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ABSTRACT. We study the limiting degree distribution of the vertex splitting model introduced
in [3]. This is a model of randomly growing ordered trees, where in each time step the tree is
separated into two components by splitting a vertex into two, and then inserting an edge between
the two new vertices. Under some assumptions on the parameters, related to the growth of the
maximal degree of the tree, we prove that the vertex degree densities converge almost surely
to constants which satisfy a system of equations. Using this we are also able to strengthen and
prove some previously non–rigorous results mentioned in the literature.

1. INTRODUCTION

The vertex splitting model is a recent model of randomly growing ordered trees introduced
in [3]. It is a modification of a model of randomly growing trees encountered in the theory of
RNA-folding [4]. The parameters of the model are non-negative weights (wi,j)i,j≥0, symmetric
in the indices i and j, and the trees are grown randomly in discrete time steps according to the
following rules: Let T be an ordered tree, VT its set of vertices and denote the degree of a vertex
v by deg(v).

(1) Start with some finite tree T0 at time t0 := |VT0 |.
(2) Given a tree T at time t ≥ t0, select a vertex v in T with probability

wdeg(v)∑
v′∈VT wdeg(v′)

where

wi :=
i

2

i+1∑
j=1

wj,i+2−j .(1.1)

(3) Partition the edges which contain v into disjoint sets of adjacent edges: E′ of size k− 1
and E′′ of size deg(v)− k + 1, with probability

wk,deg(v)+2−k
wdeg(v)

.
(4) Remove the vertex v and the edges containing it and insert two new vertices v′ and v′′.

Connect v′ by an edge to all vertices u such that uv is an edge in E′ and connect v′′ to
all vertices w such that wv is an edge in E′′. Add the edge v′v′′ (see Fig 1).

FIG. 1. The vertex v of degree i := deg(v) is split into two new vertices v′ and
v′′ of degrees k := deg(v′) and ` := deg(v′′) = i + 2 − k respectively with
probability wk,`/wi. Here i = 5, k = 3 and ` = 4.
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Remark 1.1. The numbers (wi)i≥1 defined by (1.1) are called splitting weights and the numbers
(wi,j)i,j≥1 are referred to as partitioning weights. We say that the vertex v which is selected in
step (2) is split into the vertices v′ and v′′ in step (4).

In step (3) of the growth rules, the adjacency of edges is well-defined since the trees are
ordered. There are in general many choices of the sets E′ and E′′. When deg(v) is even and
k − 1 = deg(v)/2 there are exactly deg(v)/2 different choices but otherwise there are deg(v)
different choices.

We are interested in studying the distribution of vertex degrees in large random trees T grown
according to the above rules. More precisely, let nt,k be the number of vertices of degree k in
the tree at time t. In [3] the asymptotics of the expected values E(nt,k) were studied under the
following assumptions.

(A1) The splitting weights are linear, i.e. satisfy wi = ai + b for some real numbers a and b
such that wi ≥ 0 for all i ≥ 1.

(A2) There is a finite integer dmax such thatwj,k = 0 if either j or k exceeds dmax (no vertices
of degree greater than dmax are created in the growth process) and w1,k = wk,1 > 0
for all 2 ≤ k ≤ dmax (it is possible to create vertices of degree dmax starting from any
initial tree). (Corresponds to (1) in Lemma 2.3 in [3].)

(A3) wi,dmax+2−i > 0 for some i satisfying 2 ≤ i ≤ dmax − 1 (it is possible to split vertices
of degree dmax). (Corresponds to (2) in Lemma 2.3 in [3].)

(A4) The dmax × dmax matrix B given by the matrix elements

Bij = jwi,j+2−i − δijwi, 1 ≤ i, j ≤ dmax

is diagonalizable. (Appears in Theorem 2.5 in [3].)
It was shown that under these assumptions the limits ρk := limt→∞ E(nt,k)/t exist for 1 ≤ k ≤
dmax and are the unique positive solutions to

ρk = −wk
w2
ρk +

dmax∑
i=k−1

i
wk,i+2−k
w2

ρi(1.2)

such that
∑∞

k=1 ρk = 1 and
∑∞

k=1 kρk = 2. The last two should be compared to the equations
dmax∑
i=1

nt,i = t and
dmax∑
i=1

int,i = 2t− 2,(1.3)

which is (2.7) in [3].
The condition (A1) is a very convenient technical condition and we will assume that it holds

throughout the paper. The reason is that for linear splitting weights, the total weight of selecting
a vertex in T only depends on the number of vertices in T , namely∑

v∈VT

wdeg(v) =

dmax∑
i=1

wint,i = (2a+ b)t− 2a = w2t− 2a =: Wt(1.4)

by (1.3).
In this paper we prove stronger results concerning convergence of the random variables nt,k.

