle (fiber) can also

be replaced by any fixed graphF .
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Using the above calculation and Theorem 1 we can find bounds onthe spectral di-

mensions of fixed and randomd-brushes. Any fixedd-brushB can be constructed from

Z
d by attaching (recurrent) bristles to it and the fulld-brush can be constructed fromB

by attaching (recurrent) bristles to it. Therefore, by Theorem 1, the spectral dimension of

any fixedd-brush, if it exists, lies betweend andd∗. This also holds for random brushes

as is clear from equations (33) and (36) below and the proof ofTheorem 1. The spectral

dimension for any fixed or randomd-brush, if it exists, therefore obeys the inequalities

(2).

The spectral dimension of random 2-brushes always equals 2.Indeed it follows from

the fact thatQZ2(x) is asymptotic to| ln(x)| asx → 0 and Lemma 1 that there exist

positive constantsc1 andc2 such that

c1| ln(x)| ≤ Q(x) ≤ c2| ln(x)| (29)

whenx is small enough . This is a stronger condition on the asymptotic behavior ofP (x)

thanP (x) ∼ 1 asx → 0.

It is interesting that ford ≥ 4 the lower bound on the spectral dimension always equals

3. In fact it is easy to see that attaching a single infinite bristle toZ
d with d ≥ 4 reduces

the spectral dimension to 3. We can show this by attaching an infinite bristle to the root

of Z
d since the spectral dimension is independent of the startingsite of the random walks.

Let us call the resulting brush⊥d. The first return generating function is simply

P⊥d(x) =
2d

2d + 1
PZd(x) +

1

2d + 1
P∞(x). (30)

Sinced ≥ 4 equation (6) shows thatQ′
Zd(x) diverges slower than any negative power of

x asx → 0 butQ′
∞(x) ∼ x−1/2. Therefore by differentiating (30) we get

Q′
⊥d(x) ∼ x−1/2 (31)

asx → 0 and therefore by (6) the spectral dimension equals3. It follows that if a random

d-brush withd ≥ 4 has a nonzero probability of having one or more infinite bristles its

spectral dimension equals 3.

We find with similar arguments that adding a single (or finitely many) infinite bristles

to Z
3 gives the spectral dimension 3. However, if we add infinitelymany bristles the

spectral dimension ofZ3 can be lowered as is seen e.g. in the case of the full 3-brush.
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We now use the notation of Section 3 and consider the case whenG2 = Z
d and

instead of having a fixedG1 we take a randomd-brush. We would like to get bounds for

the spectral dimension of random brushes similar to those inTheorem 1. First we note

that by Lemma 1 we have for anyB ∈ Bd that

P∗d(x) ≤ PB(x) ≤ PZd(x) (32)

and averaging we get

P∗d(x) ≤ P (x) ≤ PZd(x). (33)

In order to generalize Lemma 2 to random brushes we consider the cased > 2 and define

the functions

Ha(x; n) = 〈HB,Zd(x; n)〉π and Hb(x) = 〈H∗d,B(x; 1)〉π (34)

wheren = [d−1
2

] is the smallest positive integer for whichP (n)

Zd (x) diverges asx → 0.

With the same calculation as in (22) we get

H
′

a(x)

P
(n)

(x)
≤ 1 and

H
′

b(x)

P ′
∗d(x)

≤ 1. (35)

We clearly have(−1)n−1Ha(x) ≤ (−1)n−1P
(n−1)

Zd (x) and Hb(x) ≤ P (x) both with

equality whenx = 0. Since the functions(−1)n−1Ha(x),(−1)n−1P
(n−1)

Zd (x), Hb(x) and

P (x) are all decreasing functions ofx we get with the same argument as in the proof of

Lemma 2 that for a givenx ∈]0, 1[ there exists aξ ∈]0, x[ such that

1 ≤ P
(n)

(ξ)

P
(n)

Zd (ξ)
and 1 ≤ P ′

∗d(ξ)

P
′
(ξ)

. (36)

This extends Theorem 1 to random brushes and establishes thebounds (2).

