
ar
X

iv
:1

21
2.

50
72

v1
  [

m
at

h.
PR

] 
 2

0 
D

ec
 2

01
2

SCALING LIMITS OF RANDOM PLANAR MAPS WITH A

UNIQUE LARGE FACE

SVANTE JANSON AND SIGURDUR ÖRN STEFÁNSSON

Abstract. We study random bipartite planar maps defined by assign-
ing non-negative weights to each face of a map. We proof that for certain
choices of weights a unique large face, having degree proportional to the
total number of edges in the maps, appears when the maps are large. It
is furthermore shown that as the number of edges n of the planar maps
goes to infinity, the profile of distances to a marked vertex rescaled by
n
−1/2 is described by a Brownian excursion. The planar maps, with the

graph metric rescaled by n
−1/2, are then shown to converge in distribu-

tion towards Aldous’ Brownian tree in the Gromov–Hausdorff topology.
In the proofs we rely on the Bouttier–di Francesco–Guitter bijection be-
tween maps and labeled trees and recent results on simply generated
trees where a unique vertex of a high degree appears when the trees are
large.

1. Introduction

A planar map is an embedding of a finite connected graph into the two–
sphere. Two planar maps are considered to be the same if one can be mapped
to the other with an orientation–preserving homeomorphism of the sphere.
The connected components of the complement of the edges of the graph are
called faces. The degree of a vertex is the number of edges containing it and
the degree of a face is the number of edges in its boundary where an edge is
counted twice if both its sides are incident to the face.

In recent years there has been great progress in understanding probabilis-
tic aspects of large planar maps, we refer to [37] for a detailed overview. One
approach has been to study the scaling limit of a sequence of random planar
maps obtained by rescaling the graph distance on the maps appropriately
with their size and taking the limit as the size goes to infinity. This notion of
convergence involves viewing the maps as elements of the set of all compact
metric spaces, up to isometries, equipped with the Gromov–Hausdorff topol-
ogy. Le Gall showed that the scaling limit of uniform 2p–angulations (all
faces of degree 2p) exists along a suitable subsequence and he furthermore
showed that its topology is independent of the subsequence and proved that
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its Hausdorff dimension equals 4 [35]. Subsequently, Le Gall and Paulin
proved that the limit has the topology of the sphere [39]. Recently, Mier-
mont showed that in the case of uniform quadrangulations the choice of
subsequence is superfluous and the scaling limit in fact equals the so–called
Brownian map up to a scale factor [42]. Le Gall proved independently that
the same holds in the case of uniform 2p–angulations [36].

The present work is motivated by a paper of Le Gall and Miermont [38]
where the authors study random planar maps which roughly have the prop-
erty that the distribution of the degree of a typical face is in the domain
of attraction of a stable law with index α ∈ (1, 2). The model belongs to
a class of models in which Boltzmann weights are assigned to the faces of
the map as we will now describe. Let M∗

n denote the set of rooted and
pointed bipartite planar maps having n edges: the root is an oriented edge
e = (e−, e+) and pointed means that there is a marked vertex ρ in the planar
map. The assumption of pointedness is for technical reasons. For a planar
map m ∈ M∗

n, denote the set of faces in m by F (m) and denote the degree
of a face f ∈ F (m) by deg(f). Note that the assumption that m is bipartite
is equivalent to assuming that deg(f) is even for all f . Let (qi)i≥1 be a
sequence of non-negative numbers and assign a Boltzmann weight

W (m) =
∏

f∈F (m)

qdeg(f)/2 (1.1)

to m. The probability distribution µn is defined by normalizing W (m)

µn(m) = W (m)/Zn (1.2)

where

Zn =
∑

m′∈M∗
n

W (m′) (1.3)

is referred to as the finite volume partition function. We will always assume
that qk > 0 for some k ≥ 2 to avoid the trivial case when all faces have
degree 2. Note that for a given random element in M∗

n distributed by µn

the marked vertex ρ is uniformly distributed. The motivation for studying
these distributions is first of all related to questions of universality, namely,
there is strong evidence that under certain integrability condition on the
weights qi the scaling limit of the maps distributed by µn is the Brownian
map up to a scale factor [40]. Furthermore, the distributions are closely
related to distributions arising in certain statistical mechanical models on
random maps as is discussed in [38].

In [38], the authors show, among other things, that in the large planar
maps under consideration there are many “macroscopic” faces present and
that the scaling limit, if it exists, is different from the Brownian map. The
presence of these large faces in the scaling limit can be understood by con-
sidering the labeled trees (mobiles) obtained from the planar maps using the
Bouttier–di Francesco–Guitter (BDG) bijection [14], see Section 2. For con-
venience we rewrite the sequence (qi)i≥1 in terms of a new sequence (wi)i≥0
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defined by w0 = 1 and

wi =

(

2i− 1

i− 1

)

qi, i ≥ 1. (1.4)

Through yet another bijection between mobiles (with labels removed) and
trees which we introduce in Section 3, the random trees corresponding to
the maps distributed by µn can be viewed as so–called simply generated trees
with weights wi assigned to vertices of outdegree i. The choice of weights
(qi)i≥1 in [38] corresponds to choosing the weights (wi)i≥0 as an offspring
distribution of a size–conditioned critical Galton–Watson tree having infinite
variance. In this case the random trees converge, when scaled appropriately,
to the so–called stable tree with index α. It follows from properties of
the BDG bijection that the large faces in the planar maps correspond to
individuals in the stable tree which have a macroscopic number of offspring,
i.e. vertices of large degree.

It was originally noted in [9] and recently developed further in [25, 26, 28,
32] that there exists a phase of simply generated trees where a unique vertex
with a degree proportional to the size of the tree appears as the trees get
large. This phenomenon has been referred to as condensation. The purpose
of this paper is to study the scaling limit of planar maps corresponding to
the condensation phase of the simply generated trees. The large vertex in
the trees will produce a large face in the planar maps in analogy with the
situation in [38]. The weights which we consider are chosen as explained
below. Define the generating function

g(x) =

∞
∑

i=0

wix
i (1.5)

and denote its radius of convergence by R. For R > 0 define κ = limtրR
tg′(t)
g(t)

and for R = 0 let κ = 0. We will be interested in the following two cases,
(C1) and (C2), which are known to be the only cases giving rise to conden-
sation in the corresponding simply generated trees (see e.g. [25]):

0 < R < ∞ and κ < 1. (C1)

R = 0. (C2)

In practice we will consider the special case of (C1) when the weights fur-
thermore obey

wi = L(i)i−β (1.6)

for some β > 2 and some slowly varying function L and the special case of
(C2) when the weights furthermore obey

wn = (n!)α (1.7)

with α > 0. (By (1.4) and Stirling’s formula, (1.6) is equivalent to qi =

L′(i)4−ii1/2−β for another slowly varying function L′; the exponential factor
4i does not matter when we fix the number of edges in the map, so we might
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Figure 1. The convergence in Theorem 1.1. A face of large
degree (light gray) appears as the planar map gets larger and
the boundary of that face collapses into a tree.

as well take qi = L′(i)i1/2−β . However, we will in the sequel use wi rather
than qi.)

We now introduce some formalism needed to state the results of the pa-
per. Let M

∗ be the set of all pointed compact metric spaces viewed up to
isometries, equipped with the pointed Gromov–Hausdorff metric dGH [22].
Let e be a standard Brownian excursion on [0, 1] and denote by (Te, δe) Al-
dous’ continuum random tree coded by e. Recall that Te = [0, 1]/{δe = 0}
where

δe(s, t) = e(s) + e(t)− 2 inf
s∧t<u<s∨t

e(u) (1.8)

and by abuse of notation δe is the induced distance on the quotient, see
e.g. [2, 37]. From here on we will denote a random element inM∗

n distributed
by µn by (Mn, ρ); sometimes simplified to Mn. The graph distance in Mn

will be denoted by dn.
The main results of the paper are the following. In Theorem 4.2 we prove

that for the weights (1.6) and (1.7), the limit as n → ∞ of the profile of

distances in Mn to the marked vertex ρ, rescaled by (2(1 − κ)n)−1/2, is
described by a standard Brownian excursion, see Section 4 for definitions
and a precise statement. Secondly we prove the following theorem, which
describes the limit of all distances (not just to the root).

Theorem 1.1. For the weights (1.6) and (1.7) the random planar maps

((Mn, ρ), (2(1 − κ)n)−1/2dn) distributed by µn and viewed as elements of
M

∗ converge in distribution to ((Te, ρ∗), δe), where given Te, ρ∗ is a marked
vertex chosen uniformly at random from Te.

Note that the root edge in Mn is forgotten when we regard the maps
as elements of M

∗. We can reroot the random tree Te at the randomly
chosen point ρ∗; this gives a new random rooted tree, which has the same
distribution as Te, as shown by [1, (20)], but the point ρ∗ is now the root.
Hence the result in Theorem 1.1 can also be formulated as follows:

Theorem 1.2. For the weights (1.6) and (1.7) the random planar maps in
Theorem 1.1 converge in distribution in M

∗ to ((Te, 0), δe), where 0 denotes
the root of Te.
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Note that the limit Te is quite different from the Brownian map mentioned
above; it is a (random) compact tree and thus contractible, i.e. of the same
homotopy type as a point, and its Hausdorff dimension is 2 [20, 24].

The paper is organized as follows. We begin in Section 2 by recalling
the BDG bijection between planar maps and planar mobiles. In Section 3
we introduce a bijection from the set of planar trees to itself which allows
us to translate results on the condensed phase of simply generated trees
to our setting. In Section 4 we state and prove Theorem 4.2 which was
described informally above. Section 5 is devoted to the proof of Theorem
1.1. We end with some concluding remarks in Section 6 and Appendix A
containing further results on the random Galton–Watson trees used here
and their relation to the two-type Galton–Watson trees used by Marckert
and Miermont [40].

2. Planar mobiles and the BDG bijection

In this section we define planar trees and mobiles and explain the BDG
bijection between mobiles and planar maps. We consider rooted and pointed
planar maps as is done in [39] which is different from the original case [14]
where the maps were pointed but not rooted. (But see [14, Section 2.4].)

