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Abstract

Majority bootstrap percolation on the random graph Gn,p is a process of spread of
“activation” on a given realisation of the graph with a given number of initially active nodes.
At each step those vertices which have more active neighbours than inactive neighbours
become active as well.

We study the size A∗ of the final active set. The parameters of the model are, besides n
(tending to ∞), the size A(0) = A0(n) of the initially active set and the probability p = p(n)
of the edges in the graph. We prove that the process cannot percolate for A(0) = o(n). We
study the process for A(0) = θn and every range of p and show that the model exhibits
different behaviours for different ranges of p. For very small p ≪ 1

n
, the activation does not

spread significantly. For large p ≫ 1

n
then we see a phase transition at A(0) ≃ 1

2
n. In the

case p = c

n
, the activation propagates to a significantly larger part of the graph but (the

process does not percolate) a positive part of the graph remains inactive.

1 Introduction

Majority bootstrap percolation on a graph G is defined as the spread of activation or infection

according to the following rule: We start with a set A(0) ⊆ V (G) of active vertices. Each
inactive vertex that has more active neighbours than inactive becomes active. This is repeated
until no more vertices become active. Active vertices never become inactive, so the set of active
vertices grows monotonically.

We are mainly interested in the final size |A∗| = A∗ of the active set on the random graph
Gn,p, and in particular whether eventually all vertices will be active or not. If they are, we say
that the initial set A(0) percolates (completely). We will study a sequence of graphs of order
n → ∞; we then also say that (a sequence of) A(0) almost percolates if the number of vertices
that remain inactive is o(n), i.e., if A∗ = n − o(n). In both cases, we talk about supercritical
phase. If the activation does not spread to almost all the graph then we talk about subcritical
phase.

1

http://arxiv.org/abs/1503.07029v1


Recall that Gn,p is the random graph on the set of vertices Vn = {1, . . . , n} where all
possible edges between pairs of different vertices are present independently and with the same
probability p.

The problem of majority bootstrap percolation where a vertex becomes activated if at least
half of its neighbours are active (r(v) = deg(v)/2) has been studied on the hypercube Qn = [2]n

by Balogh, Bollobás and Morris [1]. They consider the case when vertices are set as active at
time 0 independently with a certain probability qn. The main result of [1] states that the
critical probability is qc(Qn) = 1

2 . More precisely, they also determine the second order term
of the critical probability. If

q(n) =
1

2
− 1

2

√

log n

n
+

λ log log n√
n log n

, (1.1)

then

P {A∗ = Qn} →
{

0 if λ ≤ −2

1 if λ > 1
2 .

(1.2)

Those results can be compared to our Corollary 3.6 where we prove that for highly connected
graphs, the transition happens for q = 1/2.

The model of global cascade on random networks which generalises majority bootstrap
percolation as one requests a proportion 0 < α < 1 of the neighbours to be active has been
introduced by Watts in [7]. The case α = 1/2 is the majority bootstrap percolation. The
author of [7] derives conclusions using assumptions on the internal structure of the network
from numerical simulations on randomly generated networks of 1000 nodes. Our results agree
qualitatively as low connectivity limits the propagation of the activation by the lack of connec-
tion. We show in Theorem 3.1 that for p = o(1/n), no propagation is possible w.h.p. Moreover
Watts notices that the propagation is limited by the stability of the nodes in dense graphs. We
show in Theorem 3.5 that for p ≫ 1/n, the critical size for percolation is Ac = 1

2n + o(n).
We provide an analytical treatment of the problem of majority bootstrap percolation on the

graph Gn,p. Our results extend to the case of global cascade which we rename as proportional
bootstrap percolation with parameter of proportionality α.

The authors of [5] studied (the classical) bootstrap percolation on the Erdös–Rényi random
graph Gn,p with an initial set A(0) consisting of a given number A(0) of vertices chosen at
random. In the classic bootstrap percolation, a vertex becomes active if it has at least r ≥ 2
incoming activations.

They prove that there is a threshold phenomenon:
For p ≫ 1

n then typically, either the final size A∗ is small, A∗ = op(n) (at most twice the
initial size A(0)), or it is large, A∗ = n − op(n) (sometimes exactly n, but if p is so small
that there are vertices of degree less than r, these can never become active except initially so
eventually at most n− o(n) will become infected).

That result can be related with our Theorem 3.5 to compare classical and majority bootstrap
percolation.
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In the case of p = c
n , the authors of [5] prove that w.h.p. only the activation starting from

a significant part of the graph A(0) = θn, θ > 0 spreads to a larger part of the graph but not
all the graph, in which case A∗ = θ∗n, θ < θ∗ < 1 where θ∗ is exactly and uniquely determined
as the smallest root larger than θ of a given equation.

We prove here, in the case of majority bootstrap percolation, for p = c
n that similarly, the

activation spreads to a larger part of the graph so that A∗ = θ∗n with θ < θ∗ < x0 < 1 where
x0 ≥ θ is the smallest root of the equation (3.6) satisfying (3.5). See Theorem 3.2 in Section 3

One may notice that in the case of bootstrap percolation with threshold r > 1, no vertex of
degree r−1 can be activated. That immediately eliminates the vertices of degree 1. Therefore,
vertices of degree 1 never become active unless they are set as active at the origin. Conversely,
in the case of majority bootstrap percolation, any vertex of degree 1 that has a link to an active
vertex becomes active.

Remark 1.1. An alternative to starting with an initial active set of fixed size A(0) is to
let each vertex be initially activated with probability q = q(n) > 0, with different vertices
activated independently. Note that this is the same as taking the initial size A(0) random with
A(0) ∈ Bin(n, q).

Therefore, our results can be translated from one case to the other.

1.1 Notation

All unspecified limits are as n → ∞. We use Op and op in the standard sense (see e.g. [4]
and [3]), and we use w.h.p. (with high probability) for events with probability tending to 1 as

n → ∞. Note that, for example, ‘= o(1) w.h.p.’ is equivalent to ‘= op(1)’ and to ‘
p−→ 0’ (see

[3]). We denote Nv the neighbourhood of a vertex v and |Nv| = deg(v) its degree. The notation
f ≫ g means that g = o(f), for example p ≫ 1

n is equivalent to limnp = +∞ or that there

exists a function ω(n) with limn→∞ ω(n) = +∞ with p = ω(n)
n with the implicit condition that

ω(n) ≤ n for definiteness of p ≤ 1.
The method is described in Section 2. The main results are stated in Section 3. Preliminary

results are derived in Section 4 and Section 5. Section 6–Section 8 are dedicated to the proofs.

2 Reformulation of the process

We use an algorithm to reveal the vertices activated that resembles the one from [5].
In order to analyse the bootstrap percolation process on Gn,p, we change the time scale;

we consider at each time step the activations from one vertex only. Choose u1 ∈ A(0) and
give each of its neighbours a mark ; we then say that u1 is used, and let Z(1) := {u1} be
the set of used vertices at time 1. At some time t, let ∆A(t) be the set of inactive vertices
with the number of marks larger than half their degree; these now become active and we let
A(t) = A(t− 1) ∪ ∆A(t) be the set of active vertices at time t. Denote by Z(t− 1) the set of
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vertices which have been used at time t−1. We continue recursively: At time t ≤ A(t) = |A(t)|,
choose a vertex ut ∈ A(t) \ Z(t − 1). We give each neighbour of ut a new mark. We keep the
unused, active vertices in a queue and choose ut as the first vertex in the queue. The vertices
in ∆A(t) are added at the end of the queue in order of their labels. Using this setting, the
vertices are explored one at a time in the order of their activation or appearance in the set of
active vertices.