5 Mean Field Theory

It is an obvious question to ask whether the full range of spectral dimensions allowed by

(2) is realized for some random brushes. We do not have an answer to this question. How-

ever, in [3] the spectral dimensions for different classes of random combs were calculated

exactly and shown to take the same values as in mean field theory [12]. By mean field
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theory we mean that the walk on the base (spine in the case of combs) always sees a new

bristle drawn from the probability distributionµ whenever it is located at the root of a

bristle. Since mean field theory is exact in one dimension we find it likely that it is also

exact in higher dimensions where the walks are less likely tovisit the same points on the

base often. Mean field theory allows us to evaluate the spectral dimension very easily as

we now explain.

The ensemble average of the functionKG1,G2 defined in (19) can be written

〈KB,Zd(x; ω)〉π =
〈

|ω|−1
∏

t=1

2d

2d + 1 − PF (ωt)(x)

〉

π

m.f.t.
=

(〈 2d

2d + 1 − Pl(x)

〉

µ

)|ω|−1

. (37)

where the second equality is the mean field theory approximation. The mean field theory

approximation to the first return generating function is

P m.f.t.,d(x) =
〈 2d

2d + 1 − Pl(x)

〉−1

µ
PZd(xren(x)) (38)

wherexren(x) is defined through

√

1 − xren(x) =
〈 2d

2d + 1 − Pl(x)

〉

µ

√
1 − x. (39)

Now chooseµ(l) = cal
−a with a > 1. The casesd = 1 andd = 2 we understand. There-

fore consider the cased ≥ 3. It is straightforward to calculate the asymptotic behaviour

of the following derivatives:

〈P (n)
l (x)〉µ ∼ xa/2−n for n ≥ 1, (40)

xren(x) ∼
{

xa/2

x ,
x′

ren(x) ∼
{

xa/2−1 if 1 < a ≤ 2
1 if a > 2

(41)

and

x(n)
ren(x) ∼ xa/2−n for n ≥ 2 (42)

whenx → 0. We also see that the leading behaviour of then-th derivative of (38) is

P
(n)

m.f.t.,d(x) ∼ 〈P (n)
l (x)〉µ + P

(n)

Zd (xren(x))(x′
ren(x))n. (43)

12



First consider the cased = 3, when we only have to look at the first derivative. Then

P ′
Z3(x) ∼ x−1/2 asx → 0 and therefore

P
′

m.f.t.,3(x) ∼
{

xa/4−1 if 1 < a ≤ 2
x−1/2 if a > 2

(44)

which gives

ds =

{

a
2

+ 2 if 1 < a ≤ 2
3 if a > 2.

(45)

Doing the same ford ≥ 4 we get the result

ds =

{

a + 2 if 1 < a ≤ d − 2
d if a > d − 2.

(46)

It is easy to see that putting a single bristle onZ
d with probability distributionµ for d ≥ 4

gives the same spectral dimension as mean field theory.

Now consider the random brush defined byµ(∞) = p > 0 andµ(0) = 1 − p. It

was shown in [3] that ford = 1 the spectral dimension of this random brush equals the

spectral dimension of the full brush. The same is of course true ford = 2 and as well for

d ≥ 4, as was noted in the discussion below (31). Using mean field theory and similar

analysis as above, we find that in any dimension the resultingrandom brush has also the

same spectral dimension as the full brush. It is therefore clear that for this class of random

brushes, ifd 6= 3, mean field theory gives the correct spectral dimension. Settling the case

d = 3 would require some extra work.

6 Conclusions

We have established bounds on the spectral dimensions of random graphs constructed by

attaching linear graphs toZd and argued that mean field theory is likely to give the right

value for the spectral dimension. The main monotonicity results are in fact valid for a

much larger class of graphs as explained in Section 3; the base can be arbitrary and the

bristles need only be recurrent graphs.

While our random brushes do contain loops, they are all on thebase which is nonran-

dom and therefore do not yield much insight into how one mighthope to bound or evaluate

the spectral dimension of random graphs that contain loops like e.g. random surfaces. For

such graphs we need to develop new techniques.
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