Planar trees are planar maps with a single face. It will be useful to keep
this definition in mind later in the paper but we recall a more standard
definition below and introduce some notation. The infinite Ulam–Harris
tree T∞ is the tree having a vertex set

⋃∞
k=0N

k, i.e. the set of all finite
sequences of natural numbers, and every vertex v = v1 · · · vk is connected to
the corresponding vertex v′ = v1 · · · vk−1 with an edge. In this case v is said
to be a child of v′ and v′ is said to be the parent of v. The vertex belonging
to N

0 is called the root and denoted by r.
A rooted planar tree τ is defined as a rooted subtree of T∞ having the

properties that if v = v1 · · · vk is a vertex in τ then v1 · · · vk−1i is also a vertex
in τ for every i < vk. The vertices in a planar tree have a lexicographical
ordering inherited from the lexicographical ordering of the vertices in T∞.
This order relation will be denoted by ≤. Let Γn be the set of rooted planar
trees with n edges. We use the convention that the root vertex is connected
to an extra half–edge (not counted as an edge) such that every vertex has
degree 1 + the number of its children (1 + its out degree). The number of
edges in a planar tree τ will be denoted by |τ |.

Consider a tree τn ∈ Γn and colour its vertices with two colours, black
and white, such that the root and vertices at even distance from the root
are white and vertices at odd distance from the root are black. Denote the
black vertex set of τn by V •(τn) and the white vertex set by V ◦(τn). If u is
a black vertex let u0 be the (white) parent of u and denote by ui the i:th
(white) neighbour of u going clockwise around u starting from u0.
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Assign integer labels ℓn : V ◦(τ) → Z to the white vertices of τn as follows:
The root is labeled by 0. If u is black and has degree k then

ℓn(uj+1) ≥ ℓn(uj)− 1 (2.1)

for all 0 ≤ j ≤ k, with the convention that uk = u0. The pair θn = (τn, ℓn)
is called a mobile and we denote the set of mobiles having n edges by Θn.

The set Θn × {−1, 1} is in a one to one correspondence with the set M∗
n

according to (the rooted version of) the BDG bijection [14], [39]. We will
denote the BDG bijection by Fn : M∗

n → Θn×{−1, 1} and we give an outline
of its inverse direction below. Start with a planar mobile θn ∈ Θn and an ǫ ∈
{−1, 1}. The white contour sequence of θn is a list c0, c1, . . . , cn−1 of length
n containing the white vertices in the mobile (with repetitions allowed)
constructed as follows. The first element is c0 = r and for each i < n−1 the
element following ci is the first child (in the lexicographical order) of ci which
has still not appeared in the sequence or if all its children have appeared
it is the parent of ci. The white contour sequence can also be described
as a list of the white vertices encountered in a clockwise walk around the
contour of the tree, which starts at the root. Extend this sequence to an
infinite sequence by n periodicity. For an index i ∈ N define its successor as

σ(i) = inf{j > i : ℓn(cj) = ℓn(ci)− 1} (2.2)

where the infimum of the empty set is defined as ∞. Add an external vertex
ρ to the mobile, disconnected from all other vertices, and write ρ = c∞.
Also define the successor of a white vertex ci as

σ(ci) = cσ(i). (2.3)

A planar map is constructed from θn by inserting an edge between ci and
σ(ci) for each 0 ≤ i < n and deleting the edges and black vertices of the
mobile. The vertex ρ corresponds to the marked vertex of the planar map.
The root edge in the map is the edge between c0 and σ(c0) and its direction
is determined by the value of ǫ, if ǫ = 1 (ǫ = −1) the root edge points
towards (away from) the root of the mobile.

Thus, the white vertices in the mobile along with an additional isolated
white vertex ρ correspond to the vertices in the planar map and the black
vertices in the mobile correspond to the faces in the planar map, a face
having a degree two times the degree of its corresponding black vertex, see
Fig. 2 for an example. Moreover, the labels in a mobile give information
on distances to the marked vertex ρ in the corresponding planar map m.
Define the label of ρ as ℓn(ρ) = minu∈V ◦(m) ℓn(u)− 1. Then

dn(v, ρ) = ℓn(v)− ℓn(ρ), v ∈ V (m) (2.4)

where by abuse of notation ℓn(v) stands for the label of the white vertex in
the mobile corresponding to the vertex v in the planar map.

The probability distribution µn on M∗
n is carried to a probability dis-

tribution µ̃n on Θn × {−1, 1} through the BDG–bijection, i.e. µ̃n(A) =
µn(F−1

n (A)) for any subset A ⊆ Θn × {−1, 1} and µ̃n can be described as
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Figure 2. An illustration of the BDG bijection. The edges
in the mobile are solid and the edges in the planar map are
dashed.

follows: Let τn ∈ Γn and denote by λn(τn) the number of ways one can add
labels to the white vertices of τn according to the above rules. One easily
finds that

λn(τn) =
∏

v∈V •

(

2 deg(v) − 1

deg(v)− 1

)

. (2.5)

This follows from counting the number of allowed label increments around
each black vertex v. The number of label increments around v is deg(v),
call them x1, x2, . . . , xdeg(v) in say clockwise order. The number of different
configurations is then given by

∑

x1+...+xdeg(v)=0
xi≥−1, ∀i

1 =
∑

y1+...+ydeg(v)=deg(v)

1 =

(

2 deg(v)− 1

deg(v)− 1

)

, (2.6)

the number of compositions of deg(v) into deg(v) non-negative parts.
A Boltzmann weight

W̃ (τn) =
∏

v∈V •

(

2 deg(v) − 1

deg(v)− 1

)

qdeg(v) =
∏

v∈V •

wdeg(v) (2.7)

is assigned to the tree τn and

µ̃n(((τn, ℓn), ǫ)) = W̃ (τn)/(λn(τn)Zn) (2.8)

where ℓn is any labeling of τn, ǫ ∈ {−1, 1} and Zn =
∑

τn∈Γn
W̃ (τn) is the

finite volume partition function defined in (1.3). Note that given τn the
labels ℓn are assigned uniformly at random from the set of all labelings and
ǫ is chosen uniformly from {−1, 1}. We will also find it useful to study the
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distribution of τn after forgetting about the labelling and the value of ǫ. For
that purpose we define ν̃n to be a probability distribution on Γn given by

ν̃n(τn) =
∑

ℓn,ε

µ̃n(((τn, ℓn), ǫ)) = 2W̃ (τn)/Zn. (2.9)

This distribution was shown by Marckert and Miermont [40] to be the
distribution of a certain two-type Galton–Watson tree, see Appendix A.

2.1. Distribution of labels in a fixed tree. We provide a result which
we will later need on the distribution of the maximum absolute value of the
labels in a mobile.

Lemma 2.1. Let θn = (τn, ℓn) ∈ Θn be a mobile with τn fixed (non-random)
and the labels ℓn chosen uniformly from the allowed labelings of the white
vertices of τn according to the rules (2.1). For every p > 2 there exists a
constant C(p) > 0 independent of τn such that

E

(

sup
v∈V ◦(τn)

|ℓn(v)|p
)

≤ C(p)np/2. (2.10)

To prove this lemma we relate the labels of τn to a random walk indexed by
the white vertices in τn. In the following we will let C1, C2, . . . be constants
which do not depend on the tree τn but may depend on other quantities
which will then be explicitly indicated. As before, denote the white contour
sequence of a mobile (τn, ℓn) by (ci)0≤i≤n where by definition cn = c0. Let ξ1,
ξ2, . . . be a sequence of independent random variables identically distributed
as

P(ξ1 = i) = 2−i−2, i = −1, 0, 1, . . . (2.11)

(This is a shifted geometric distribution with mean 0.) The ξi will have the
role of jumps of the random walk. For each black vertex v ∈ τn define the
set Bv ⊆ N by

Bv = {i ∈ N | ci−1 ∼ v and ci ∼ v} (2.12)

where v ∼ ci means that v and ci are nearest neighbours in τn. Define
Sm =

∑m
i=1 ξi and for any finite set B ⊂ N let SB =

∑

i∈B ξi. Define the
conditioned sequence of random variables

Sτn
m = (Sm | SBv = 0 for all v ∈ V •(τn)), m = 0, . . . , n. (2.13)

A simple calculation similar to the one in (2.6) shows that
(

Sτn
m

)n

m=0

d
=
(

ℓn(cm)
)n

m=0
. (2.14)

We have the following

Lemma 2.2. Let τn be a fixed tree and let Ŝτn
n (t) be the continuous function

on [0, 1] defined by Ŝτn
n (t) = n−1/2Sτn

nt when t ∈ [0, 1] and nt is an integer,
and extended by linear interpolation to all t ∈ [0, 1]. For every p ≥ 2 there
exists a constant C1(p) independent of n and τn such that

E|Ŝτn
n (t)− Ŝτn

n (s)|p ≤ C1(p)|s − t|p/2 (2.15)
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for any 0 ≤ s ≤ t ≤ 1.

Proof. First consider the case when s = k/n and t = l/n for integers k and
l. Suppose that k < l and define A = {k + 1, . . . , l} and Av = A ∩ Bv, for
every v ∈ V • := V •(τn). Then A is the disjoint union of the Av, v ∈ V •,
and thus

Sl − Sk = SA =
∑

v∈V •

SAv . (2.16)

Conditioning on SBv = 0 for all v ∈ V • now yields

Sτn
l − Sτn

k =
∑

v∈V •

(SAv | SBv = 0). (2.17)

Define Yv = (SAv | SBv = 0) for every v ∈ V •, and note that the random
variables Yv are independent. By [38, Lemma 1] there exists a constant
C2(p) > 0 such that for every v

E|Yv|p ≤ C2(p)|Av |p/2. (2.18)

Thus, by Rosenthal’s inequality, see e.g. [23, Theorem 3.9.1],

E|Sτn
l − Sτn

k |p = E

∣

∣

∣

∑

v∈V •

Yv

∣

∣

∣

p
≤ C3(p)

∑

v∈V •

E|Yv|p + C4(p)

(

∑

v∈V •

E|Yv|2
)p/2

≤ C5(p)
∑

v∈V •

|Av|p/2 + C6(p)

(

∑

v∈V •

|Av |
)p/2

≤ C7(p)

(

∑

v∈V •

|Av|
)p/2

= C7(p)(l − k)p/2, (2.19)

which is equivalent to (2.15) in this case. The case when k/n ≤ s ≤ (k+1)/n

follows directly since Ŝτn
n (t) is linear on [k/n, (k+1)/n] and the general case

follows by splitting the interval [s, t] into (at most) threes pieces and using
Minkowski’s inequality. �

Proof of Lemma 2.1. We will prove an equivalent statement for Sτn
m . For

any t ∈ [0, 1) define the dyadic approximations tj = 2−j⌊2jt⌋, j = 0, 1, . . ..

