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THE INFINITE VOLUME LIMIT OF FORD'S ALPHA MODELSIGUR�UR ÖRN STEFÁNSSONNovember 11, 2009Abstrat. We prove the existene of a limit of the �nite volume probabilitymeasures generated by tree growth rules in Ford's alpha model of phylogenetitrees. The limiting measure is shown to be onentrated on the set of trees on-sisting of exatly one in�nite spine with �nite, identially and independentlydistributed outgrowths. 1. IntrodutionGraphs are used in many �elds of siene to desribe relationships between in-dividuals and to model atual physial objets. The former ase inludes soialnetworks [2℄, phylogeneti trees [3, 13, 14℄, the world-wide web [1℄ and muh more.The latter ase inludes disrete objets suh as maromoleules [10℄ and branhedpolymers [2℄. The graphs an also serve as disrete approximations to inherentlyontinuous objets, an example of this being triangulation of manifolds in quantumgravity, see e.g. [4℄.Random graphs are ommonly used to desribe real deterministi networks. In-terations and relations in the networks an be ompliated but their harateristisare in some ases aptured by random graph models, de�ned by simple rules whihare motivated by the nature of the real network. The alpha model, introdued byD. Ford in [13℄, is an example of a random graph model, intended to desribe phy-logeneti trees. It is a one parameter model of randomly growing, rooted, planar,binary trees with the following growth rules. Start from a single rooted edge andfrom a tree on n leaves, selet individual internal edges with probability weight αand individual leaves with probability weight 1 − α where 0 ≤ α ≤ 1. Graft a newleaf to a seleted edge and thus generate a tree on n + 1 leaves, see Fig. 1.Ford proved that the model is Markovian self-similar whih means informallythat a subtree below an edge is distributed identially to the whole tree, a morepreise de�nition will be given in the main setion. He also showed that typialdistanes in the trees sale as nα with the system size n. The Hausdor� dimensionof a randomly growing tree is de�ned to be dH given that typial distanes sale as
n1/dH . Thus, in the alpha model dH = 1/α.In a reent paper [14℄ the ontinuum limit of the model has been established inthe ontext of fragmentation proesses [5℄. A generalization to multinary trees isintrodued in [7℄ in the alpha-gamma model where in addition to the growth rulesof the alpha model, edges an be grafted onto verties, inreasing their degree. Thealpha-gamma trees are shown to be Markovian self-similar and a ontinuum limitis established.Our motivation to study the alpha model omes from the fat that it is a ertainlimiting ase of a model of random trees whih grow by vertex splitting, introdued1
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in [8℄ where the relation is explained. In general the vertex splitting model doesnot share some of the tehnially onvenient properties of the alpha model suhas Markovian self-similarity, and it is more di�ult to do exat alulations. Thehope is that some of these properties might hold asymptotially for large trees andtherefore a good understanding of the alpha model ould be helpful.The purpose of this paper is to establish onvergene of the �nite volume mea-sures generated by the alpha model to a measure on in�nite trees. For 0 < α ≤ 1,the in�nite measure is shown to be onentrated on the set of trees onsisting ofexatly one in�nite path from the root to in�nity (spine) with �nite, identially andindependently distributed outgrowths.2. Convergene of the finite volume measuresWe start with a few de�nitions before presenting the model. In this paper weonly onsider rooted, binary, planar trees. Rooted means that we mark a singlevertex of degree 1, binary means that verties are only allowed to have degree 1 or3 and the planarity ondition distinguishes between left and right branhings. Theroot and verties of degree 3 will be referred to as internal verties and verties ofdegree 1, besides the root, will be referred to as leaves. Denote the set of trees on
n leaves by Tn and denote the set of all �nite or in�nite trees by T .The alpha model is de�ned by probability distributions πα,n on Tn, for n ≥ 1,onstruted in the following reursive way. Assign probability one to the uniquetrees in T1 and T2. Given πα,n for some n ≥ 2, πα,n+1 is generated by �rst seletinga tree τ ∈ Tn aording to πα,n. Next an individual edge (a, b) is seleted from
τ with probability α/(n − α) if a and b are internal verties and with probability
(1 − α)/(n − α) if one is an internal vertex and the other a leaf. The edge (a, b) isremoved from τ and two new verties c and d are introdued along with the edges
(a, c), (c, b) and (c, d). Equal probability is assigned to left and right branhing of
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α
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d
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Figure 1. The grafting proess. The link (a, b) is seleted withprobability weight α and the link (a′, b′) is seleted with probabilityweight 1−α. The seleted link is removed, two new verties c and
d and three new links are added as shown in the �gure. In thisexample, a is the root whih is indiated by a dashed line.the new edge (c, d). One an think about this proedure as grafting a new edge toan existing edge in τ , see Fig. 1. The probability of a tree τ ′ ∈ Tn+1 is thus given2