We finally set Z(t) = Z(t − 1) ∪ {ut} = {us : s ≤ t}, the set of used vertices. (We start
with Z(0) = ∅.)

The process stops when A(t) \ Z(t) = ∅, i.e., when all active vertices are used. We denote
this stopping time by T ,

T := min{t ≥ 0 : A(t) \ Z(t) = ∅}. (2.1)

Clearly, T ≤ n. In particular, T is finite. The final active set is A(T ). It is clear that this is the
same set as the one produced by the bootstrap percolation process defined in the introduction,
only the time development differs.

Let A(t) := |A(t)|, the number of active vertices at time t. Since |Z(t)| = t and Z(t) ⊆ A(t)
for t = 0, . . . , T , we also have

T = min{t ≥ 0 : A(t) = t} = min{t ≥ 0 : A(t) ≤ t}. (2.2)

Moreover, since the final active set is A(T ) = Z(T ), its size A∗ is

A∗ := A(T ) = |A(T )| = |Z(T )| = T. (2.3)

Hence, the set A(0) percolates if and only if T = n, and A(0) almost percolates if and only if
T = n− o(n).

Remark 2.1. In order to find the final set of active vertices, it is not important in which order
we explore the vertices. However, the fact that a vertex v has been activated at a certain time y
has incidence on its connectivity to the set of inactive vertices R(t) = V \A(t). The condition

|N (v) ∩ Z(y)| ≥ max (|N (v) ∩ V \ Z(y)|; 1) (2.4)

has to be fulfilled for v to be active at time y.

Let ps denote the probability that a vertex i ∈ V \ Z(s) receives a mark at time s > A(0),

ps = P {{|Z(s)| = s} ∩ (us, i)}

where us is a way to denote the vertex in A(s) which is explored at time s and |Z(s)| = s
means that the algorithm has not stopped at time s.

We immediately derive the following simple but useful bounds on the probability that a
vertex receives an incoming activation from the vertex us at time s

ps ≤ p, (2.5)
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for any us /∈ A(0).
For us ∈ A(0), that is s ≤ A(0), the condition {|Z(s)| = s} is fulfilled and thus we have

ps = p for s ≤ A(0). (2.6)

Let 1i(s) be the indicator that i receives a mark at time s i.e. there is an edge between us
and i. We have

1i(s) ∈ Be(ps). (2.7)

For s ≤ A(0) or equivalently us ∈ A(0), this is also the indicator that there is an edge between
the vertices us and i. Thus

1i(s) ∈ Be(p) for s ≤ A(0). (2.8)

and the variables are independent for different s ≤ A(0).
Let Mi(t) denote the number of marks i has at time t, then

Mi(t) =

t
∑

s=1

1i(s), (2.9)

at least until the vertex i is activated (and what happens later does not matter). Note that if

i /∈ A(0), then, for every t ≤ T , i ∈ A(t) if and only if Mi(t) ≥ deg(i)
2 .

The sequence of random variables Mi(t) is the number of marks that a vertex receives. Our
focus is to find the number of vertices for which the number of marks is larger than 1/2 of
their degree. Therefore, being connected to an active vertex that has been explored and being
connected to an active vertex that has not yet been explored is very different. Until a vertex
has been explored, its activeness has not been revealed to its neighbours. That algorithm does
not change the final size of the set of active vertices. Indeed, all the vertices will be explored
eventually and moreover the fact that v becomes active is a monotonic increasing function of
the number of active vertices that have a link with v.

t A(t)i l

: inactive vertices

: activated vertices

: activated and explored vertices

: excitatory links

: inhibitory links

Figure 1: At time t, the vertex l is not yet activated.

5



Define also, for i ∈ Vn \ A(0),

Yi := min{t : Mi(t) ≥
1

2
deg(i) ∩Mi(t) > 0}. (2.10)

If Yi ≤ T , then Yi is the time vertex i becomes active, but if Yi > T , then i never becomes
active. Thus, for t ≤ T ,

A(t) = A(0) ∪ {i /∈ A(0) : Yi ≤ t}. (2.11)

Denote Ii(t) = 1{Yi≤t}, the indicator function that the vertex i is active at time t and let

π(t) = P {Ii(t) = 1} .

The probability π(t) is independent of i. We let, for t = 0, 1, 2, . . . ,

S(t) := |{i /∈ A(0) : Yi ≤ t}| =
∑

i/∈A(0)

1{Yi≤t} =
∑

i/∈A(0)

Ii(t), (2.12)

so, by (2.11) and our notation,
A(t) = A(0) + S(t). (2.13)

By the relations (2.2), (2.3) and (2.13) it suffices to study the process S(t). S(t) is a sum of
identically distributed processes Ii(t) ∈ Be (π(t)). The main problem is that we do not have
independence of the random variables Ii, i = 1, ..., n − A(0). Take any two vertices i and j.
The probability that the vertex i is activated depends on its degree and therefore on having
or not a connection to j. The activation of the vertex i therefore gives an indication on the
existence or not of an edge (i, j). Thus this gives indications whether the vertex j is active.

That implies that the random variable S(t) =
∑

i/∈A(0) Ii(t) is not a sum of independent
Bernoulli random variable and hence is not a binomial.

Though the random variables Ii(t) = 1{Yi≤t} are not independent, they are very close to
being independent since the dependency between two random variables Ii(t) and Ij(t) is only
through the possible connection {i, j}.

Let R(t) = n − A(t) denote the number of inactive vertices. It is equivalent to study R(t)
which is also a sum of identically distributed Bernoulli random variables

R(t) =

n−A(0)
∑

i=1

1 − Ii(t) =

n−A(0)
∑

i=1

Ki(t), (2.14)

where Ki(t) ∈ Be (1 − π(t)). We shall denote δ(t) = 1 − π(t) so that Ki(t) ∈ Be (δ(t)).
The proofs of the supercritical case rely on proving that R(t) = op(n).
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3 Results

We give the results depending on the value of p.
When p = o

(

1
n

)

then there are too few connections for the activation to spread

Theorem 3.1. If p = o
(

1
n

)

, then for any ε > 0, we have

lim
n→∞

P {A∗ > (1 + ε)A(0)} = 0, (3.1)

that is

A∗ = A(0)
(

1 + op(1)
)

.

In the case when p = c
n and if A(0) contains a positive part of the graph, then the activation

spreads to a larger part of the graph but does not completely percolate.

