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Abstract. We consider a class of random graphs, called random brushes) are con-
structed by adding linear graphs of random lengths to thicesrofZ? viewed as a graph.
We prove that forl = 2 all random brushes have spectral dimensipna= 2. Ford = 3

we havel < d, < 3and ford > 4 we have3 < d, < d.
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1 Introduction

The generic structure of random geometrical objects is t@fr@st in many branches of
physics ranging from condensed matter physics to quantanitgrsee e.g.[1] and [2].
One of the methods used to analyze such objects is to stufisidif or random walk.
Diffusion allows us to define a notion of dimension, the sp@aimension, for random
geometrical objects. In recent years the spectral dimansidriangulations has been
studied numerically in quantum gravity |5,(6, 7,8, 9] andlgtieally for certain classes
of random tree< [10, 3, 4]. In[3] the spectral dimension afas ensembles of random
combs was calculated. In this article we generalize the toonaty results of([3] which
allows us to find bounds on the spectral dimensions of a clagsaphs which we call
brushes and define below.

Let G be a connected, locally finite (i.e. each vertex has finitenynnearest neigh-
bours) rooted graph. All graphs that we consider will be as=aito have this property.
Let p(t) be the probability that a simple random walk Gnwhich starts at the root is
back at the root aftersteps. If

pa(t) ~ =% (1)

ast — oo then we say that, is the spectral dimension of the graph The existence
of d, is not guaranteed for individual graphs but its ensembleageecan be shown to be
well defined in many casesl[3] 4]. It is easy to see that if thexispl dimension exists
then it is independent of the starting site of the random walk

Let us viewZ< as a graph with, k € Z? neighbours if their distance is 1 and let the
origin of Z¢ be the root. It is well known that the spectral dimensioZéfis d. Let N,
be a linear chain of length i.e., the graph obtained be connecting nearest neighloours
{0,1,...,¢} with alink. Let0 be the root ofN,. Similarly, let N, be the infinite linear
chain with root ab). A d-brush is a graph constructed by attaching one of the graphs
each vertex oZ? by identifying the root ofV, with a vertex inZ?, ¢ € Ny U {oo}, £ =0
corresponding to the empty chain. In a brustwe will refer toZ? as the base and the
linear chains as bristles. A random brush is defined by Bpttie length of the bristles be

identically and independently distributed by a probapititeasure oiN, U {oo}. We see



that the caséd = 1 corresponds to the combs studied(in [3] which were shownve ha
spectral dimension in the interval, 3].

Ford > 1 we will show that the spectral dimensions of random brushésfg the

following:
d, =2, if d=2,
S<d <3 i d=3 2)
3< dy, <d, if d>4.

@
|

Some comments are in order. We see that wthen 3, attaching the bristles to the
base serves to lower the spectral dimension since the apdatrension ofZ? is equal
to d. This is opposite to the case of combs where the linear chaimked to increase the
spectral dimension. Intuitively this can be understoodchim following way. If there is
a very long bristle somewhere, a random walk can go up it arddp long time there
before returning to the base which it must do eventuallyesthe bristles are recurrent.
Once it returns to the base it will go back to the root with remozprobability. We will
indeed see below that adding a single infinite bristl&Ztowith d > 4 will bring the
spectral dimension down t& The two dimensional case is special becatisés only
marginally recurrent and the generating functionger(¢) has a logarithmic singularity
which is not changed by the presence of bristles. Assumiagtkie spectral dimension
of random brushes can be calculated by mean field theory we stad the full range of
exponents in(2) is realized.

The paper is organized as follows. In the next section we edfia generating func-
tions used to analyze the spectral dimension. We then edta#@neralized monotonicity
lemmas which are shown to imply the stated boundg,on Section 4. Section 5 contains

a discussion of mean field theory for brushes. A final sect@mriains some comments.