by
πα,n+1(τ

′) =
∑

τ∈Tn

πα,n(τ)P(τ → τ ′) (1)where P(τ → τ ′) is the probability of growing the tree τ ′ from τ by the graftingproess.The model has a property alled Markovian self-similarity [13℄ whih is essentialin the indutive proof of the theorem in this paper. Markovian self-similarity meansthat there exists a funtion qα(·, ·) suh that for every �nite tree τ0 whih branhesat the nearest neighbour of the root to a left tree τ1 and a right tree τ2 (see Fig. 2)the following holds
πα,|τ0|(τ0) = qα(|τ1|, |τ2|)πα,|τ1|(τ1)πα,|τ2|(τ2) (2)where |τ | denotes the number of leaves in a tree τ . In words, this says that

τ0

τ2τ1

Figure 2. An example of a tree τ0 whih has a root indiated bythe dashed line. The tree τ0 branhes at the nearest neighbour ofthe root to two subtrees, τ1 to the left and τ2 to the right as isindiated by the dotted lines.
qα(n1, n2) is the probability of a tree branhing to subtrees of sizes n1 and n2.Furthermore, given that the subtrees are of these sizes they are distributed inde-pendently by πα,n1

and πα,n2
. The funtion qα is expliitly known [13℄ and is givenby

qα(n1, n2) =
n!Γα(n1)Γα(n2)

n1!n2!Γα(n)

(

α

2
+

(1 − 2α)n1n2

n(n − 1)

)where n = n1 + n2,
Γα(n) = (n − 1 − α)(n − 2 − α) · · · (2 − α)(1 − α), and Γα(1) = 1. (3)Before proeeding to the theorem we give a short explanation of what is meantby onvergene of probability measures. For a tree τ ∈ T let BR(τ) be the subtreeof τ whih is spanned by the verties at distane less than or equal to R from theroot of τ . De�ne a metri d on T by

d(τ, τ ′) = inf

{

1

1 + R

∣

∣

∣
BR(τ) = BR(τ ′)

}

. (4)For some properties of the metri spae (T, d) see [6, 11℄. We will establish weakonvergene, as n → ∞ of the measures πα,n viewed as probability measures on T ,3



to a probability measure πα. This means that for all bounded funtions f whihare ontinuous in the topology generated by the metri d
∫

T

f(τ)dπα,n −→

∫

T

f(τ)dπα, as n −→ ∞. (5)Theorem 2.1. Let 0 < α ≤ 1. The measures πα,n, viewed as probability measureson T , onverge weakly, as n −→ ∞, to a probability measure πα on in�nite treeswhih is onentrated on the set of trees with one in�nite rooted spine with �niteoutgrowths i.i.d. by
µα(τ) =

αΓα(|τ |)

|τ |!
πα,|τ |(τ). (6)The probabilities of right and left branhing of outgrowths are equal (see Fig. 3).

µα µα µα µα

µα µα µαFigure 3. The in�nite spine with �nite µα�outgrowths.Proof. We all the maximum graph distane from the root to a leaf in a tree,the height of the tree. Let T (R) be the set of rooted trees of height R. The metrispae (T, d) is ompat and therefore it is su�ient to show that for any R ≥ 1 andany τ0 ∈ T (R) the sequene
πα,n({τ |BR(τ) = τ0}) =: π(R)

α,n(τ0) (7)onverges to a limit π
(R)
α (τ0) as n −→ ∞ [11℄. We show this by indution on R.For R = 1 this is trivial sine B1(τ) ∈ T (1) for all τ . Now assume that for some Rand all τ ∈ T (R), π

(R)
α,n(τ) onverges as n −→ ∞. Choose a tree τ0 ∈ T (R+1) andwithout loss of generality, assume it branhes at the nearest neighbour of the rootto a left tree τ1 ∈ T (R) and a right tree τ2 ∈ T (S) (see Fig. 2) where S ≤ R. Then

π(R+1)
α,n (τ0) =

∑

n1+n2=n

qα(n1, n2)π
(R)
α,n1

(τ1)π
(R)
α,n2

(τ2)

=
n!

Γα(n)

(α

2

∑

n1+n2=n

Γα(n1)Γα(n2)

n1!n2!
π(R)

α,n1
(τ1)π

(R)
α,n2

(τ2)

+
1 − 2α

n(n − 1)

∑

n1+n2=n

Γα(n1)Γα(n2)

(n1 − 1)!(n2 − 1)!
π(R)

α,n1
(τ1)π

(R)
α,n2

(τ2)
)

. (8)If S < R then π
(R)
α,n2

(τ2) = 0 when n2 > ℓ(τ2) and it is obvious from the indutionhypothesis that π
(R+1)
α,n (τ0) onverges. Therefore assume that S = R.Note that in (8) it always holds that either n1 ≤ n− 1 and n2 ≤ n or n2 ≤ n− 1and n1 ≤ n. Therefore we have the upper bound4



π(R+1)
α,n (τ0) ≤

n!