Theorem 3.2. If p = c
n for some 0 < c < ∞, we have

(i) If A(0) = o(n), let g(c) = (1 + c)ce−c then

A∗ = op(n), (3.2)

more precisely, we have for A(0) → ∞ as n → ∞

A∗ ≤ 1

1 − g(c)
A(0)

(

1 + op(1)
)

. (3.3)

(ii) If A(0) = θn, for some 0 < θ < 1, then we have

A∗ = θ∗n + op(n), (3.4)

with θ < θ∗ ≤ x0 < 1 where

x0 = inf{x ≥ θ, fc,θ(x) < 0}, (3.5)

with

fc,θ(x) = θ − x + (1 − θ) epe−c

⌊xn⌋
∑

k=1

(cx)k

k!

k
∑

j=0

((1 − x)c)j

j!
. (3.6)

Remark 3.3. Even though x0 depends on n, it has a limit strictly less than 1 as n → ∞.

Remark 3.4. Notice in the case of Theorem 3.2 (i) that

lim
c→0

g(c) = 0 and lim
c→∞

g(c) = 0.

These limits are consistent with the results of Theorems 3.1 and 3.5 (i). One should remark
also that even though A(0) = o(n), the vertices of degree 1 and 2 may contribute to enlarge
the set of activated vertices. The vertices of higher degree tend to be more stable as is seen in
the following theorem.
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If one increases the connectivity such that p ≫ 1
n then the high number of connections

tends to stabilise the process such that the threshold for majority bootstrap percolation is at
A(0) = 1

2n.

Theorem 3.5. If 1
n ≪ p ≤ 1 then

(i) If A(0) = o(n) is monotonically increasing in n then

A∗ = op(n) (3.7)

More precisely

{

A∗ = A(0)
(

1 + op(1)
)

ifA(0) ≫ n exp
(

−1
3np

)

A∗ = Op

(

n exp
(

−1
3np

))

if A(0) ≤ Kn exp
(

−1
3np

)

for some K > 0.
(3.8)

(ii) If A(0) = θn, 0 < θ < 1
2 then

A∗ = A(0)
(

1 + op(1)
)

. (3.9)

(iii) If

lim
n→∞

A(0) − 1
2n

√

n
p

= +∞ (3.10)

then

A∗ = n− op(n). (3.11)

Notice that for example, the statement of equation (3.9) is equivalent to

lim
n→∞

P {A∗ ≥ (1 + ε)A(0)} = 0, (3.12)

We give here the counterpart of Theorem 3.5 using the setting of [1], that is, when the vertices
are initially activated independently with some probability q.

Corollary 3.6. Let 1
n ≪ p ≤ 1. Suppose that the vertices are initially activated independently

with probability q ∈ (0, 1).

(i) If q < 1/2 then

A∗ = A(0)
(

1 + op(1)
)

. (3.13)

(ii) If q > 1/2 then

A∗ = n− op(n). (3.14)
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Proof of Corollary . Let λ > 0 and let q < 1
2 then the number of vertices initially active is

A(0) ∈ Bin (n, q) . (3.15)

We know that Var (A(0)) ≤ E (A(0)) = nq so using Chebyshev’s inequality, we find that for
any 0 < λ < 1

2 − q
lim
n→∞

P {A(0) ≥ (q + λ)n} = 0. (3.16)

By use of Theorem 3.5 (ii) and equation (3.16) we find that

lim
n→∞

P {A∗ > (1 + ǫ)A(0)} ≤ lim
n→∞

P

{

A∗ > (1 + ǫ)A(0)
∣

∣

∣ A(0) ≤ (q + λ)n
}

+ lim
n→∞

P {A(0) ≥ (q + λ)n}
= 0.

That proves corollary 3.6 (i). The item (ii) can be proved similarly using Theorem 3.5 (ii) and
concentration results on the binomial random variable.

4 Probability of activation of a vertex

We start by determining the probability of activation of a vertex i ∈ V \ A(0) as it will be
needed all along the article,

π(t) = P {Yi ≤ t} .
We use the notation

Bini([1, n], p) ∈ Bin(n− 1, p) (4.1)

to denote the degree of the vertex i, that is a sum of Bernoulli Be(p) independent random
variables corresponding to the existence of an edge to another vertex. We denote

Bini([t + 1, n], p) ∈ Bin(n− t− 1, p), (4.2)

the number of links that the vertex i has to the set {t, ..., n} = V \Z(t). The random variables
Bini([1, t], p) and Bini([t+1, n], p) are independent as they concern summations of independent
Bernoulli random variables on disjoint sets. The number of links of the vertex i to the set
of vertices {1, ..., t} = Z(t) constructed in the algorithm is denoted Mi(t). Remark that the
equality Mi(t) ∈ Bin(t, p) is in general not true because the vertices of Z(t)\A(0) need to verify
the condition (2.4). In the special case when t ≤ A(0) then the condition (2.4) does not need
to be fulfilled.Therefore, we have Mi(t) ∈ Bin(t, p) for t ≤ A(0). In the following, we abuse
notations and write for example Bin(t, p) for a random variable with binomial distribution
Bin(t, p).
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Since a vertex only accumulates marks, we have

π(t) = P

{

Mi(t) ≥ max

(

1

2
deg(i); 1

)}

= P

{

Mi(t) ≥ max

(

1

2
Bini([1, n], p); 1

)}

= P

{

t
∑

s=1

1i(s) ≥ max

(

1

2
Bini([1, n], p); 1

)

}

. (4.3)

The probability of activation can also be rewritten

π(t) = P {Mi(t) ≥ max (Bini([t + 1, n], p); 1)}

= P

{

t
∑

s=1

1i(s) ≥ max (Bini([t + 1, n], p); 1)

}

.

Lemma 4.1. The random variable Mi(t) is stochastically dominated by Bin(t, p).

Proof of Lemma 4.1.

P {Mi(t) ≥ k} = P

{

t
∑

s=1

1i(s) ≥ k

}

. (4.4)

Let Lk, with |Lk| = k, be some subset of {1, ..., t}. Then

P

{

t
∑

s=1

1i(s) ≥ k

}

= P







⋃

Lk⊆{1,...,t}





∑

j∈Lk

1i(j) = k ∩
∑

j /∈Lk

1i(j) ≥ 0











,

where the event
{

∑

j /∈Lk
1i(j) ≥ 0

}

is always fulfilled as the random variable 1i(j) can take

only the values 0 and 1. Moreover,

P







∑

j∈Lk

1i(j) = k







= P





⋂

j∈Lk

{1i(j) = 1}



 , (4.5)

where
P {1i(s1) = 1} = P ({s1 is active } ∩ (s1, i)) ≤ P {(s1, i)} = p. (4.6)

Equation (4.6) is exactly equation (2.5) rephrased in another setting.
For any subset of {1, ..., t}, we have

P





⋂

j∈Lk

{1i(j) = 1}



 ≤ P {(s1, i) ∩ ... ∩ (sk, i)} = pk, (4.7)
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and the inequality (4.7) is fulfilled for any choice of Lk. The number of such lists is obviously
smaller than the number of subset of length k. Therefore

P







⋃

Lk⊆{1,...,t}





∑

j∈Lk

1i(j) = k ∩
∑

j /∈Lk

1i(j) ≥ 0











≤ P {Bin(t, p) ≥ k} . (4.8)

That means
P {Mi(t) ≥ k} ≤ P {Bin(t, p) ≥ k} , (4.9)

for any k ≤ t.