Then t0 = 0 and tj → t as j → ∞. Since Ŝτn
n is continuous it holds that

Ŝτn
n (t) =

∑∞
j=0(Ŝ

τn
n (tj+1)− Ŝτn

n (tj)). Fix p > 2. For any ǫ > 0, by Hölder’s

inequality, letting p′ be the conjugate exponent

|Ŝτn
n (t)|p ≤





∞
∑

j=0

2−p′ǫj





p/p′
∞
∑

j=0

2pǫj|Ŝτn
n (tj+1)− Ŝτn

n (tj)|p

≤ C8(p, ǫ)

∞
∑

j=0

2pǫj
2j+1
∑

k=1

|Ŝτn
n (k/2j+1)− Ŝτn

n ((k − 1)/2j+1)|p. (2.20)
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The right hand side is independent of t so taking the supremum over t and
then taking the expectation and using (2.15) gives

E sup
t∈[0,1]

|Ŝτn
n (t)|p ≤ C8(p, ǫ)

∞
∑

j=0

2pǫj2j+1C1(p)2
−jp/2 = C9(p, ǫ)

∞
∑

j=0

2(pǫ+1−p/2)j .

(2.21)
By choosing ǫ < (p/2− 1)/p, the estimate (2.10) follows due to (2.14). �

Remark 2.3. By [11, Theorem 12.3 and (12.51)], Lemma 2.2 implies also

that the family of all random functions Ŝτn
n (t), where n ∈ N and τn ranges

over all rooted planar trees with n edges, is tight in C([0, 1]); equivalently,
we may consider n−1/2ℓn(cnt), extended to t ∈ [0, 1] by linear interpolation.
However, this family does not have a unique limit in distribution as n → ∞.
For example, if τn is a star, then Ŝτn

n (t) converges to
√
2b(t), where b is a

Brownian bridge, while if τn is a path, with the root at one endpoint, Ŝτn
n (t)

converges to (2/3)1/2B(t∧ (1− t)) where B is a standard Brownian motion.

And in many cases, Ŝτn
n (t) converges to 0; if, for example, τn is a random

binary tree, then n−1/4Sτn
nt converges in distribution, see e.g. [27], and thus

Ŝτn
n (t) is typically of the order n−1/4.

3. Another useful bijection and simply generated trees

The colouring of the vertices in the mobiles is simply a bookkeeping device
which groups together vertices in every second generation. We will continue
referring to black and white vertices in trees even when no labels are assigned
to white vertices. There exists a useful bijection from the set of trees Γn to
itself which maps white vertices to vertices of degree 1 and black vertices of
degree k ≥ 1 to vertices of degree k+1. We will denote the bijection by Gn.
The bijection can be described informally in the following way: Start with
a tree with vertices coloured black and white as described above, the root
being white. It will be mapped to a new tree which has the same vertex set
as the old one but different edges. First consider the root, r, say of degree i
and denote its black children by r1, . . . , ri−1. Begin by attaching a half–edge
to r1 which becomes the root of the new tree. Then connect rj to rj+1 with
an edge for 1 ≤ j ≤ i− 1 and finally connect ri−1 to the root r. Continue in
the same way recursively for each of the subtrees attached to each of the rj.
More precisely, for a given white vertex u 6= r of degree k denote its parent
by u0 and its children by u1, . . . , uk−1. Insert an edge between uj and uj+1

for 0 ≤ j < k− 1 if possible (i.e. if k > 0) and finally connect uk−1 to u, see
Fig. 3.

The usefulness of the bijection Gn is that it gives a simple description of
the probability distribution ν̃n. Let νn be the pushforward of ν̃n by Gn. By
(2.7) and the properties of Gn

νn(τn) = 2Z−1
n

∏

v∈V (τn)

wdeg(v)−1 (3.1)
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Figure 3. A diagram describing the bijection from Γn to
itself which sends white vertices to vertices of degree 1 and
black vertices of degree k to vertices of degree k + 1.

where we recall that wi was defined in (1.4). The convenient thing is that
now all vertices are treated equally. The probability measure νn describes
simply generated trees, originally introduced by Meir and Moon [41] and
has since been studied extensively, see e.g. [25] and references therein.

For the weights (1.6) in Case (C1) in the introduction we define the prob-
abilities

pi =
wi

g(1)
; (3.2)

thus for i ≥ 1, with L̄(i) = g(1)−1L(i),

pi = L̄(i)i−β . (3.3)

We let Pp be the law of a Galton–Watson tree with offspring distribution
(pi)i≥0, see e.g. [5], [25]. Note that the expected number of offspring of an
individual in the Galton–Watson process is equal to g′(1)/g(1) = κ. We will
furthermore denote the variance of the number of offspring by

σ2 = g′′(1)/g(1) + κ(1 − κ) (3.4)

which may be finite or infinite depending on the value of β. The measure
νn viewed as a measure on the set of finite trees is in this case equal to the
measure Pp(· | |τ | = n), where τ denotes a finite tree. In Case (A2), νn has
no such equivalent description in terms of a Galton–Watson process.

Using the bijection Gn one can translate known results on simply gen-
erated trees to the trees distributed by ν̃n. We will now introduce some
notation and state a few technical results needed later on, some of which
are interesting by themselves. In a random tree τn distributed by ν̃n se-
lect a black vertex of maximum degree in some prescribed way (e.g. as the
first such vertex encountered in the lexicographical order) and denote it by
s. Denote the degree of s by ∆n and the white vertices surrounding s by
s0, s1, . . . , s∆n−1 in a clockwise order, taking s0 as the parent of s. For more
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compact notation we do not explicitly write the dependency of s and si on
n.

Denote by τn,0 the tree which consists of all vertices in τn apart from s
and its descendants. Let τn,i be the tree consisting of si and its descendants,
1 ≤ i ≤ ∆n − 1. Furthermore, define N◦

n,i as the number of white vertices

in τn,i. Write τ ′n = Gn(τn) and let s′ be the vertex in τ ′n corresponding to
the vertex s in τn. Then deg(s′) = ∆n + 1. Define the subtrees τ ′n,i around

s′ in τ ′n in an analogous way as above where 0 ≤ i ≤ ∆n. It is then simple
to check that

|τn,0| = |τ ′n,0|+ |τ ′n,∆n
|+ 1 and |τn,i| = |τ ′n,i| (3.5)

for 1 ≤ i ≤ ∆n − 1. This is the key relation used to translate results from
the simply generated trees to the mobiles.

Let Y = (Yt)t≥0 be the spectrally positive stable process with Laplace

transform E(exp(−λYt)) = exp
(

tλ2∧(β−1)
)

. (This is a Lévy process with

no negative jumps; the Lévy measure is Γ(−α)−1x−α−1dx on x > 0, where
α = 2 ∧ (β − 1) ∈ (1, 2], see e.g. [7] and [47].) Denote by D([0, 1]) the set
of càdlàg functions [0, 1] → R with the Skorohod topology, see [12, Section
12]. We have the following proposition for the case (1.6), where 0 < κ < 1.

Proposition 3.1. For the weights (1.6), the tree distributed by ν̃n has the
properties that

(i)

∆n

n

p−−−→
n→∞

1− κ. (3.6)

(ii)

N◦
n

n

p−−−→
n→∞

p0 (3.7)

with p0 = 1/g(1) defined in (3.2).
(iii) For any fixed i, |τn,i| converges in distribution as n → ∞ to a

finite random variable. For i ≥ 1, the limit equals |τ |, where τ is a
Galton–Watson tree with offspring distribution (pi)i≥0.

(iv) There exists a slowly varying function L1(n) such that for Cn =

L1(n)n
1

2∧(β−1) the following weak convergence holds in D([0, 1]):

(

∑⌊(∆n−1)t⌋
i=1 N◦

n,i − p0
1−κ∆nt

Cn

)

0≤t≤1

d−−−→
n→∞

(

Yt

)

0≤t≤1
. (3.8)

(v) It holds that

1

Cn
sup

1≤i≤∆n−1
N◦

n,i
d−−−→

n→∞
V (3.9)

with Cn from part (iv) and the random variable V = max0≤t≤1 ∆Yt.
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Proof. Part (i) follows from the corresponding result for simply generated
trees which was originally proven in [28] in the case of an asymptotically
constant slowly varying function L in (1.6) and then in [32] for a general
slowly varying function L.

Part (ii) follows from [25, Theorem 7.11(ii)] since the number of white
vertices N◦

n in the tree τn equals the number of leaves in the simply generated
tree τ ′n, via the bijection Gn.

For part (iii) we note that the simply generated trees distributed by νn
converge locally towards an infinite random tree, see [28, Theorem 5.3] in
the case of an asymptotically constant slowly varying function L and [25,
Theorem 7.1] for the most general case. Local convergence of the trees
distributed by ν̃n follows and the result in part (iii) is then an immediate
consequence, see the arguments in the proof of Theorem 3(iii) in [32].

Part (iv) requires some explanation. We will prove a corresponding state-
ment for the simply generated trees distributed by νn. Recall the notation
τn for (coloured) trees distributed by ν̃n and τ ′n for (conditioned Galton–
Watson) trees distributed by νn as explained in the paragraph above (3.5).
First of all note that the number of white vertices in τn,i, which is denoted by
N◦

n,i, corresponds to the number of leaves in the trees τ ′n,i for 1 ≤ i ≤ ∆n−1.
Recall that Pp is the law of a Galton–Watson process with the offspring

distribution (pi)i≥0 defined in (3.2). Denote by N the total progeny (number
of vertices) of the Galton–Watson process distributed by Pp and denote the

random number of leaves by N (0). It is well known that E(N) = 1/(1 − κ)
(see e.g. [5]), and furthermore

EN (0) =
p0

1− κ
= p0EN ; (3.10)

in fact, the expected number of vertices in generation m ≥ 0 is κm, and the
expected number of leaves among them is p0κ

m, whence summing over all
m ≥ 0 yields (3.10). This explains the linear term in (3.8).