2 Generating Functions

Let G be a graph angd(,(¢) the probability that a random walk is at the root at titrfer

the first time aftetr = 0. We define the return generating function

Qo(z) =Y po(t)z (3)
t=0
and the first return generating function
Po(z) =) pe(t)2". (4)
t=0
The generating functions are related by
Qolz) = —— ©)
A T T Pa(e)
If G has a spectral dimensiai then
(n) N 1 ifn=d;/2—-1
Qg (2) { (1 — 2z)%/2=1=7  otherwise (6)

wheren is the smallest nonnegative integer for Wh'@@)(z) diverges ag — 1. Sim-
ilarly, the behaviour[(6) implies that the spectral dimensis d,. Here f(y) ~ y* as
y — 0 means that for any > 0 there exist positive constantg and ¢, which may

depend or, such that
ay™™ < fly) < ey (7)

for y small enough. Note that(y) ~ 1 allows f to have a logarithmic singularity at

The functionP;(z) is analytic in the unit disc and’(z)| < 1 for |z| < 1. If Pg(z) —

1 asz — 1thenQq(z) clearly diverges in which case the random walk is recurredt a
ds < 2. If P5(z) / 1asz — 1then the random walk is transient afid> 2. In the latter
case we see that if some derivatiy€”(z) diverges ag — 1 theanL)(z) ~ Pé")(z) as

z — 1.

If a graph has the property that every random walk which Isegid ends at the root
has an even number of steps, as is the case for brushes athesbrge have to replace
pa(t) with pg(2t) in (@) andz with 22 on the right hand side of(6). Then it is convenient
to introduce a variable = 1 — 2% € [0, 1]. We will use the variable for general graphs

but the variable: when dealing with brushes and bristles.
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We will need the following first return generating functidosthe graphsv, and N,

[3]

VD -
B = LV + (= ya) ®
and
Pu(z) = 1 -z ©)

Let . be a probability measure d¥y U {oc}. Let B? be the set of ali-brushes. We
define a probability measure on B¢ by letting the measure of the set ébrushes

which have bristles ai,, n, ..., n, € Z% of length?,, ¢, ..., ¢}, be

() =[] nt). (10)

The setB? together withn defines a random brush ensemble. We define the averaged
generating functions
P(z) = (Pp())x (11)

and

Q(r) = (Qp(z))x (12)

where(-). denotes expectation with respectitoWe say that a random brush has spectral
dimensiond, if Q(z) obeys the relatior {6) (after replacingwith 22 on the right hand
side).

3 Monotonicity

Here we present the monotonicity results in a slightly maneegal setting than is needed
for the applications below. This is both for clarity and putal applications to random
graphs different from the brushes.

Let G; andG, be graphs such that; can be constructed frod, by attaching rooted
graphsF'(i) by their roots to sites # r of G,. Let the roots of7; andG, be the same
vertex (regarding~, as a subgraph d@¥,). The following result is a generalization of the

Monotonicity Lemma of([3].



G1

Figure 1: An example of a graph; constructed frontz, and theF'(i)’s.

Lemma 1 With G; and G, defined as above ar@;, # G, we have
Pe,(2) < Pe,(2) (13)
with equality if and only if all theF'(i)’s are recurrentand z = 1.

Proof: For any grapli: we can writeP(z) as a weighted sum over all random wadks
on G which start and end at the root without intermediate visitthe root (this condition

is denotedw: FR onG"). Each walkw has a weight

|| -1

Wew) = ] oc(w)™ (14)

whereos(w;) is the order of the vertex; on G where the walk is located at timeand
|w| is the number of steps in. Each step of a walk has a factoassociated with it so

Po(z)= > Walw)zM. (15)

w: FRonG
Now consider a random walk onG; which starts at the root. Letbe the subwalk of

«’" which only travels ort7,. If we look at the walkv at timet and locationy; thenw can
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be a subwalk of many different walks which correspond to all possible excursions into
the graph/'(w,) before returning back to the walk @,. The weight of these excursions

is

S ) n 1

> <UF PF(wt)( )) = (16)
O'G UF(wt)(wt)

n=0 1 1-— oo @) PF(wt)(Z)

wheren counts the number of visits to, before the walk leaves, for another vertex on
G, and the factor in front 0z, (z) changes the order of the rootBfw;) to o, (wy) =
06, (W) + 0rwy) (we). The weight of the first step back int®, after all the visits ta'(w;)
is
z
o, (W)