Lemma 4.2. Let

π+(t) = P {Bin(t, p) ≥ max (Bin(n− 1 − t, p); 1)} , (4.10)

then

π(t) ≤ π+(t) for any t. (4.11)

Moreover, for t ≤ A(0), the vertices s ≤ t are initially active therefore, the probability that a

vertex i receives a mark from s is exactly the probability to have an edge between them, thus

π(t) = π+(t) for t ≤ A(0). (4.12)

Proof of Lemma 4.2 . To begin with, we recall equation (4.7). For any subset Lk ⊂ {1, ..., t}
with |Lk| = k

P





⋂

j∈Lk

{1i(j) = 1}



 ≤ P {(s1, i) ∩ ... ∩ (sk, i)} = pk (4.13)

Consider the probability of activation

π(t) = P {Mi(t) ≥ max (Bini([t + 1, n], p); 1)}

=

t
∑

k=1

P ({Mi(t) ≥ k} ∩ {max (Bini([t + 1, n], p); 1) = k}) (4.14)

By lemma 4.1, using equation (4.2) and (4.9) in (4.14)

π(t) ≤
t
∑

k=1

P ({Bini([1, t], p) ≥ k} ∩ {max (Bini([t + 1, n], p); 1) = k})

≤ P {Bin(t, p) ≥ max (Bin(n− t− 1, p); 1)} = π+(t) (4.15)

11



In the proofs, we will use equality (4.12) with the fact that

A (A(0)) ≤ A∗, (4.16)

to determine conditions for the supercritical case. To prove Theorem 3.5 (iii), we show that by
the time the vertices of A(0) have been explored, the process has already almost percolated.
In order to find conditions for the process to stay subcritical, we use the inequality (4.11) and
define the random process (S+(t))t≤n with S+(t) ∈ Bin (n−A(0), π+(t)). In the following, we
show that S+(t) stochastically dominates S(t).

5 Subcritical phase, a useful upper bound

It is simpler to start by proving that the random variable R(t) dominates a certain binomial
random variable. It is easy to see that the random variables Ki(t), with R(t) =

∑

Ki(t) (see
equation (2.14)) are positively related, see equation (5.2) below. The same question is more
complicated with the random variables Ii(t) as it depends on whether the connections have
been revealed or not (see Figure 1). We further use that R(t) +S(t) = n−A(0) to transfer the
result in terms of S(t) and S+(t) ∈ Bin (n−A(0), π+(t)).

Lemma 5.1. For any t and k0 ≥ 0

P {R(t) ≥ k0} ≥ P {Bin(n−A(0), δ(t)) ≥ k0} . (5.1)

The proof of Lemma 5.1 is kind of the reverse of the proof of Lemma 4.1. Conversely to
Lemma 4.1, in the case of Lemma 5.1, the random variable R(t) dominates the binomial. The
random variables Ki are positively related. Let Lk be some subset of V \ A(0) of k elements,
then if some vertices are inactive, that is {∩j∈Lk

Kj(t) = 1}, they tend to keep the other vertices
inactive too, that is {Ki(t) = 1} and we have

P







⋂

j∈Lk

Kj(t) = 1







≥
∏

j∈Lk

P {Kj(t) = 1} . (5.2)

The inequality (5.2) can be derived for 2 random variables, that is k = 2 and extended to any
k by induction.

The inequality was reversed in the proof of Lemma 4.1 and we didn’t have to worry about
the number of combinations. In the case of Lemma 5.1, it is crucial that the number of subsets
Lk is equal to the number of combinations of the binomial. This is ensured by the fact that
the random variables Kj(t) are exchangeable.

Proof of Lemma 5.1. From the beginning, we have that the relation (5.1) is verified for k0 = 0
since both probabilities equal 1.

12



We recall that R(t) =
∑n−A(0)

i=1 Ki(t) more precisely, we will write Rn−A(0) =
∑n−A(0)

i=1 Ki

to emphasise the dependence on the number of terms we sum up and will omit the indicator
of time t. The random variables Ki are exchangeable, therefore

P
{

Rn−A(0) ≥ k0
}

= P
({

Rn−A(0)−k0 ≥ 0
}

∩
{

Kn−A(0)−k0+1 = 1
}

∩ ... ∩
{

Kn−A(0) = 1
})

αn−A(0),k0

= P
{

Rn−A(0)−k0 ≥ 0
}

P {Rk0 = k0}αn−A(0),k0 ,

where αn−A(0),k0 denotes the number of combinations.
The random variables Ki are positively related. So for any m such that m ≥ 1

P {Rm = m} ≥ P {Bin(m, δ) = m} . (5.3)

Taking m = n − A(0) in the inequality (5.3), we see that the relation (5.1) is verified for
k = n−A(0) too.

Because the indicator functions Kj are exchangeable, the number of combinations αn−A(0),k0

is the same for {Rn−A(0) ≥ k0} and {Bin(n −A(0), δ) ≥ k0}

P
{

Rn−A(0) ≥ k0
}

P {Bin(n−A(0), δ) ≥ k0}
=

P
({

Rn−A(0)−k0 ≥ 0
}

∩ {Rk0 = k0}
)

P ({Bin(n−A(0) − k0, δ) ≥ 0} ∩ {Bin(k0, δ) = k0})

αn−A(0),k0

αn−A(0),k0

.

The events
{

Rn−A(0)−k0 ≥ 0
}

and {Bin(n−A(0) − k0, δ) ≥ 0} are always fulfilled. Hence

P
({

Rn−A(0)−k0 ≥ 0
}

∩ {Rk0 = k0}
)

P ({Bin(n−A(0) − k0, δ) ≥ 0} ∩ {Bin(k0, δ) = k0})
=

P {Rk0 = k0}
P {Bin(k0, δ) = k0}

.

Using (5.3) in the case of k0, we find that

P
{

Rn−A(0) ≥ k0
}

P {Bin(n−A(0), δ) ≥ k0}
=

P {Rk0 = k0}
P {Bin(k0, δ) = k0}

≥ 1,

which proves Lemma 5.1.

Corollary 5.2. The random variable S(t) is stochastically dominated by Bin (n−A(0), π(t))

P {S(t) ≥ k} ≤ P {Bin (n−A(0), π(t)) ≥ k} . (5.4)

Moreover

P {S(t) ≥ k} ≤ P
{

Bin
(

n−A(0), π+(t)
)

≥ k
}

= P
{

S+(t) ≥ k
}

(5.5)

Proof of Corollary 5.2. We have n = A(0) + S(t) + R(t), so

P {S(t) ≥ k} = P {n−A(0) −R(t) ≥ k}
= P {R(t) ≤ n−A(0) − k}

13



≤ P {Bin (n−A(0), 1 − π(t)) ≤ n−A(0) − k} .
Since

P {Bin (n−A(0), 1 − π(t)) ≤ n−A(0) − k} = P {Bin (n−A(0), π(t)) ≥ k} ,
we deduce that

P {S(t) ≥ k} ≤ P {Bin (n−A(0), π(t)) ≥ k} , (5.6)

which is equation (5.4). Equation (5.5) follows from the fact that π+(t) ≥ π(t) (see equation
(4.11).