Kortchemski [32, Theorem 4] proved a convergence result in D([0, 1])
which in our notation can be written as

(

∑⌊(∆n−1)t⌋
i=1 (|τ ′n,i|+ 1)− 1

1−κ∆nt

B′
n

)

0≤t≤1

d−−−→
n→∞

(

Yt

)

0≤t≤1
(3.11)

where B′
n = L2(n)n

1
2∧(β−1) for some slowly varying function L2. The main

idea of Kortchemski’s proof is to use the fact that for n large, the subtrees
τ ′n,i become asymptotically independent copies of a Galton–Watson process

with law Pp and thus |τ ′n,i|+1 appearing in the sum in (3.11) can be replaced

by a sequence (Ni)i≥1 of independent random variables distributed as N .
(This is shown in [32] as a consequence of a corresponding result for random
walks by Armendáriz and Loulakis [4].) Furthermore, it is well known, see
e.g. [44], [30], [31], [45, Section 6.1], [25, Theorem 15.5], that if ξi, i = 1, 2, . . .
is a sequence of independent random variables with the distribution (pi)i≥0,
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and we let Sn =
∑n

i=1 ξi, then

P(N = n) =
1

n
P(Sn = n− 1). (3.12)

Moreover, from the tail behaviour (3.3) of pi = P(ξ = i), it follows that,
recalling that Eξi = κ,

P(Sn = n− 1) = P
(

Sn − nκ = n(1− κ)− 1
)

= n
(

1 + o(1)
)

P(ξ1 = ⌊n(1− κ)− 1⌋) (3.13)

as n → ∞, see [19] for more general statements. (In our case, (3.13) fol-
lows also directly by a modification of the proof of [25, Theorem 19.34].)
Combining (3.12), (3.13) and (3.3) we obtain

P(N = n) =
(

1 + o(1)
)

(1− κ)−βL̄(n)n−β =
(

1 + o(1)
)

(1− κ)−βpn, (3.14)

so the distribution of N also obeys (1.6) (with a different L), which by
standard results (see e.g. [21, Section XVII.5]) implies that N is in the
domain of attraction of a spectrally positive stable distribution of index
α = 2 ∧ (β − 1), and thus

(

∑⌊nt⌋
i=1 Ni − 1

1−κnt

B′
n

)

0≤t≤1

d−−−→
n→∞

(

Yt

)

0≤t≤1
(3.15)

for a suitable B′
n = L2(n)n

1
2∧(β−1) . We refer to [32] for further details, and

for the arguments using (3.15) to show (3.11).
Going through Kortchemski’s proof one sees that the latter arguments

apply in our case too if we replace Z
(k) in [32] by

(

C−1
k

(
∑⌊kt⌋

i=1 N
(0)
i −

p0
1−κkt

)

)

0≤t≤η
and the problem is reduced to showing that if (Ni, N

(0)
i )i≥1 is

a sequence of independent random vectors distributed as (N,N (0)), then
(

∑⌊nt⌋
i=1 N

(0)
i − p0

1−κnt

Cn

)

0≤t≤1

d−−−→
n→∞

(

Ŷt

)

0≤t≤1
, (3.16)

where Ŷ has the same distribution as Y , and that this holds jointly with
(3.15). (Joint convergence is used in the analogue of [32, (31)] in the proof;

however, the joint distribution of (Y, Ŷ ) does not influence the result (3.8).)
The proof of part (iv) is thus completed by Lemma 3.4 below.

Finally, part (v) follows from part (iv), see the proof of Corollary 2 in
[32]. �

Remark 3.2. Actually, it would suffice to prove (3.16) separately; this and
(3.15) show in particular that the left hand sides are tight in D([0, 1]), which
implies that they are jointly tight in D([0, 1])×D([0, 1]), and we can obtain
the desired joint convergence by considering suitable subsequences; this is
enough to show (3.8) for the full sequence since the result does not depend
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on the joint distribution of
(

Yt

)

0≤t≤1
and

(

Ŷt

)

0≤t≤1
. We can show (3.16) by

the same standard results as for (3.15) together with the estimate

P(N (0) = n) ∼ cL̄(n)n−β, (3.17)

for some c > 0, see Lemma A.2, which shows that the distribution of N (0)

has the same tail behaviour as N and (pi)i≥0. This thus yields an alternative
proof of Proposition 3.1(iv).

Before stating and proving Lemma 3.4 used above, we give another lemma.

Lemma 3.3. For the weights (1.6), with notations as above, as n → ∞,

P
(∣

∣N (0) − p0N
∣

∣ ≥ n
)

= o
(

L̄(n)n1−β
)

= o(npn) = o
(

P(N ≥ n)
)

. (3.18)

Proof. Note first that (3.14) and (3.3) imply, by a standard calculation [13],

P(N ≥ n) =
(

1 + o(1)
)

(1− κ)−β(β − 1)−1L̄(n)n1−β

=
(

1 + o(1)
)

(β − 1)−1(1− κ)−βnpn. (3.19)

Let a > 0. Since |N (0) − p0N | ≤ N ,

P
(

|N (0) − p0N | ≥ n
)

≤ P(N ≥ an) + P

(

|N (0) − p0N | ≥ 1

a
N and N ≥ n

)

.

(3.20)

Let ε > 0. By [25, Theorem 7.11], (N (0) | N = n)/n
p−→ p0 as n → ∞.

Thus, P
(

|N (0) − p0N | ≥ a−1N | N = n
)

< ε if n is large enough, and for
such n,

P

(

|N (0) − p0N | ≥ 1

a
N and N ≥ n

)

=

∞
∑

m=n

P

(

|N (0) − p0N | ≥ 1

a
N | N = m

)

P(N = m)

≤ εP(N ≥ n). (3.21)

Thus (3.20) yields, for large n,

P
(

|N (0) − p0N | ≥ n
)

≤ P(N ≥ an) + εP(N ≥ n), (3.22)

which by (3.19) yields, with C = (β − 1)−1(1− κ)−β ,

P
(

|N (0) − p0N | ≥ n
)

≤
(

1 + o(1)
)

C
(

a1−β + ε
)

L̄(n)n1−β. (3.23)

Since we may choose a arbitrarily large and ε arbitrarily small, (3.18) follows.
�

Lemma 3.4. The limits (3.15) and (3.16), in distribution in D([0, 1]), hold
jointly.

Proof. Suppose first that the offspring distribution (3.3) has finite vari-
ance. (This implies β ≥ 3 by (3.14).) It then follows from (3.14) that

N and N (0) ≤ N have finite variances and by a two-dimensional version
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of Donsker’s theorem, the result follows with 2−1/2Yt and 2−1/2Ŷt two dif-
ferent (dependent) standard Brownian motions, and B′

n =
√

Var(N)n/2,

Cn =
√

Var(N (0))n/2.
Suppose now instead that the variance of the offspring distribution is

infinite; then EN2 = ∞. We follow [21, Section XVII.5] and let µ(x) be the
truncated moment function

µ(x) = E(N21{N ≤ x}). (3.24)

Then µ(x) → ∞ as x → ∞. Moreover, by [21, Theorem XVII.5.2 and
XVII.(5.23)], µ(x) is regularly varying with exponent 2 − α = (3 − β) ∨ 0,
and (3.15) holds with nµ(B′

n)/(B
′
n)

2 → C for some constant C.
If we similarly define the truncated moment function

µ1(x) = E
(

(N (0) − p0N)21{|N (0) − p0N | ≤ x}
)

, (3.25)

it follows easily by (3.18) (and µ(x) → ∞) that, as x → ∞,

µ1(x) = o(µ(x)) (3.26)

and thus
nµ1(B

′
n)

(B′
n)

2
= o
(nµ(B′

n)

(B′
n)

2

)

→ 0, n → ∞. (3.27)

It follows by minor modifications of the arguments in [21, Section XVII.5]
that

∑n
i=1(N

(0)
i − p0Ni)

B′
n

p−→ 0. (3.28)

Moreover, by [29, Theorem 16.14], or by symmetrization and a stopping
time argument, it follows that

sup
0≤t≤1

∣

∣

∣

∣

∣

∣

⌊nt⌋
∑

i=1

(N
(0)
i − p0Ni)

∣

∣

∣

∣

∣

∣

/B′
n

p−→ 0, (3.29)

and thus (3.15) implies that (3.16) holds jointly with Ŷt = Yt and Cn = p0B
′
n.

(Note that Ŷ = Y when the offspring variance is infinite, but not when it is
finite.) �

For the case (1.7), where κ = 0, the proposition below follows immediately
from [26, Theorems 2.4–2.5 and Remark 2.9].

Proposition 3.5. For wi = (i!)α, α > 0, the tree distributed by ν̃n has the
following properties:

(i) For α > 1

n−∆n
p−−−→

n→∞
0. (3.30)

For α = 1

n−∆n
d−−−→

n→∞
Pois(1). (3.31)

For α < 1
n−∆n = O(n1−α) (3.32)
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with probability tending to 1 as n → ∞.
(ii)

N◦
n

n

p−−−→
n→∞

1. (3.33)

(iii) The vertex s is the unique black child of the root r and

sup
1≤i≤∆n−1

N◦
n,i ≤ ⌊1/α⌋ ∨ 1 (3.34)

with probability tending to 1 as n → ∞.

The propositions above along with the correspondence between degrees
of faces in the planar maps and degrees of black vertices in the mobiles show
that a unique face of degree roughly equal to (1−κ)n appears in the planar
maps Mn with probability tending to 1 as n → ∞.