Now replace the original weights, (w;) 'z of w at each point; # w, by the product of

(17)

the factors[(16) and (17). This newly weightedhen accounts for every random walk on
G; which hasv as a subwalk odr,. Thus we can write

|| -1

Pe,(z) = Z oG, (wo) "2 H <0G2(wt) + O (W) (1 — PF(wt)(z))>

w: FR onGa t=1

= Z KGl,Gz (Z;W>WG2(W>Z‘M‘ (18)

w: FR onGa

where in the last step we defined

|w|—1

W) = UGz(wt>
Kooz = ][ o Tt =P (19)

Since Pr(,,)(z) < 1 with equality if and only if F'(w;) is recurrent and = 1 it is clear
that K¢, ¢, (2z;w) < 1for all z with equality if and only if all the graphs'(w;) for a given

w on G, are recurrent and = 1. The inequality[(1B3) follows.

O

Lemma 2 Letn € Z* be such thaPé’;_l)(z) is continuous on the closed interval 1].

If all the F'(7)’s are recurrent then for a given €)0, 1| there exists & €|z, 1] such that

PE(€) > PG (€). (20)



Proof: We define

dn—l
dzn—1

HG17G2(Z;n> = Z KGl,Gz (Z;W>WG2(W> Z|W| (21)

w: FRonGa

whereK¢, ¢, is defined as above. Every derivative of a (first) return gatimey function

is a positive increasing function af € [0, 1] since the power series have no negative
coefficients. It is easy to verify that the functiéft,, , has the same property. Therefore
we get by differentiatind (18) times

e = Y (1) X sl ()"

=0 w: FRonG2

Z Z KG1 Go (Z w WG ( )
w: FR onG2
+ j{: ﬁﬂ;le z;w)We, (w ( )
w: FR onGao
(n)
Z Z KG1 G2(Z w WG2 (Z|w|>
w: FRonG2
(n—1)
_I_ Z KG1 G2(Z w WG2 (Z|w|>

w: FRonG2
= Hg, g,(zin). (22)
With the same argument as in the proof of Lenitha 1 it holds that
He, c,(zm) < P(" Y(z) with equality whenz = 1 since all theF(i)'s are recurrent
and becausePG2 (z) and therefore alsd{;, ¢,(z;n) are continuous off, 1]. Since
He, . (zn) andPg;_l)(z) are positive and increasing functions:ofve find that
Ha,c,(1;n) — Ha,y e, (21)
P (1) = o)
By a generalized mean-value theorem there existsp, 1] such that
Hay ., (1;n) — Ha, 6,(25m) Hé;l,GQ(S;n)_

> 1. (23)

P& = PGTV() PE(E)
In view of (22) the Lemma follows.
[

Theorem 1 Assume that all thé"(:)’s are recurrent and thatz; and G, have spectral
dimensiongls, andd,, respectively. If7, is recurrent ther(z, is recurrent andi, > d,.

If G5 is transient ther(7, is transient andi,, < d,.
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Proof: Since all the’(i)’s are recurrent we havi;, (1) = Pg,(1) and therefore if7, is
transient/recurrent then soGs . First assume thdt; is recurrent. Then by using Lemma
1 and Equationg {5)[(6) andl (7) we find that for any 0 there exist positive constants

¢1 andc, which may depend oasuch that
c1(1 = 2)* 1271 < Qg (2) < Qe (2) < ep(1 = 2) /2717 (25)

for z close to 1. Ifd,, # d,, we choose < 1|d,, — d,| and send: — 1 to conclude
thatd,, > ds,. WhenG, is transient we use Lemma 2 and similar arguments as above to

show thatd,, < d,.