6 The case p = o
(

1
n

)

, proof of Theorem 3.1

In the case p = o
(

1
n

)

, we are going to prove that the system is subcritical. Indeed, there are so
few connection that the activation cannot spread along it. We use a very crude bound for the
probability of a vertex to be activated by using the condition that this vertex needs to receive
at least one incoming activation.

Proof of Theorem 3.1. We have in general

π(t) ≤ π+(t) = P ({Bini([1, t], p) ≥ Bini([t + 1, n], p)} ∩ {Bini([1, t], p) > 0})

≤ P {Bini([1, t], p) > 0} .
Using that p = o

(

1
n

)

= o
(

1
t

)

, we derive

P {Bini([1, t], p) > 0} = 1 − P {Bini([1, t], p) = 0} = 1 −
(

1 − tp
(

1 + o(1)
))

= tp
(

1 + o(1)
)

.

Therefore, using Corollary 5.2, the expected number of vertices i.e. E (S(t)) that have been
activated by time t is bounded from above by

E
(

S+(t)
)

= (n−A(0)) π+(t) ≤ ntp
(

1 + o(1)
)

= o(t). (6.1)

Using Markov’s inequality, we deduce for any λ > 0 that

lim
t→∞

P

{

S+(t)

t
> λ

}

= 0.

Letting t = (1 + ǫ)A(0) and λ = ǫ
1+ǫ , we derive that

lim
n→∞

P
{

S+ ((1 + ǫ)A(0)) − ǫA(0) > 0
}

= 0,

implying by domination (see Corollary 5.2) that the process stops before time t = (1 + ǫ)A(0)
for any positive ǫ. Therefore, for p = o

(

1
n

)

and any A(0), we have

A∗ = A(0)
(

1 + op(1)
)

.

For A(0) = O(1) then using equation (6.1), we derive E (S+ (A(0))) = o(1) so P {A∗ > A(0)} =
o(1) and w.h.p, we have A∗ = A(0). That proves Theorem 3.1.
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7 The case p = c
n
, proof of Theorem 3.2

7.1 Approximation by a Poisson random variable

In the case of p = c
n , it is handy for the computations to approximate the probability π+(t)

using the approximation of a binomial by a Poisson random variable.
We use the standard approximation

dTV (Bin(t, p),Po(tp)) < p, (7.1)

where dTV denotes the total variation distance. See Theorem 2:M in [2].

Remark 7.1. The approximation (7.1) implies that

π+(t) = P {Po(tp) ≥ max (Po ((n− t− 1)p) ; 1)} + O(p). (7.2)

Indeed, we have using the independence of the links for disjoint sets that

π+(t) =
n−t−1
∑

k=1

P {Bini([1, t], p) ≥ k}P {Bin(n− t− 1, p) = k}

+ P {Bini([1, t], p) ≥ 1}P {Bin(n− t− 1, p) = 0} .

We use the approximation by the corresponding Poisson probability to derive

π+(t) =

n−t−1
∑

k=1

(P {Po(tp) ≥ k} + O(p)) (P {Po ((n− t− 1)p) = k} + O(p))

+ (P {Po(tp) ≥ 1} + O(p)) (P {Po ((n− t− 1)p) = 0} + O(p)) (7.3)

The lower term in equation (7.3) is P {Po(tp) ≥ 1}P {Po ((n− t− 1)p) = 0} + O(p).
The upper term in equation (7.3) can be developed into

n−t−1
∑

k=1

P {Po(tp) ≥ k}P {Po ((n − t− 1)p) = k}

+ O(p)

n−t−1
∑

k=1

P {Po ((n− t− 1)p) = k} + O(p)

n−t−1
∑

k=1

P {Po(tp) ≥ k} + O(p2)

n−t−1
∑

k=1

1. (7.4)

We bound the terms on the lower line of equation (7.4). For the first term, we use the bound
∑n−t−1

k=1 P {Po ((n− t− 1)p) = k} ≤ 1.
For the second term, we have

∑n−t−1
k=1 P {Po(tp) ≥ k} ≤ E (Po(pt)) = pt = O(1) since t ≤ n

and p = c
n .
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For the last term we obviously have
∑n−t−1

k=1 1 = n− t− 1.
Inserting these bounds into (7.3), we derive equation (7.2).
Computations of the relation (7.2) give

π+(t) =

t
∑

k=1

(pt)k

k!
e−pt

k
∑

j=0

((n− t− 1)p)j

j!
e−(n−t−1)p + O(p)

π+(t) = e−(n−1)p
t
∑

k=1

(pt)k

k!

k
∑

j=0

((n− t− 1)p)j

j!
+ O(p). (7.5)

The random variables Bini([1, t], p) and Bini([t + 1, n], p) determine the number of links a cer-
tain vertex has with two disjoint set of vertices. By independence of the connections, the
random variables Bini([1, t], p) and Bini([t + 1, n], p) are independent. The random variables
Po ((n− t− 1)p) and Po ((n− t− 1)p) associated with their respective binomials are indepen-
dent as well.

7.2 Subcritical case, p = c
n
and A(0) = o(n)

Proof of Theorem 3.2 (i). We consider the case p = c
n and A(0) = o(n). We study the process

of activation along time t. Eventually, t will be a multiple of A(0) so we assume throughout
the calculations that t = o(n).

We split the probability π+(t) into two terms, k = 1 and k ≥ 2

π+(t) = P ({Bin(t, p) = 1} ∩ {Bin(n− t− 1, p) ≤ 1})

+ P ({Bin(t, p) ≥ Bin(n− t− 1, p)} ∩ {Bin(t, p) ≥ 2}) + O(p). (7.6)

Using the approximation (7.5), we deduce for each term of (7.6) that for t = o(n)

P ({Bin(t, p) ≥ Bin(n− t− 1, p)} ∩ {Bin(t, p) ≥ 2}) = epe−npO(p2t2) + O(p),

and

P ({Bin(t, p) = 1} ∩ {Bin(n− t− 1, p) ≤ 1}) = epe−nppt (1 + p(n− t− 1)) + O(p).

Therefore, we have
π+(t) = (1 + pn)pe−npt

(

1 + o(1)
)

+ O(p). (7.7)

To prove that the process does not percolate, we use again that the random variable S(t) is
stochastically dominated by S+(t) ∈ Bin (n−A(0), π+(t)).

Recall t = o(n) such that pt = o(1) since p = c
n . Using the relation (7.7), we bound the

expectation of the random variable S+(t) ∈ Bin (n−A(0), π+(t)) by

E
(

S+(t)
)

= (n−A(0)) π+(t)
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≤ nπ+(t)

≤ (1 + pn)npe−npt
(

1 + o(1)
)

+ O(1) = g(c)t
(

1 + o(1)
)

.

where g(c) = (1 + c)ce−c. Notice that the function g(c) has a maximum (2 +
√

5)e−
1+

√

5

2 <

0.84 < 1 at c = 1+
√
5

2 . Therefore, for small ǫ, we will always have g(c)(1 + ǫ) < 1. We have for
some ǫ > 0 and for sufficiently large n

Var (Bin (n−A(0), π(t))) ≤ E (Bin (n−A(0), π(t)))

≤ E
(

Bin
(

n−A(0), π+(t)
))

≤ g(c)t(1 + ǫ) (7.8)

Under the same conditions as equation (7.8), the probability of survival is

P {A∗ > t} ≤ P {A(t) > t}
= P {A(0) + S(t) > t} = P {S(t) > t−A(0)}
≤ P

{

S+(t) > t−A(0)
}

≤ P
{

S+(t) − E
(

S+(t)
)

> t−A(0) − g(c)t(1 + ǫ)
}

≤ P
{

S+(t) − E
(

S+(t)
)

> (1 − g(c)(1 + ǫ)) t−A(0)
}

where the second inequality follows from the stochastic domination of Corollary 5.2 and the
third inequality from (7.8).