4. Label process on mobiles

Let θn be a random mobile distributed by µ̃n, and denote by N◦
n the

random number of white vertices in θn. Order the white vertices in a
lexicographical order v0, v1, . . . , vN◦

n
(taking vN◦

n
= v0). Again we do not

write explicitly the dependency of v and vi on n. Define the label process
Ln : {0, 1, . . . , N◦

n} → Z by Ln(i) = ℓn(vi). Extend Ln to a function on
[0, N◦

n] by linear interpolation.
Denote the set of continuous functions from [a, b] to R by C([a, b]) equipped

with the topology of uniform convergence. Let b be the standard Brownian
bridge on [0, 1], starting and ending at 0. We will in this section prove the
following result:

Theorem 4.1. For the weights (1.6) and (1.7) it holds that
( 1
√

2(1 − κ)n
Ln(tN

◦
n)
)

0≤t≤1

d−−−→
n→∞

(

b(t)
)

0≤t≤1
(4.1)

with convergence in distribution in C([0, 1]).

Since the label function encodes information on distances, cf. (2.4), this

result shows that the diameter of the maps grows like n1/2. More precisely,
we can translate Theorem 4.1 to a result on distances to the marked vertex
ρ. Define the distance process Dn : {0, 1, . . . , N◦

n} → Z by Dn(i) = d(vi, ρ).
Extend Dn to a function on [0, N◦

n] by linear interpolation, and then to a
function on R with period N◦

n. By (2.4),

Dn(t) = Ln(t)− ℓn(ρ) = Ln(t)− min
0≤s≤N◦

n

Ln(s) + 1, 0 ≤ t ≤ N◦
n. (4.2)

Further, let vi∗ be the first white vertex (in our ordering) that is a neighbour
of ρ, i.e., i∗ = min{i : ℓn(vi) = minj ℓn(vj}.
Theorem 4.2. For the weights (1.6) and (1.7) it holds that

( 1
√

2(1− κ)n
Dn(tN

◦
n + i∗)

)

0≤t≤1

d−−−→
n→∞

(

e(t)
)

0≤t≤1
(4.3)
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with convergence in distribution in C([0, 1]).

Proof. The minimum of b is a.s. attained at a unique point, U say, and U
is uniformly distributed on [0, 1]; moreover, by Vervaat’s theorem [46], if
this minimum is subtracted from b and the bridge is shifted (periodically)
such that the minimum is located at 0 one obtains a standard Brownian
excursion e on [0, 1], see also [10].

By Skorohod’s representation theorem, we may assume that the conver-
gence in (4.1) holds a.s. Since the minimum point U is unique, it follows
that the minimum point vi∗/N

◦
n of the left hand side converges to U a.s.

(The minimum point vi∗ is typically not unique. We chose the first mini-
mum point, but any other choice would also converge to U a.s.) The desired
convergence (4.3) now follows from (4.2), (4.1) and Vervaat’s theorem. �

We start by introducing some notation and proving a couple of lemmas
before proceeding to the proof of Theorem 4.1. Begin by considering only
the part of the label process which surrounds the vertex s, a black vertex
of maximum degree. Let s0 be the white parent of s and let si be its
i:th white child in clockwise order from s0, where i = 1, . . . ,∆n with the
convention that s∆n = s0. Define the function L⋆

n : {0, 1, . . . ,∆n} → Z by
L⋆
n(i) = ℓn(si). As before, extend L⋆

n to a continuous function on [0,∆n] by
linear interpolation.

Lemma 4.3. For the weights (1.6) and (1.7) it holds that
( 1
√

2(1 − κ)n
L⋆
n(t∆n)

)

0≤t≤1

d−−−→
n→∞

(

b(t)
)

0≤t≤1
(4.4)

with convergence in distribution in C([0, 1]).

Proof. Let θn = (τn, ℓn) be a mobile distributed by µ̃n. By Propositions

3.1(i) and 3.5(i), ∆n/n
p−−→ 1−κ as n → ∞. Using Skorohod’s representation

theorem we may construct ∆n and Ln on a common probability space such
that this convergence holds almost surely, i.e.

∆n/n
a.s.−−−→

n→∞
1− κ. (4.5)

In the following we will assume that this holds.
The label process L⋆

n, evaluated on the integers, is a random walk of
length ∆n having jump probabilities ω(k) = 2−k−2, k = −1, 0, 1 . . ., starting
at L⋆

n(0) = ℓn(s0) and conditioned to end at ℓn(s0), see [38, Section 3.3.]. It

follows from Propositions 3.1(iii) and 3.5(iii) that n−1/2ℓn(s0)
p−→ 0 as n →

∞. The jump distribution has mean 0 and variance
∑∞

k=−1 k
2ω(k) = 2. The

result now follows by a conditional version of Donsker’s invariance theorem,
see e.g. [8, Lemma 10] for a detailed proof. �

Lemma 4.4. Let fn, gn : An → [0,∆n] be random functions, for some
(possibly random) set An. If

sup
x∈An

n−1|fn(x)− gn(x)|
p−→ 0 (4.6)
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then

n−1/2 sup
x∈An

|L⋆
n(fn(x))− L⋆

n(gn(x))|
p−−−→

n→∞
0. (4.7)

Proof. By the triangle inequality

(2(1 − κ)n)−1/2 sup
x∈An

∣

∣L⋆
n(fn(x))− L⋆

n(gn(x))
∣

∣

≤ sup
x∈An

∣

∣b(fn(x)/∆n)− b(gn(x)/∆n)
∣

∣

+ sup
x∈An

∣

∣(2(1− κ)n)−1/2L⋆
n(fn(x))− b(fn(x)/∆n)

∣

∣

+ sup
x∈An

∣

∣(2(1− κ)n)−1/2L⋆
n(gn(x)) − b(gn(x)/∆n)

∣

∣.

The first term converges to zero in probability by (4.6) and the fact that
b is continuous on [0, 1] and hence uniformly continuous. The other terms
converge to zero by Lemma 4.3, assuming as we may (by Skorohod’s repre-
sentation theorem) that (4.4) holds a.s. �

Lemma 4.5. As n → ∞,

n−1/2 sup
0≤i≤∆n−1

sup
v∈τn,i

|ℓn(v)− ℓn(si)|
p−→ 0 (4.8)

Proof. Write the left hand side as n−1/2K. We condition on τn and obtain,
by using Lemma 2.1 for each subtree τn,i separately,

E(Kp | τn) ≤
∆n−1
∑

i=0

E sup
v∈τn,i

|ℓn(v)− ℓn(si)|p ≤
∆n−1
∑

i=0

C(p)
(

N◦
n,i

)p/2

≤ C(p)n sup
0≤i<∆n

(

N◦
n,i

)p/2
. (4.9)

Choose δ > 0 with 1 − δ > 1/(2 ∧ (β − 1)), and choose p > 2/δ. Then, by
Proposition 3.1(iii),(v) and Proposition 3.5(iii),

sup
0≤i<∆n

N◦
n,i/n

1−δ p−→ 0, (4.10)

and thus, with probability tending to 1 as n → ∞,

sup
0≤i<∆n

N◦
n,i ≤ n1−δ. (4.11)

If τn is such that (4.11) holds then (4.9), along with Markov’s inequality,
implies that for any ε > 0,

P
(

K > εn1/2 | τn
)

≤ ε−pn−p/2C(p)n1+(1−δ)p/2 = ε−pC(p)n1−δp/2 → 0.
(4.12)

Hence P(K > εn1/2) → 0, as asserted. �
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Figure 4. An example of the mapping πn.

Proof of Theorem 4.1. To unify the treatment of the cases (1.6) and (1.7)
we define p0 = 1 for the weights in (1.7). By Lemma 4.3 it is sufficient to
show that

n−1/2 sup
0≤x≤N◦

n

∣

∣

∣
L⋆
n

(

x
∆n

N◦
n

)

− Ln

(

x
)

∣

∣

∣

p−−−→
n→∞

0. (4.13)

Note that Ln is a linear interpolation of its values on the integers. Using
the triangle inequality (and Lemma 4.4) therefore allows us to restrict to
integer values of x which we will write as k. Introduce the mapping πn :
{0, 1, . . . , N◦

n} → {0, 1, . . . ,∆n} defined as follows, see Figure 4: Let πn(0) =
0 and πn(N

◦
n) = ∆n. If vi ∈ τn,j for j = 1, . . . ,∆n − 1 then πn(i) = j. If

v0 < vi ≤ s0 in the lexicographic ordering then πn(i) = 0 and if vi ∈ τn,0
with vi > s0 then πn(i) = ∆n. By the triangle inequality

n−1/2 sup
0≤k≤N◦

n

∣

∣

∣L⋆
n

(

k
∆n

N◦
n

)

− Ln

(

k
)

∣

∣

∣ ≤ n−1/2 sup
0≤k≤N◦

n

∣

∣

∣L⋆
n

(

k
∆n

N◦
n

)

− L⋆
n(πn(k))

∣

∣

∣

+ n−1/2 sup
0≤k≤N◦

n

|Ln(k)− L⋆
n(πn(k))|. (4.14)

We begin by showing that the first term on the right hand side of (4.14)
converges to 0 in probability. By Lemma 4.4, it suffices to show that

n−1 sup
0≤k≤N◦

n

∣

∣

∣
k
∆n

N◦
n

− πn(k)
∣

∣

∣

p−→ 0. (4.15)

We have the estimate

πn(k)−1
∑

i=1

N◦
n,i ≤ k ≤

πn(k)
∑

i=0

N◦
n,i. (4.16)
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Thus
∣

∣

∣k −
πn(k)
∑

i=1

N◦
n,i

∣

∣

∣ ≤ N◦
n,0 +N◦

n,πn(k)
(4.17)

and hence, using Propositions 3.1(iii),(v) and 3.5(iii),

n−1 sup
0≤k≤N◦

n

∣

∣

∣
k −

πn(k)
∑

i=1

N◦
n,i

∣

∣

∣

p−→ 0. (4.18)