Γα(n)

∑

n1+n2=n

Γα(n1)Γα(n2)

n1!n2!
.Terms in the sums in (8) for whih n1 ≥ n

2 and n2 > A or n2 ≥ n
2 and n1 > Awhere A > 1 is some onstant are therefore bounded from above by

2n!

Γα(n)

∑

n1+n2=n
n1≥n/2,n2>A

Γα(n1)Γα(n2)

n1!n2!
≤

2n!Γα([n/2])

Γα(n)[n/2]!

∞
∑

n2=A

Γα(n2)

n2!

≤ C

∞
∑

n2=A

Γα(n2)

n2!
−→

A−→∞ 0 (9)where C is a onstant. The remaining ontribution to (8) is from terms where
n1 ≥ n

2 and n2 < A or n2 ≥ n
2 and n1 < A. Notie that the seond term in thatontribution to (8) will be of one order lower in n than the �rst term. Thereforeit is enough to show that the �rst term onverges as n → ∞ sine then the seondterm learly onverges to zero. The ontribution to the �rst term is

n!

Γα(n)

α

2

2
∑

i=1

∑

n1+n2=n
nj≤A,j 6=i

Γα(n1)Γα(n2)

n1!n2!
π(R)

α,n1
(τ1)π

(R)
α,n2

(τ2)

−→
n−→∞

1

2

2
∑

i=1
j 6=i

π(R)
α (τi)

A
∑

m=1

αΓα(m)

m!
π(R)

α,m(τj)

−→
A−→∞

1

2

2
∑

i=1
j 6=i

π(R)
α (τi)

∞
∑

m=1

αΓα(m)

m!
π(R)

α,m(τj). (10)In the �rst step we used the indution hypothesis. This is the limit of π
(R+1)
α,n (τ0)as n −→ ∞. The fat that the sum in (9) onverges to zero as A → ∞ proves thatthe measure is onentrated on the set of trees with exatly one in�nite spine. Thelast sum in (10) shows that the distribution of the �nite outgrowths is given by µα.

�3. ConlusionsWe have shown that the �nite volume measures πα,n generated by the growthrules of Ford's alpha model onverge, as n → ∞, to a measure on in�nite trees. Thelimiting measure is onentrated on the set of trees onsisting of exatly one in�nitespine with �nite outgrowths, independently distributed by µα. The emergene of asingle spine is well known from models of size onditioned ritial Galton Watsontrees [12℄. The ase α = 1/2 is in fat a speial ase of suh a tree. However, in thevertex splitting model it is possible that an in�nite number of spines emerge. Thishappens for example in the speial ase of the preferential attahment model [9℄ andin the ase α = 0 in the alpha model. In both these ases the Hausdor� dimensionis in�nite. One interesting question is whether a �nite Hausdor� dimension isequivalent to the emergene of a single spine and whether an in�nite Hausdor�5



dimension is equivalent to the existene of in�nite number of spines in the vertexsplitting model.An obvious next step is to use the formula for the limiting measure to alulatesome global properties of the alpha trees suh as the Hausdor� dimension and thespetral dimension. The Hausdor� dimension of an in�nite random tree given by aprobability distribution ν is de�ned as dH if
〈VR〉ν ∼ RdH (11)where VR(τ) is the number of edges in a ball BR(τ) and 〈·〉ν denotes expetationwith respet to ν. The above de�nition should oinide with the one given by thesaling of a typial distane in a �nite tree as disussed in the introdution. Thiswill be heked expliitly in a forthoming paper.The spetral dimension of an in�nite random tree as above is de�ned as ds if

〈p(t)〉ν ∼ t−ds/2 (12)where pτ (t) is the probability that a simple random walk whih starts at the rootof a tree τ at time t = 0 is bak at the root at time t. The tehniques used in [12℄give a way to estimate the spetral dimension of the alpha model from knowl-edge of the large R behaviour of the quantities 〈|BR|〉µα
, µα{τ | height of τ > R}and 〈|BR|

−1〉πα
. Using the formula for the limiting measure and the Markovianself-similarity properties of the outgrowths one an write reursion equations forgenerating funtions of these quantities. Preliminary results indiate that indeed

dH = 1/α in agreement with the �nite saling de�nition and ds = 2/(1 + α). Inthe ase α = 1 this is trivially true and in the ase α = 1/2 the result is known tobe true by onnetion to Galton Watson trees [12℄. For other values of α this hasnot yet been proven.Aknowledgment. This work is supported by the Eimskip Researh Fund at theUniversity of Ieland. I would like to thank Thordur Jonsson, François David andMark Dukes for helpful disussions and valuable omments.
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