Use Chebyshev’s inequality with t = 1+ǫ
1−g(c)(1+ǫ)A(0). We find

P {A(t) > t} ≤ Var (Bin (n−A(0), π(t)))

(ǫA(0))2

≤ E (Bin (n−A(0), π(t)))

(ǫA(0))2

≤ E (Bin (n−A(0), π+(t)))

(ǫA(0))2

≤ g(c)A(0)

(ǫA(0))2

≤ g(c)

ǫ2A(0)
→ 0 as n → ∞,

if A(0) → ∞ as n → ∞. That means

lim
n→∞

P

{

A∗ >
1 + ǫ

1 − g(c)(1 + ǫ)
A(0)

}

= 0.

Since the variable A∗ is an monotone increasing in A(0), by boundedness, we derive for A(0) =
O(1) that A∗ = op (w(n)) for any w(n) → ∞.
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That implies immediately that if A(0) = o(n) then

A∗ = op(n).

7.3 Approximation of S+(t) = Bin (n−A(0), π+(t)) by its mean

This part is necessary in the case of p = c
n and A(0) = θn because we approximate the sequence

of random variables S+(t) ∈ Bin (n−A(0), π+(t)) by the expectation E (S+(t)). The Glivenko-
Cantelli lemma gives a uniform bound on the approximation. That gives us the stopping time
for the process A+(t) = A(0) + S+(t) which we will denote T+ and then we derive an upper
bound for A∗ = T (see equation (2.3)).

The random variable S+(t) is a binomial distribution, so for every t = t(n), we have

S+(t) = E
(

S+(t)
)

+ op(n) = (n−A(0))π+(t) + op(n) (7.9)

and by the Glivenko-Cantelli lemma [6], this holds uniformly so

sup
t≥0

∣

∣

∣
S+(t) − E(S+(t))

∣

∣

∣
= op(n). (7.10)

For the expected value of S+(t), we find, using the approximation of π+(t) in equation (7.5)

E
(

S+(t)
)

= (n−A(0)) π+(t)

= (1 − θ)nπ+(t)

= n (1 − θ) epe−c

⌊xn⌋
∑

k=1

(cx)k

k!

k
∑

j=0

((1 − x)c)j

j!
+ O(1).

Consider now E (A+(t)) − t with t = xn,

E
(

A+(t)
)

− t = A(0) + E
(

S+(t)
)

− t

= θn− xn + n (1 − θ) epe−c

⌊xn⌋
∑

k=1

(cx)k

k!

k
∑

j=0

((1 − x)c)j

j!
+ O(1)

= n



θ − x + (1 − θ) epe−c

⌊xn⌋
∑

k=1

(cx)k

k!

k
∑

j=0

((1 − x)c)j

j!



+ O(1).

Let

fc,θ(x) = θ − x + (1 − θ) epe−c

⌊xn⌋
∑

k=1

(cx)k

k!

k
∑

j=0

((1 − x)c)j

j!
,
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so that we have
E
(

A+(t)
)

− t = nfc,θ(x) + O(1). (7.11)

An approximation of the stopping time of the process A+(t) denoted T+ is given by

x0 = inf{x ≥ θ, fc,θ(x) < 0}. (7.12)

This is the smallest root x0(c, θ) ≥ θ of fc,θ(x) = 0 for given c and θ such that

{

fc,θ(x) ≥ 0 for x ≤ x0

∃υ > 0 such that fc,θ(x) < 0 for x ∈ (x0, x0 + υ).
(7.13)

The condition (7.13) is to ensure that the function fc,θ(x) changes sign at x0 and avoid points
for which fc,θ(x) = f ′

c,θ(x) = 0 (see remark 7.3) so that x0 is a double root with fc,θ(x) ≥ 0 on
a boundary of x0.

Finally, notice that the function fc,θ(x) is continuous on [0, 1] and positive for x < x0.
We give in the following some basic properties to fc,θ(x) that immediately translates to

E (S+(t)) and further to the process S+(t) using either (7.9) for concentration results point
wise or the Glivenko-Cantelli Lemma for concentration results needed on an interval. The first
proposition shows that in the case when p = c

n , the activation cannot spread to almost all the
graph.

Proposition 7.2. Let p = c
n , c > 0. For the process starting from time A(0) = θn, θ < 1,

there exists a stopping time T = A∗ = θ∗n + op(n) with θ∗ ≤ x0 < 1.

Proof of proposition 7.2. We have

fc,θ(1) = θ − 1 + (1 − θ)epe−c
n
∑

k=1

(c)k

k!

k
∑

j=0

0j

j!

≤ (1 − θ)
(

epe−c (ec − 1) − 1
)

.

We have ep = e
c

n = 1 + c
n

(

1 + o(1)
)

. Therefore, for any 0 < ǫ < e−c, there exists nǫ such that
for any n ≥ nǫ

fc,θ(1) ≤ (1 − θ)
(

(1 + ǫ)e−c (ec − 1) − 1
)

= (1 − θ)
(

ǫ− (1 + ǫ)e−c
)

< 0, (7.14)

and the inequality (7.14) holds for any θ < 1. Along with fc,θ(0) = θ > 0, that implies that
there is at least one solution < 1 to the equation fc,θ(x) = 0. Let x0 be defined by (7.12).
Clearly, by (7.13), for x = x0 + γ, with γ < υ we have fc,θ = −λ < 0. That means for t = xn
that

E
(

A+(t)
)

− t = A(0) + E
(

S+(t)
)

− t = −λn.
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Using equation (7.10), we derive that

A+(t) − t = A+(t) − E
(

A+(t)
)

+ E
(

A+(t)
)

− t

= op(n) − λn.

Therefore, for t = xn, x = x0 + γ

lim
n→∞

P
{

A+(t) − t > 0
}

= 0

and this holds for any γ < υ thus we have

T+ ≤ x0n + op(n) ⇔ T+ = θ+n with θ+ ≤ x0.

Using the boundedness result of Corollary 5.2, it follows that the process (A(t))t≤n has a
stopping time T = A∗ = θ∗n + op(n) with θ∗ ≤ θ+ ≤ x0 < 1.

Remark 7.3. If we have fc,θ(x1) = 0 but fc,θ(x) does not change sign around x1, as it is
required in (7.13), then, using simply the Glivenko-Cantelli Lemma, see relation (7.10), we
cannot conclude that the process of activation stops or not. We may have a similar behaviour
as in Theorem 5.5 of [5].

Remark 7.4. In the case when x0 is the smallest root then, we have fc,θ(x) > 0 on (0, x0) and
one can prove using the Glivenko-Cantelli Lemma that w.h.p A(t) − t > 0 for all t = xn with
x < x0. Hence, one can derive that T+ = x0n + op(n) and θ+ = x0.