Furthermore, in view of Propositions 3.1(i),(ii) and 3.5(i),(ii), ∆n/N
◦
n

p−→
(1− κ)/p0. It thus suffices to show that

sup
0≤l≤∆n

n−1
∣

∣

∣

1− κ

p0

l
∑

i=1

N◦
n,i − l

∣

∣

∣

p−−−→
n→∞

0 (4.19)

which indeed follows from Proposition 3.1(iv) and Proposition 3.5(i).
Next consider the second term on the right hand side of (4.14). This is

exactly the left hand side in Lemma 4.5, and thus it to tends to 0. �

5. Proof of Theorem 1.1

We start by recalling standard results on the Gromov–Hausdorff distance.
A correspondence R between two metric spaces (E1, d1) and (E2, d2) is a
subset of E1 × E2 such that for every x1 ∈ E1 there exists an x2 ∈ E2

such that (x1, x2) ∈ R and vice versa. Denote the set of all correspondences
between E1 and E2 by C(E1, E2). A distortion of a correspondence is defined
as

dis(R) = sup{|d1(x1, y1)− d2(x2, y2)| : (x1, x2), (y1, y2) ∈ R}. (5.1)

The pointed Gromov–Hausdorff distance between (E1, d1) and (E2, d2) with
marked points ρ1 and ρ2 respectively can be conveniently expressed as, see
[15, Theorem 7.3.25] (for the non-pointed version; the pointed version used
here is similar)

dGH(E1, E2) =
1

2
inf

R∈C(E1,E2),(ρ1,ρ2)∈R
dis(R). (5.2)

In the proof of Theorem 1.1 we use similar ideas as in the previous section.
Let Mn be a random planar map with a corresponding mobile θn = (τn, ℓn).
As before we denote the white vertices in θn by v0, . . . , vN◦

n
in lexicographical

order and use the same notation for the corresponding white vertices in Mn.
Also define the vertex s and its surrounding vertices s0, . . . , s∆N

as before.
Denote by θ⋆n = (τ⋆n, ℓ

⋆
n) the mobile which is obtained by trimming θn such

that it only consists of the black vertex s and its surrounding white vertices
si, 0 ≤ i ≤ N◦

n, and keeping the labels of these vertices the same as before.
We add a superscript ⋆ to the notation when we consider these vertices
as vertices in θ⋆n. Take s⋆0 to be the root of θ⋆n. Note that if Ln is the
label process corresponding to θn then L⋆

n, defined in Section 4, is the label
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process corresponding to θ⋆n. By definition it holds that ℓ⋆n(s
⋆
i ) = ℓn(si) for

all 0 ≤ i ≤ ∆n. In general, the root s⋆0 of θ⋆n has a label different from
zero, but note that the BDG bijection still works since it only depends on
the increments of the labels in the white contour sequence. The planar map
obtained from θ⋆n is denoted by M⋆

n, the graph distance on M⋆
n by d⋆n and

the marked vertex by ρ⋆n.
The planar map M⋆

n has a single black vertex and has therefore a single
face. Hence it contains no cycles and is thus a planar tree with ∆n edges.
Given ∆n, the map M⋆

n is a uniformly distributed rooted planar tree and,
given M⋆

n, the marked vertex ρ⋆n is chosen uniformly at random. (Note
that the root edge of M⋆

n yields both a root vertex and an ordering of the
children of the root, and conversely; we may take the first child to be the
other endpoint of the root edge.) Aldous [2] proved that the contour function
of such a random rooted tree, after rescaling, converges in distribution to e,
which implies convergence of the tree to Te in Gromov–Hausdorff distance,
see [34, Theorem 2.5]. Hence we obtain, including also the marked vertex,
the following.

Theorem 5.1. For the weights (1.6) and (1.7) the random planar map
(

(M⋆
n, ρ

⋆
n

)

, (2(1− κ)n)−1/2d⋆n) viewed as an element of M∗ converges in dis-

tribution towards
(

(Te, ρ∗), δe
)

where given Te, ρ∗ is a marked vertex chosen
uniformly at random from Te.

To complete the proof of Theorem 1.1 we construct the following corre-
spondence between ((Mn, ρn), (2(1 − κ)n)−1/2dn) and
((M⋆

n, ρ
⋆
n), (2(1 − κ)n)−1/2d⋆n):

Rn = {(ρn, ρ⋆n)} ∪
N◦

n−1
⋃

i=0

{(vi, s⋆πn(i)
)} (5.3)

with πn the same as in the proof of Theorem 4.1. We then show that the
distortion of this correspondence converges to zero in probability. Recall the
definition of τn,i in Section 3. We have the following estimate

Lemma 5.2. For any mobile θn = (τn, ℓn) it holds that

dis(Rn) ≤ 10(2(1 − κ)n)−1/2 sup
0≤i≤∆n−1

sup
v∈τn,i

|ℓn(v)− ℓn(si)|. (5.4)

By Lemma 4.5 the right hand side tends to 0 in probability, which along
with Theorem 5.1 completes the proof of Theorem 1.1. We conclude by
proving Lemma 5.2.

Proof of Lemma 5.2. Let (x, x⋆), (y, y⋆) ∈ Rn. Write

K = sup
0≤i≤∆n−1

sup
v∈τn,i

|ℓn(v) − ℓn(si)|.

When we refer to ancestral relations in M⋆
n we use ρ⋆n as the reference point,

i.e. we say that y is an ancestor of x in M⋆
n if x 6= y and the unique geodesic

from x to ρ⋆n contains y. Consider separately the following three cases
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(i) x⋆ = y⋆.
(ii) y⋆ is an ancestor of x⋆ in M⋆

n, or conversely.
(iii) x⋆ 6= y⋆ and neither is an ancestor of the other.

Begin by studying case (i). The case x⋆ = y⋆ = ρ⋆n is trivial so we consider
x⋆ 6= ρ⋆n. We can then write x⋆ = y⋆ = s⋆i for some i which will be fixed in
this part of the proof. Then

dn(x, si) ≤ K and dn(y, si) ≤ K (5.5)

and by the triangle inequality

|dn(x, y)− d⋆n(x
⋆, y⋆)| = |dn(x, y)| ≤ 2K. (5.6)

Next consider case (ii) and assume that y⋆ is an ancestor of x⋆. First
assume that y⋆ 6= ρ⋆n. Then there are unique i and j such that x⋆ = s⋆i ,
y⋆ = s⋆j and without loss of generality we assume that i < j (otherwise we

shift the indices i and j modulo ∆n). In this part, i and j are fixed. It holds
that

ℓn(sm) > ℓn(sj) (5.7)

for all m obeying i ≤ m < j. Let γi be a successor geodesic from si to
ρn defined by (si, σ(si), σ ◦ σ(si), . . . , ρn) with σ defined in (2.3). Similarly,
let γj be a successor geodesic in Mn from sj to ρn. We will show that the
distance between γi and sj is small (in terms of K). Define

λ1 = min{ℓn(vm) : i ≤ πn(m) < j}. (5.8)

It clearly holds that

λ1 ≤ ℓn(sj−1) ≤ ℓn(sj) + 1. (5.9)

Let l be an index for which the minimum in (5.8) is attained, i.e. such that
ℓn(vl) = λ1 and i ≤ πn(l) < j. Then, by (5.7)

λ1 = ℓn(vl) ≥ ℓn(sπn(l))−K ≥ ℓn(sj) + 1−K. (5.10)

Now, γi and γj intersect for the first time at a vertex with label λ1 − 1, call
this vertex z, see Fig. 5. Then by (2.4) and (5.10)

dn(z, sj) = ℓn(sj)− ℓn(z) ≤ K. (5.11)

Furthermore,

dn(x, si) ≤ K and dn(y, sj) ≤ K. (5.12)

Finally, we get by repeatedly using the triangle inequality along with (2.4),
(5.11) and (5.12)

|dn(x, y) − d⋆n(x
⋆, y⋆)| ≤ |dn(x, y)− dn(si, sj)|+ |dn(si, sj)− dn(z, si)|

+ |dn(z, si)− d⋆n(x
⋆, y⋆)|

≤ dn(x, si) + dn(y, sj) + dn(z, sj)

+ |ℓn(si)− ℓn(z)− ℓ⋆n(s
⋆
i ) + ℓ⋆n(s

⋆
j)|

≤ 3K + |ℓn(sj)− ℓn(z)| ≤ 4K. (5.13)
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Figure 5. Illustration of the setup in part (ii) of the proof
with ℓn(sj) = 4 and λ1 = 4. A planar mobile is shown
with the edges and the black vertices colored light gray. The
geodesic γi is black with dots and dashes and γj is black and
solid. Since they are successor geodesics they intersect at the
vertex z with label λ1 − 1 = 3. Another geodesic γ′j from sj
to ρn (not a successor geodesic) is shown in dark gray and it
does not intersect γi at a vertex with label λ1 − 1.

The case y⋆ = ρ⋆n is treated in a simpler way leading to a similar upper
bound as in (5.13); we omit the details.

Finally consider case (iii). We keep writing x⋆ = s⋆i and y⋆ = s⋆j . Denote
the common ancestor of x⋆ and y⋆ having the largest label by z⋆. Assume
that z⋆ 6= ρ⋆n and write z⋆ = s⋆k; the case z⋆ = ρ⋆n is treated in a similar
but simpler way. We may assume without loss of generality that i < j < k
(by shifting the indices modulo ∆n and possibly renaming x and y). In this
part, i, j and k are fixed. Define the geodesics γi and γj as in case (ii) and
let γk be the successor geodesic from sk to ρn. Furthermore, let γij be a
geodesic directed from si to sj in Mn. Since s⋆k is an ancestor of both x⋆

and y⋆ it follows from (5.11) that there is a vertex zi in γi and a vertex zj
in γj such that

dn(zm, sk) = ℓn(sk)− ℓn(zm) ≤ K for m = i, j. (5.14)

Moreover,

ℓn(sm) > ℓn(sk) (5.15)

for all m obeying i ≤ m < k. We now show that γij is also close to sk.
Define

λ2 = min{ℓn(vm) : vm ∈ γij, i ≤ πn(m) < k} (5.16)

where by vm ∈ γij we mean that vm is visited by γij . Condition (iii) guaran-
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Figure 6. Illustration of the setup in part (iii) of the proof
with ℓn(sk) = 5, λ2 = 5 and λ3 = 4. A planar mobile is
shown with the edges and the black vertices colored light
gray. The geodesic γij is dotted and dashed, ηl is solid and
γk is dotted. Since ηl and γk are successor geodesics they
intersect at the vertex zk with label λ3 − 1 = 3.