4 The Spectral Dimension

Thed-brush where every bristle 5., we call the fulld-brush and denote id. We can
relate the generating function of the fullbrush to the generating functions 4f and
N,. We use the same argument as in the proof of Lemma 1. Replablitige graphs

F(i) with N, and noting that the order of every pointZs is 1/2d we get

1— Py
Poa(z) = (1 + T@)Pm (ren()) (26)
wherez,en, is defined by
A /1 _
V 1 - xren — ?’CL’(I;). (27)
1 + Lo\

2d

We see thatie, = +/z/d + O(x). By differentiating [26) once and comparing wit (6)

we find the spectral dimension of the full brush

d -
s +1 ifl<d<4
d*_{§ if d > 4. (28)

If we replace the infinite bristles with finite ones, all of whihave the same length, then
with the same calculation we see that the spectral dimemsimains equal ta. These

are special cases of a more general result obtainedlin [L$pfoalled bundled structures.
There, the basg? can be replaced by any graphand the infinite bristle (fiber) can also

be replaced by any fixed gragh



Using the above calculation and Theorem 1 we can find boundbeeospectral di-
mensions of fixed and randodibrushes. Any fixed-brushB can be constructed from
Z% by attaching (recurrent) bristles to it and the fidbrush can be constructed from
by attaching (recurrent) bristles to it. Therefore, by Tie@o 1, the spectral dimension of
any fixedd-brush, if it exists, lies betweahandd,. This also holds for random brushes
as is clear from equationis (33) andl(36) below and the prodhebrem 1. The spectral
dimension for any fixed or randombrush, if it exists, therefore obeys the inequalities
@).

The spectral dimension of random 2-brushes always equétsl2ed it follows from
the fact thatQz:(x) is asymptotic to| In(x)| asz — 0 and Lemma 1 that there exist

positive constants; andc, such that
il In(z)] < Q(z) < ¢y In(z)] (29)

whenz is small enough . This is a stronger condition on the asyrigbehavior ofP(x)
thanP(z) ~ 1 asz — 0.

Itis interesting that fotl > 4 the lower bound on the spectral dimension always equals
3. In fact it is easy to see that attaching a single infinitstleitoZ¢ with d > 4 reduces
the spectral dimension to 3. We can show this by attachingfamte bristle to the root
of Z? since the spectral dimension is independent of the stasttagf the random walks.

Let us call the resulting brushd. The first return generating function is simply

2
_ 2 g 1 o).
a1 @)+ 5y Pel@)

Sinced > 4 equation|(B) shows th&p,,(x) diverges slower than any negative power of

rasr — 0butQ’_(z) ~ 2712, Therefore by differentiatind (30) we get

PJ_d (.T) (30)

Q) q(x) ~ a1 (31)

asz — 0 and therefore by (6) the spectral dimension eq@alsfollows that if a random
d-brush withd > 4 has a nonzero probability of having one or more infinite kessits
spectral dimension equals 3.

We find with similar arguments that adding a single (or firyitelany) infinite bristles
to Z3 gives the spectral dimension 3. However, if we add infinitelgny bristles the

spectral dimension d£3 can be lowered as is seen e.g. in the case of the full 3-brush.
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We now use the notation of Section 3 and consider the case Whea Z¢ and
instead of having a fixed'; we take a randomi-brush. We would like to get bounds for
the spectral dimension of random brushes similar to tho§éheorem 1. First we note

that by Lemmall we have for ady € B¢ that
Pa(z) < Pp(z) < Pga(z) (32)

and averaging we get
Py(z) < P(x) < Pyal(x). (33)

In order to generalize Lemma 2 to random brushes we congiderasel > 2 and define

the functions
Fa(x; n) = (Hpzi(z;n))x and Fb(x) = (Huap(z;1))x (34)

wheren = [4!] is the smallest positive integer for Whid@(ﬁ) (x) diverges asc — 0.