Proposition 7.5. Let p = c
n , c > 0 and A(0) = θn, 0 < θ < 1 then the activation spreads to

a significantly larger part of the graph

A∗ = θ∗n with θ∗ > θ. (7.15)

Proof of proposition 7.5. Let us first remark that for x < θ we have fc,θ(x) > 0. Indeed as a
first approximation, we have

E (A(t))

n
− x ≥ A(0)

n
− x = θ − x > 0.

Secondly, we use the fact that A (A(0)) ≤ A∗ with

A (A(0)) = E (A (A(0))) + op(n)

= E
(

A+ (A(0))
)

+ op(n)

= fc,θ(θ)n + A(0) + op(n),
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where the second inequality follows from the fact that π(t) = π+(t) for t ≤ A(0) = θn and the
third equality follows from (7.11). Let us compute fc,θ(θ),

fc,θ(θ) = θ − θ + (1 − θ)epe−c
θn
∑

k=1

(cθ)k

k!

k
∑

j=0

(c(1 − θ))j

j!

= (1 − θ)epe−c
θn
∑

k=1

(cθ)k

k!

k
∑

j=0

(c(1 − θ))j

j!
> 0.

That implies that there exists λ > 0 such that for n large enough A(A(0))
n = θ+fc,θ(θ)+op(1) ≥

(θ + λ). Thus A∗ = θ∗n + op(n) with θ∗ ≥ θ1 > θ.

We have the necessary results to prove Theorem 3.2.

Proof of Theorem 3.2. Propositions 7.2 implies that θ∗ < 1 w.h.p, and 7.5 implies that A∗ =
θ∗n + op(n) with θ∗ > θ.

Moreover, from Proposition 7.2 , we derive that θ∗ ≤ x0 with x0 defined by (3.5). That
proves Theorem 3.2 (ii).

We studied in the Section 6 the case p = o( 1
n). It is possible to recover some of these results

using

Proposition 7.6.

lim
c→0

fc,θ(x) = lim
c→0

θ − x + (1 − θ)epe−c

⌊xn⌋
∑

k=1

(cx)k

k!

k
∑

j=0

(c(1 − x))j

j!

= θ − x,

thus we have fc,θ(x) < 0 for x > θ.

One can deduce from Proposition 7.6 using the same technique as in the proofs of the
proposition 7.2 and 7.5 that for p = o

(

1
n

)

and A(0) = θn then A∗ = A(0)
(

1 + op(1)
)

which
was proved in Section 6.

8 The case 1
n ≪ p ≤ 1, proof of Theorem 3.5

8.1 The sub case A(0) = o(n), proof of (i)

In the following, we prove that if A(0) = o(n) and p ≫ 1
n the process is subcritical and thus

the final set of active vertices has a size A∗ = op(n).
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Proof of Theorem 3.5 (i). We will consider t = o(n) along the proof. As in the proof of Theo-
rem 3.1, we will use the fact that A(t) is stochastically dominated by A+(t) and we will show
that for any ǫ > 0, A+ ((1 + ǫ)A(0)) − (1 + ǫ)A(0) ≤ 0 w.h.p.

We recall that the process A+(t) is defined by A+(t) = A(0) + S+(t) where S+(t) ∈
Bin (n−A(0), π+(t)) and π+(t) = P {Bin(t, p) ≥ max (Bin(t, p), 1)}. We start by splitting
π+(t) in two

π+(t) = P

(

{Bin(t, p) ≥ max (Bin (n− t− 1, p) ; 1)} (8.1)

∩
({

Bin(t, p) ≥ 1

4
np

}

∪
{

Bin(t, p) ≤ 1

4
np

})

)

= P

(

{Bin(t, p) ≥ max (Bin (n− t− 1, p) ; 1)} (8.2)

∩
({

Bin(t, p) ≥ 1

4
np

}

∪
{

Bin(n− t− 1, p) ≤ 1

4
np

})

)

≤ P

(

{Bin(t, p) ≥ max (Bin (n− t− 1, p) ; 1)} ∩
{

Bin(t, p) ≥ 1

4
np

})

+ P

(

{Bin(t, p) ≥ max (Bin (n− t− 1, p) ; 1)} ∩
{

Bin(n− t− 1, p) ≤ 1

4
np

})

(8.3)

≤ P

(

{Bin(t, p) ≥ max (Bin (n− t− 1, p) ; 1)} ∩
{

Bin(t, p) ≥ 1

4
np

})

We use Theorem 2.1 from [4] which we recall here. Let X be a binomial random variable then
for z > 0

P {X ≥ EX + z} ≤ exp

(

− z2

2
(

EX + z
3

)

)

(8.4)

and

P {X ≤ EX − z} ≤ exp

(

− z2

2EX

)

. (8.5)

We have

P

{

Bin(t, p) ≥ 1

4
np

}

= P

{

Bin(t, p) ≥ tp +

(

1

4
np− tp

)}

≤ exp

(

−
(

1
4np− tp

)2

2
(

tp + 1
3

(

1
4np− tp

))

)

.
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Use that t = o(n) to derive

P

{

Bin(t, p) ≥ 1

4
np

}

≤ exp

(

−1

3
np

)

. (8.6)

We also have

P

{

Bin(n− t− 1, p) ≤ 1

4
np

}

= P

{

Bin(n− t− 1, p) ≤ (n− t− 1)p −
(

(n− t− 1)p − 1

4
np

)}

≤ exp

(

−
(

(n − t− 1)p − 1
4np

)2

2(n− t− 1)p

)

.

Use that t = o(n) to derive

P

{

Bin(n− t− 1, p) ≤ 1

4
np

}

≤ exp

(

−1

3
np

)

. (8.7)

The bounds (8.6) and (8.7) imply

π+(t) ≤ 2 exp

(

−1

3
np

)

. (8.8)

Since A(0) = o(n) and p ≫ 1
n , we consider t = o(n) we find, using Corollary 5.2 and

Markov’s inequality, that

P{A∗ > t} ≤ P
{

A+(t) > t
}

= P
{

S+(t) > t−A(0)
}

= P
{

Bin
(

n−A(0), π+(t)
)

> t−A(0)
}

≤ ((n −A(0))π+(t)

t−A(0)

≤ 2n exp
(

−1
3np

)

t−A(0)
. (8.9)

We consider two cases

1. If

A(0) ≫ n exp

(

−1

3
np

)

, (8.10)

then take t = (1 + ǫ)A(0) and use Corollary 5.2 to derive

P {A∗ > (1 + ǫ)A(0)} ≤ P
{

A+ ((1 + ǫ)A(0)) > (1 + ǫ)A(0)
}

≤ 2n exp
(

−1
3np

)

ǫA(0)
→ 0 as n → ∞

That implies that A∗ = A(0)
(

1 + op(1)
)

= op(n).
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2. In this case A(0) ≤ Kn exp(−1
3np) for a constant K. For any α > 0 choose a constant

Cα > 2+Kα
α . Then

P

(

A∗ > Cαn exp(−1

3
np)

)

= P

(

A(Cαn exp(−1

3
np)) > Cαn exp(−1

3
np)

)

(8.11)

≤ 2n exp(−1
3np)

Cαn exp(−1
3np) −A(0)

(8.12)

≤ 2

Cα −K
< α. (8.13)

Thus, A∗ = Op(n exp(−1
3np)). We recall that since p ≫ 1

n , np → ∞ as n → ∞.
Therefore, we have shown that in this case the activation does not spread to a finite
proportion of the graph.