tees that there is an index, say p, such that i ≤ p < j and ℓn(sp) = ℓn(sk)+1.
Let q be the first time at which sp < γij(q) ≤ sk in the lexicographic order on
τn. Then q is well defined since γij ends at sj. If ℓn(γij(q)) = ℓn(γij(q−1))+1
then by the properties of the BDG bijection ℓn(γij(q)) ≤ ℓn(sk). On the
other hand, if ℓn(γij(q)) = ℓn(γij(q − 1)) − 1 then by the same arguments
ℓn(γij(q− 1)) ≤ ℓn(sp) which again yields ℓn(γij(q)) ≤ ℓn(sk). We have thus
established that

λ2 ≤ ℓn(sk). (5.17)

Let l be an index for which the minimum in (5.16) is attained, i.e. such that
vl ∈ γij, i ≤ πn(l) < k and ℓn(vl) = λ2. By (5.15)

λ2 = ℓn(vl) ≥ ℓn(sπn(l))−K ≥ ℓn(sk) + 1−K. (5.18)

Denote the successor geodesic from vl to ρn by ηl. Next define

λ3 = min{ℓn(vm) : πn(l) ≤ πn(m) < k}. (5.19)

Now, ηl and γk intersect for the first time at a vertex having label λ3 − 1,
call this vertex zk. With same argument as in (5.10),

λ3 ≥ ℓn(sk) + 1−K (5.20)

and this yields, along with (2.4) and (5.17)

dn(vl, zk) = ℓn(vl)− ℓn(zk) = λ2 − λ3 + 1 ≤ K. (5.21)
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Also, by (2.4) and (5.20)

dn(sk, zk) = ℓn(sk)− ℓn(zk) ≤ K. (5.22)

Using the triangle inequality along with (5.21) and (5.22) we get

dn(vℓ, sk) ≤ dn(vl, zk) + dn(zk, sk) ≤ 2K. (5.23)

Finally, we obtain by using the triangle inequality, (2.4), (5.12), (5.14)
and (5.23)

|dn(x, y)− d⋆n(x
⋆, y⋆)| ≤ |dn(x, y)− dn(si, sj)|

+ |dn(si, vl)− dn(si, sk)|+ |dn(si, sk)− dn(si, zi)|
+ |dn(sj , vl)− dn(sj, sk)|+ |dn(sj , sk)− dn(sj , zj)|
+ |dn(si, zi) + dn(sj, zj)− d⋆n(x

⋆, y⋆)|
≤ dn(x, si) + dn(y, sj) + 2dn(sk, vl) + dn(zi, sk) + dn(zj , sk)

+ |ℓn(si)− ℓn(zi) + ℓn(sj)− ℓn(zj)− ℓ⋆n(s
⋆
i )− ℓ⋆n(s

⋆
j ) + 2ℓ⋆n(s

⋆
k)|

≤ 8K + |ℓn(sk)− ℓn(zi)|+ |ℓn(sk)− ℓn(zj)| ≤ 10K. �

6. Conclusions

We have shown that the random planar maps defined by the weights (1.6)
and (1.7) converge to Aldous’ Brownian tree. It is interesting to note that
there does not seem to be a non-trivial scaling limit of the corresponding
simply generated trees, see [32, Theorem 6] and thus the labels play a crucial
role in obtaining a scaling limit for the random maps.

One can also study the so called local limit of the planar maps Mn un-
der consideration in this paper. The limit, if it exists, is an infinite graph
M and convergence towards M roughly means that one considers all finite
neigbourhoods of faces around the root edge and shows that the probability
that they appear in the maps Mn converges, as n → ∞, to the probability
that they appear in M . Angel and Schramm [3] studied local convergence
in the case of uniformly distributed triangulations (all faces have degree 3)
and later Durhuus and Chassaing [16] and Krikun [33] studied the case of
uniformly distributed quadrangulations (all faces have degree 4). Recently
there have been several new results on the local limit of uniform quadran-
gulations concerning e.g. properties of infinite geodesics [17], random walks
[6] and quadrangulations with a boundary [18].

The local limit of the simply generated trees corresponding to the weights
(1.6) and (1.7) was established in [28] (with an asymptotically constant
slowly varying function) and [26] respectively. Later it was established in
full generality (covering cases (C1) and (C2)) in [25]. In case (C2) the
local limit is deterministic and equals the infinite star, i.e. the root has a
single neighbour of infinite degree and all its neighbours are leaves. One
thus conjectures that the local limit of the corresponding planar maps is
simply the infinite uniform planar tree. In case (C1) the local limit of the
trees is more complicated. It still has a unique vertex of infinite degree but
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the outgrowths from this vertex are now i.i.d. sub–critical Galton–Watson
trees. Therefore, the local limit of the corresponding maps will not be a tree.
However, since sub–critical Galton–Watson trees tend to be small it would
be interesting to see how different from the uniform tree the maps are. One
could for example compare properties of random walks since random walks
are sensitive to the presence of loops.

A natural question to ask is how universal our results are, i.e. is it enough
to pose the conditions (C1) or (C2) in the Introduction or does one have
to go to special cases? It is shown in [25, Examples 19.37–19.39] that by
choosing irregular weights, still satisfying (C1) or (C2), the corresponding
simply generated trees with n edges can have more than one vertex with
a degree of the order of n; it is even possible that the large vertices have
degrees o(n) and that their number goes to infinity as n → ∞ (at least along
subsequences). In the case when there are two vertices with degrees of the
order of n it is plausible that the planar maps have a scaling limit which
is roughly the Brownian tree with two points identified, forming a second
macroscopic face. The more there is of large vertices in the simply generated
trees the more faces should appear in the scaling limit of the maps. Thus
we conjecture that the Brownian tree only appears in special cases of (C1)
and (C2). We consider, for simplicity, only one simple example (similar to
[25, Example 19.38]) illustrating this.

Example 6.1. Let (wi)i≥0 be a weight sequence such that wi = 0 unless
i ∈ {0, 3j : j ≥ 0}. Further, let w0 = 1 and let w3j increase so rapidly
that (C2) holds, and moreover, with probability tending to 1 as k → ∞,
if n = 3k, then the simply generated random tree τn with the distribution
νn given by (3.1) is a star, while if n = 2 · 3k, then τn has two vertices of
outdegree n/2 = 3k (and all other vertices are leaves).

For the subsequence n = 3k, we then obtain the same results as above in
the case (1.7).

For the subsequence n = 2·3k, the corresponding coloured tree distributed
by ν̃ has (with probability tending to 1) two black vertices of degrees n/2
connected by a single white vertex v̂ of degree 2, and each of them joined to
n/2−1 white leaves. For each choice of labels ℓn, the corresponding map Mn

thus has two faces. The label processes around each black vertex converge
to independent Brownian bridges, which together with the random choice
of root implies that, in analogy to Theorem 4.1,

( 1√
n
Ln(tN

◦
n)
)

0≤t≤1

d−−−→
n→∞

(

h(t)
)

0≤t≤1
(6.1)

where, for two Brownian bridges b1,b2 and U uniformly distributed on [0,1],
all independent,

h(t) =











b1(2t+ U)− b1(U), 0 ≤ t ≤ (1− U)/2,

b2(2t+ U − 1)− b1(U), (1− U)/2 ≤ t ≤ 1− U/2,

b1(2t+ U − 2)− b1(U), 1− U/2 ≤ t ≤ 1.

(6.2)
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Moreover, the label process visits v̂, the unique white vertex of degree 2,
twice. If we split this vertex into two, the corresponding map will be a
tree, which after normalization converges in distribution in the Gromov–
Hausdorff metric to a random real tree Th′ , where h′ is the random function
h above shifted to its minimum and with the minimum subtracted, so h′ ≥ 0
and h′(0) = 0. We may by the Skorohod representation theorem assume
that the label processes converge a.s. Then the random maps with v̂ split
converge to Th′ a.s. in the Gromov–Hausdorff metric, with the two halves of v̂
corresponding to two different points in Th′ (the points given by t = (1−U)/2
and t = 1−U/2), and it follows by combining the two parts of v̂ again, that
the random maps Mn converge to a limit that equals Th′ with these two
points identified. Note that this creates a cycle, so the limit is no longer a
tree. (As a topological space, it is of the same homotopy type as a circle.)

Acknowledgements. SÖS would like to thank Jérémie Bouttier for telling
him about [38] and for suggesting to relate the condensation phase in simply
generated trees to planar maps.

Appendix A. More on Galton–Watson trees

Marckert and Miermont [40] gave a description of the distribution ν̃ in
(2.9) as a conditioned two-type Galton–Watson tree, while we have used the
bijection Gn in Section 3 to obtain a simply generated tree (which in many
cases is a conditioned Galton–Watson tree), with a single type only. In this
appendix, we give some further comments on the relation between these two
approaches.

Consider arbitrary weights qi ≥ 0, i ≥ 1, assuming first only that qi > 0
for some i > 1 (to avoid trivialities), and define wi by (1.4) (and w0 = 1)
and their generating function g(x) by (1.5). Marckert and Miermont [40]
define another generating function f(x) (denoted fq(x) in [40]) by

f(x) =
∞
∑

k=0

wk+1x
k; (A.1)

thus

g(x) = 1 + xf(x). (A.2)

We have seen in Sections 1 and 3 that a random planar map in M∗
n with

Bolzmann weights (1.1) corresponds to a random mobile (τn, ℓn) (and a sign
ǫ that we ignore here), and that τn corresponds by the bijection Gn to a
random tree τ ′n that has the distribution of a simply generated tree with
|τ ′n| = n edges, defined by the weights (wi)i≥0, c.f. (3.1) (and note that
deg(v)− 1 is the outdegree, i.e., the number of children of v, see Section 2).