With the same calculation as in (22) we get

,(x) H,(z)
P (x) =t and P*Z(:c) =t (33)

We clearly have(—1)""'H,(z) < (—1)"‘1PZ(Z_1)(55) and H,(r) < P(z) both with
equality whenz = 0. Since the function$—1)"‘1ﬁa(9:),(—1)"‘1PZ(Z_1)(9:), Hy(z) and

P(x) are all decreasing functions ofwe get with the same argument as in the proof of

Lemma 2 that for a givem €]0, 1| there exists & €]0, [ such that

P
~ P P'(€)

This extends Theorem 1 to random brushes and establishbsuhes[(R).

and 1< Uy . (36)

5 Mean Field Theory

It is an obvious question to ask whether the full range of spedimensions allowed by
() is realized for some random brushes. We do not have anesitehis question. How-
ever, in [3] the spectral dimensions for different clasdesedom combs were calculated

exactly and shown to take the same values as in mean fieldytfiE2}t By mean field
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theory we mean that the walk on the base (spine in the casardisialways sees a new
bristle drawn from the probability distributiom whenever it is located at the root of a
bristle. Since mean field theory is exact in one dimension et ifilikely that it is also
exact in higher dimensions where the walks are less likelygib the same points on the
base often. Mean field theory allows us to evaluate the sgatimension very easily as
we now explain.

The ensemble average of the functia, , defined in[(I9) can be written

|| -1

(Kppa(z;w))e = < H 2d+1_23l3F(wt)(x) >7r

t=1

(i) e

where the second equality is the mean field theory approiomathe mean field theory

approximation to the first return generating function is

— 2d -1
Prica() = (5577~ piay ), Folren®) (38)
wherez () is defined through
2d
1 — Zpen(z) = <2d+1—Pl(x)>uV1_x' (39)

Now choose:(l) = ¢,l~® with a > 1. The casedg = 1 andd = 2 we understand. There-
fore consider the casé> 3. It is straightforward to calculate the asymptotic behavio

of the following derivatives:

(P (@) ~ a7 forn =1, (40)
a2 , /21 ifl<a<?
xren(x) ~ z {L’ren(l’) ~ 1 if a > 2 (41)
and
2™ (z) ~ g2 forn > 2 (42)

whenz — 0. We also see that the leading behaviour ofiikt derivative of [(38B) is

Pt a(@) ~ (P (@) + P52 (aren()) (when())" (43)
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First consider the casé = 3, when we only have to look at the first derivative. Then

Pyy(z) ~ 2~ asz — 0 and therefore

— /41 ifl<a<?2
Pm.f.t.,3(x) ~ { =172 if o> 9 o (44)
which gives
2+2 ifl<a<?2
_ 2 >~
ds_{ 3 it 0> 2. (45)
Doing the same foti > 4 we get the result
| a+2 fl<a<d-—2
ds—{d ifa>d—2 (46)

It is easy to see that putting a single bristleZstwith probability distributiory: for d > 4
gives the same spectral dimension as mean field theory.

Now consider the random brush defined byo) = p > 0 andu(0) = 1 — p. It
was shown in[[B] that forl = 1 the spectral dimension of this random brush equals the
spectral dimension of the full brush. The same is of courseford = 2 and as well for
d > 4, as was noted in the discussion beldw] (31). Using mean figldryhand similar
analysis as above, we find that in any dimension the resuiéindom brush has also the
same spectral dimension as the full brush. It is theref@aardhat for this class of random
brushes, itl # 3, mean field theory gives the correct spectral dimensioriliiggethe case

d = 3 would require some extra work.

6 Conclusions

We have established bounds on the spectral dimensionsadmagraphs constructed by
attaching linear graphs ®? and argued that mean field theory is likely to give the right
value for the spectral dimension. The main monotonicityitesare in fact valid for a
much larger class of graphs as explained in Section 3; the ¢t@s be arbitrary and the
bristles need only be recurrent graphs.

While our random brushes do contain loops, they are all ob&se which is nonran-
dom and therefore do not yield much insight into how one migipte to bound or evaluate
the spectral dimension of random graphs that contain lake®lg. random surfaces. For

such graphs we need to develop new techniques.
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