That proves Theorem 3.5 (i).

Proof of Theorem 3.5 (ii). We consider the case A(0) = θn, θ < 1
2 . We use that A(t) is

stochastically dominated by A+(t) and prove that P {A+ ((1 + ε)A(0)) > (1 + ε)A(0)} = o(1).
Let t = xn, we have similarly to (8.8)

π+(t) ≤ P

{

Bin (n− t− 1, p) ≤ 1

2
np

}

+ P

{

Bin (t, p) ≥ 1

2
np

}

≤ P

{

Bin (n− t− 1, p) ≤ (n− t− 1)p−
(

(n− t− 1)p − 1

2
np

)}

+ P

{

Bin (t, p) ≥ tp +

(

1

2
n− t

)

p

}

. (8.14)

Using the inequalities (8.4) and (8.5), we bound

π+(t) ≤ exp

(

−
(

(n− t− 1)p − 1
2np

)2

2(n− t− 1)p

)

+ exp






−
((

1
2n− t

)

p
)2

2
(

tp +
1

2
n−t

3 p
)






.

For any small λ > 0 then for n sufficiently large, we have

π+(t) ≤ exp

(

−(1 − ǫ)

(

1
2n− t

)2

2n
p

)

+ exp

(

−
(

1
2n− t

)2

2n
p

)

.

Let ω(n) → ∞. Then we have uniformly for any t < 1
2n −

√

n
pω(n), π+(t) = o(1) and more

precisely, we have
E
(

S+(t)
)

= E
(

Bin(n−A(0), π+(t))
)

= o(n).
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We repeat the same procedure as in equation (8.9) to derive that for any 0 < ǫ < 1
2 − θ

P {A∗ > (1 + ε)A(0)} ≤ P
{

A+ ((1 + ε)A(0)) > (1 + ε)A(0)
}

= o(1).

By corollary 5.2, we have that if A(0) = θn, θ < 1
2 and 1

n ≪ p ≪ 1 then

A∗ = A(0) + op(n).

That proves Theorem 3.5 (ii).

Proof of Theorem 3.5 (iii). In this proof, we show that after exploring the A(0) vertices initially
set as active, the set of vertices R(t) = V \ A(t) has w.h.p. a size of order o(n). Let us

recall that |R(t)| = R(t) =
∑n−A(0)

i=1 Ki(t) (see equation (2.14)), where Ki(t) ∈ Be (δ(t))

with δ(t) = 1 − π(t). We consider the case A(0) = 1
2n + ω(n)

√

n
p . Recall that for t ≤ A(0)

then π(t) = P {Bini ([1, t], p) ≥ max (Bini([t + 1, n], p), 1)} = π+(t), where the random variables
Bini ([1, t], p) and Bini([t + 1, n], p) are independent as they represent links to disjoint set of
vertices. Let 1

2n < t ≤ A(0) then the probability that a vertex of V \ A(0) remains inactive at
time t is bounded by

δ(t) = 1 − π(t) = P ({Bini([1, t], p) < Bini([t + 1, n], p)} ∪ {Bini([1, t], p) = 0})

≤ P {Bini([1, t], p) ≤ Bini([t + 1, n], p)}

≤ P

{

Bini([1, t], p) ≤ 1

2
np

}

+ P

{

Bini([t + 1, n], p) ≥ 1

2
np

}

≤ P

{

Bini([1, t], p) ≤ tp−
(

tp− 1

2
np

)}

+ P

{

Bini([t + 1, n], p) ≥ (n− t− 1)p +

(

1

2
np− (n− t− 1)p

)}

.

Using the inequalities (8.4) and (8.5), we bound

δ(t) ≤ exp

(

−
(

tp− 1
2np

)2

2tp

)

+ exp






−

(

1
2np− (n− t− 1)p

)2

2
(

(n− t− 1)p +
1

2
np−(n−t−1)p

3

)






(8.15)

≤ 2 exp

(

−
(

1
2n− t

)2

n
p

)

. (8.16)

Use the bound (8.15) for t = 1
2n +

√

n
pω(n) where limn→∞ ω(n) = +∞

δ(t) ≤ 2 exp(−1

2
ω2(n)). (8.17)
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Therefore, we can bound the expectation of R(t) by

E (R(t)) = (n−A(0)) δ(t)

≤ 2n exp

(

−1

2
ω2(n)

)

. (8.18)

Therefore, we have
E (R (A(0))) = o(n). (8.19)

For t = A(0), we have R(t) = op(n) and therefore since A∗ ≥ A (A(0))

A∗ = n− op(n).

9 Conclusion

In the article, we treated the problem of majority bootstrap percolation on the random graph
Gn,p. We showed that the process is always subcritical in the case p = o

(

1
n

)

.
For a given p ≫ 1

n , we could determine in Theorem 3.5, the threshold for majority bootstrap
percolation, Ac = θn

(

1 + op(1)
)

with θ = 1
2 .

The upper bound for Ac is actually sharper. We have that if

lim
n→∞

A(0) − 1
2n

√

n
p

= +∞, (9.1)

then
A∗ = n− op(n). (9.2)

We believe that
√

n
p is the right range for the phase transition around the value Ac = 1

2n.

Our computation of the lower bound only used that the variable S(t) was stochastically
dominated by a random variable S+(t). A better knowledge of the probability of receiving a
mark at time s, denoted ps would bring better results in that direction. In order to perform
a better lower bound, one needs to consider the behaviour of the process after the round of
activation from the vertices of A(0) and therefore introduce computations using ps.

It is an open problem whether for A(0) = 1
2n + x

√

n
p for some −∞ < x < +∞ then the

graph percolates with a positive probability φ and with a positive probability 1 − φ, we have
A∗ ≤ 1

2n
(

1 + o(1)
)

. Gaussian limits of the probability for A(0) to almost percolate have been
derived in the case of classical bootstrap percolation on Gn,p by Janson et al. in [5]. Their
proof of Theorem 3.6 in [5] might be adapted to the setting of majority bootstrap percolation.
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We showed also that the case p = c
n has a specific behaviour where the activation spreads to

a larger part of the graph but does not spread to almost all the graph. We could not determine
the exact size of the final set of active vertices |A∗| = A∗. A sharp estimate of the probability
of receiving a mark at time s denoted ps is necessary in this case too. Moreover, a study of the
function fc,θ(x) which gave an approximation of A(xn)−xn

n might show for different values of c
and θ, various number of roots and the appearance of a double root for some critical values
θ(c) for a given c = pn. Such a behaviour has already been noticed and treated on classical
bootstrap percolation on the random graph Gn,p in [5].

Finally, our proof of Theorem 3.5 (iii) shows that, under the condition of the theorem, the
activation spreads to almost all the graph in only 1 generation. However, the total number of
generations is not determined here.
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