We consider first trees with unrestricted number of edges. We give a
planar tree τ the weight

w(τ) =
∏

v∈V (τ)

wdeg(v)−1. (A.3)



SCALING LIMITS OF RANDOM PLANAR MAPS WITH A UNIQUE LARGE FACE 29

The generating function

G(x) =
∑

τ

x|τ |+1w(τ) (A.4)

summing over all planar trees, satisfies the well known equation [44]

G(x) = xg(G(x)). (A.5)

In particular, the total weight Z =
∑

τ w(τ) = G(1) is finite if and only if
the equation

z = g(z) (A.6)

has a solution z ∈ (0,∞), and then Z is the smallest positive solution to
(A.6). Using (A.2), we can write (A.6) as z = 1 + zf(z), or

f(z) = 1− 1/z, (A.7)

the form of the equation used in [40].
If Z = G(1) < ∞ (such weights qi are called admissible in [40]), define

pi = wiZ
i−1. (A.8)

Then, by (A.6),
∞
∑

i=0

pi = Z−1g(Z) = 1, (A.9)

so (pi)i≥0 is a probability distribution on {0, 1, . . . }. Let τ ′ be a random
Galton–Watson tree with this offspring distribution. Then the probability
of a particular realization τ ′ is

∏

v∈V (τ ′)

pdeg(v)−1 = Z
∑

v(deg(v)−2)
∏

v∈V (τ ′)

wdeg(v)−1 = Z−1w(τ ′), (A.10)

recalling that the number of vertices in τ ′ is |τ ′| + 1 and that
∑

v deg(v) =
2|τ ′|+1 since we count an extra half-edge at the root. Hence the distribution
of the Galton–Watson tree τ ′ equals the distribution given by the weights
w(τ) on the set of all planar trees.

Remark A.1. The distribution (pi)i≥0 defined by (A.8) is not the same as
the (pi)i≥0 used in Section 3, so they define different Galton–Watson trees
τ ′; however, they yield the same distribution νn when conditioned on a fixed
size n of the tree.

Since Z =
∑

τ w(τ), the sum of the probabilities (A.10) over all (finite) τ
is 1; thus the Galton–Watson tree τ ′ is a.s. finite, which means that the off-
spring distribution has mean ≤ 1, i.e., the Galton–Watson tree is subcritical
or critical. Conversely, we can obtain any subcritical or critical probability
distribution (pi)i≥0 by taking wi = pi−1

0 pi; then w0 = 1 and Z = p−1
0 . (If we

do not insist on w0 = 1, we can simply take wi = pi.)
The offspring distribution (A.8) has probability generating function

gp(x) =

∞
∑

i=0

pix
i = Z−1g(Zx) (A.11)
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and thus mean

g′p(1) = g′(Z), (A.12)

which by (A.2) and (A.7) can be written as

g′p(1) = f(Z) + Zf ′(Z) = 1 +
(

Z2f ′(Z)− 1)
)

/Z. (A.13)

Hence the Galton–Watson tree is critical if and only if g′(Z) = 1 or, equiv-
alently, Z2f ′(Z) = 1 (the form used in [40]). Moreover, the variance of the
offspring distribution is

σ2 = g′′p(1) + g′p(1) − (g′p(1))
2 = Zg′′(Z) + g′(Z)(1− g′(Z)) (A.14)

which in the critical case g′(Z) = 1 can be written by (A.2) as

σ2 = Zg′′(Z) = Z
(

Zf ′′(Z) + 2f ′(Z)
)

=
(

Z3f ′′(Z) + 2
)

/Z, (A.15)

which in the notation of [40] is ρq/Zq.
The two-type Galton–Watson tree defined by Marckert and Miermont

[40], which we denote by τ , has a white root; a white vertex has only black
children, and the number of them has the geometric distribution Ge(p0) =
(

(1−Z−1)iZ−1
)

i≥0
; a black vertex has only white children, and the number

of them has the distribution
(

pi+1/(1− p0)
)

i≥0
=
(

pi+1/(1− Z−1)
)

i≥0
, i.e.,

the conditional distribution of (ξ−1 | ξ > 0) if ξ has the distribution (pi)i≥0.
Thus the offspring distribution for the black vertices has the probability
generating function

∞
∑

i=0

pi+1

1− Z−1
xi =

∞
∑

i=0

wi+1Z
ixi

1− Z−1
=

f(Zx)

1− Z−1
=

g(Zx)− 1

(Z − 1)x
. (A.16)

A simple calculation (which essentially is [40, Proposition 7]) shows that
the bijection in Section 3 maps this two-type Galton–Watson tree τ to the
standard (single type) Galton–Watson tree τ ′ with offspring distribution
(A.8). This can also be seen from the construction of the bijection, see
Figure 3. In particular, note that the children of the root in τ are the
vertices in the rightmost path from the root in τ ′, excluding its final leaf
(and similarly for the children of other white vertices); this explains why the
offspring distribution for a white vertex is geometric, since the length of the
rightmost path in τ ′ obviously has a geometric distribution.

Restricting to trees with n edges (and thus n + 1 vertices) we see, by
Remark A.1, that the tree τ ′n in Section 3 with distribution νn can be seen
as τ ′ conditioned on |τ ′| = n, and thus the corresponding tree τn = G−1

n (τ ′n)
has the same distribution as τ conditioned on |τ | = n.

Although the Galton–Watson tree τ ′ is simpler than the two-type tree
τ , the latter is more convenient for some purposes. For example, when
considering the white vertices, as we do in parts of Section 3, it is immediate
(by considering each second generation) that the number of white vertices
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in τ ′ is distributed as the total progeny (number of vertices) in a Galton–
Watson tree with offspring distribution

ξ(0) =

ζ
∑

j=1

ξ∗j (A.17)

where ζ ∼ Ge(p0) = Ge(1−Z−1) and ξ∗j = (ξj − 1 | ξj > 0) are independent

of each other and of ζ, and each ξj has the distribution (pi)i≥0. We have,
letting κ = Eξ =

∑

i ipi ≤ 1,

Eξ∗i = E(ξi | ξi > 0)− 1 =
Eξi

1− p0
− 1 =

κ+ p0 − 1

1− p0
(A.18)

and

Eξ(0) = Eζ Eξ∗1 =
1− p0
p0

κ+ p0 − 1

1− p0
=

κ+ p0 − 1

p0
= 1− 1− κ

p0
. (A.19)

Furthermore, it is easy to see that ξ(0) has the probability generating func-
tion

Exξ
(0)

=
p0

1−∑∞
k=1 pkx

k−1
. (A.20)

Note that Eξ(0) < 1 when Eξ < 1, which says that the white tree consisting
of each second generation in τ is subcritical if and only if τ ′ (or τ) is.

Translated to τ ′, this shows immediately that the number of leaves of
the Galton–Watson tree τ ′ with offspring distribution ξ is distributed as the
total progeny of a Galton–Watson process with offspring distribution ξ(0).
In fact, this was shown by Minami [43]; one version of his argument is the
following. Given a tree τ we partition its vertex set into twigs as follows:
Take the vertices in lexicographic order and stop each time we reach a leaf.
I.e., the first twig consists of the root and all vertices up to, and including,
the first leaf; the second twig starts at the next vertex and ends at the next
leaf, and so on. Thus each twig ends with a leaf, and the number of twigs
equals the number of leaves. If we start with a random Galton–Watson
tree τ ′ with offspring distribution (pi), the size of each twig has a geometric
distribution 1 + ζ with ζ ∼ Ge(p0) as above. Moreover, each non-leaf in
the twig has further offspring distributed as ξ∗; hence, if we contract each
twig to a single vertex, we obtain a new random Galton–Watson tree with
offspring distributed as ξ(0); the number of vertices in this tree equals the
number of twigs in τ ′, and thus the number of leaves in τ ′.

In fact, these two arguments are essentially the same; if we use instead
the reverse lexicographic order when defining the twigs, it is easy to see that
each twig in τ ′ correspond to a white vertex and its (black) children in τ .

We use this representation to verify the tail estimate (3.17).

Lemma A.2. Let N (0) be the number of leaves in a Galton–Watson tree
with offspring distribution (pi)i≥0 satisfying κ < 1 and (3.3) for some slowly
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varying function L̄(i). Then, as n → ∞,

P(N (0) = n) ∼ cL̄(n)n−β, (A.21)

with c = p0
β−1(1− κ)−β .

Proof. We have seen that N (0) is distributed as the number of vertices in
a Galton–Watson tree with offspring distribution (A.17). By (3.12) applied

to a sequence ξ
(0)
j of independent copies of ξ(0),

P(N (0) = n) =
1

n
P(S(0)

n = n− 1) (A.22)

where

S(0)
n =

n
∑

j=1

ξ
(0)
j

d
=

Xn
∑

i=1

ξ∗i , (A.23)

where Xn =
∑n

j=1 ζj with ζj ∼ Ge(p0) independent of each other and of

{ξ∗i }. (Thus Xn has a negative binomial distribution NegBin(n, p0).) Note
that EXn = nEζ1 = n(1−p0)/p0, and thatXn is strongly concentrated about
its mean; for example, moment convergence in the central limit theorem for
Xn implies that

P

(∣

∣

∣Xn − 1− p0
p0

n
∣

∣

∣ > n2/3
)

= O(n−b) (A.24)

for any fixed b. Furthermore,

P(ξ∗i = n) = (1− p0)
−1pn+1 =

(

1 + o(1)
)

(1− p0)
−1L̄(n)n−β (A.25)

as n → ∞, and thus, by a more general version of (3.13) applied to ξ∗i and

(A.18), uniformly for all k with |k − n(1− p0)/p0| ≤ n2/3,

P

(

k
∑

i=1

ξ∗i = n− 1
)

= k
(

1 + o(1)
)

P
(

ξ∗1 = ⌊n− kEξ∗1 − 1⌋
)

=
(

1 + o(1)
)n(1− p0)

p0
P
(

ξ∗1 = ⌊n(1− κ)/p0⌋+ o(n)
)

.

=
(

1 + o(1)
) n

p0
L̄(n)

(

n(1− κ)/p0
)−β

. (A.26)

Choose b = β + 1. By (A.22)–(A.26),

P(N (0) = n) =
1

n
P

(

Xn
∑

i=1

ξ∗i = n− 1
)

=
(

1 + o(1)
)

p0
−1L̄(n)

(

n(1− κ)/p0
)−β

. �
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Th. Rel. Fields 131 (2005), 553-603 .
[21] W. Feller, An Introduction to Probability Theory and its Applications, Volume II. 2nd

ed., Wiley, New York (1971).
[22] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces.

Progress in Mathematics. Birkhäuser, Boston (1999).
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[27] S. Janson and J.-F. Marckert, Convergence of discrete snakes. J. Theor. Probab. 18
(2005), no. 3, 615–645.
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