First of all, we prove almost sure convergence of nt,k/t towards ρk satisfying (1.2) which im-
mediately implies, by the boundedness of nt,k/t and the dominated convergence theorem, that
the expected value converges. Furthermore, we relax some of the conditions (A2)–(A4) stated
above as will be mentioned in the statement of the results in Theorem 1.2. In particular we do
not require the matrix B to be diagonalizable when dmax < ∞ and we obtain partial results
when there is no bound on the maximum degree.

Throughout this paper we do not take into account the structural properties of the trees, but
only analyze the asymptotic vertex degree densities. This means that the analysis fits into the
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framework of generalized Pólya urn models. Consider dmax urns, labelled 1, 2, . . . , dmax, ini-
tially containing some number of balls. At each time step, draw a ball from urn iwith probability
proportional to wini, where ni is the number of balls in the i:th urn. Then put two balls back
in, one in the k:th urn and one in the (i+ 2− k):th urn, where the pair (k, i+ 2− k) is chosen
with probability wk,i+2−k/wi. In this framework each vertex of degree i in the vertex splitting
tree corresponds to a ball in the i:th urn. The body of literature regarding Pólya urns is large. In
particular, whenever dmax < ∞, our results follow from [5]. In fact stronger results regarding
asymptotic joint normality are attainable in this regime, but we do not pursue this matter further.
Even though the results of [5] holds only for a finite number of urns, sometimes a reduction from
a situation from infinitely many urns to a situation with finitely many urns is possible. For the
vertex splitting model, such a reduction unfortunately only works for the subclass of splitting
trees for which, for all large enough i, the only positive partitioning weights are w1,i+1, w2,i.

By choosing the splitting and partitioning weights appropriately, the vertex splitting model
contains several other known models. For instance, by letting w1,i+1 be the only positive parti-
tioning weight, we may retrieve the random recursive trees by choosing wi = 1 and the random
plane recursive trees by choosing wi = i. These were analyzed in [6] by using the aforemen-
tioned connection to generalized Pólya urns.

Without giving complete details, we also extend our results to the setting considered in the
motivating paper [4], in which a correspondence between coloured splitting trees and arch depo-
sition models is exploited to analyze the secondary structure of RNA folding. In this case each
vertex is coloured either black or white. If a black vertex is chosen, it is recoloured white. If a
white vertex is chosen, it splits (similar to the aforementioned 1–coloured case) into two black
vertices. By and large the same methods apply, and moreover it turns out that there is a clear
correspondence between the 1–coloured version and the 2–coloured version.

1.1. Main results. In the following we let dmax be a positive integer or infinite. If dmax < ∞
we will assume that initially no vertex has degree > dmax and that Condition (A2) above is
satisfied. Let s := inf{iw1,i+1 : 1 ≤ i < dmax}. For each k such that 1 ≤ k < dmax + 1,
define the sequence (a

(j)
k )j≥0 as follows. For k = 1 let

a
(0)
1 = 0,

a
(j+1)
1 =

1

w2 + s

(
s+

∞∑
i=2

(iw1,i+1 − s)a(j)i

)
,

and when 2 ≤ k < dmax + 1 let

a
(0)
k = 0,

a
(j+1)
k =

1

w2 + wk

∞∑
i=k−1

iwk,i−k+2a
(j)
i .

The main result of the paper is the following.

Theorem 1.2. Suppose that inf{iw1,i+1 : 1 ≤ i < dmax} > 0. Then for each k such that
1 ≤ k < dmax + 1 the following limits exist and it holds almost surely that

lim
t→∞

nt,k
t

= lim
j→∞

a
(j)
k =: ak

and (ak)1≤k<dmax+1 is a positive solution to

ak = −wk
w2
ak +

∞∑
i=k−1

i
wk,i+2−k
w2

ai (k ≥ 1).(1.5)
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satisfying
∞∑
k=1

ak = 1 and
∞∑
k=1

kak = 2.(1.6)

When dmax <∞ the solution is unique.

Remark 1.3. We note that Theorem 1.2 requires fewer assumptions than those in (A1)–(A4).
However, we have not provided conditions which guarantee that (ak)

∞
k=1 is a unique positive

solution to (1.5) satisfying (1.6).Whenever dmax <∞ however, uniqueness is guaranteed since
the condition that inf{iw1,i+1 : 1 ≤ i < dmax} > 0 is equivalent to Condition (A2) above
which guarantees that (1.2) has rank at least dmax−1. Equations (1.6) fix the remaining constant.
In the case dmax = ∞ we do not know how to prove that the system has a unique solution, but
we comment on some special examples in the next section.

The case dmax < ∞ is implicitly covered by the case dmax = ∞ by assuming that there is
some i for which w1,i+1 = 0. This allows for the identification of three regimes as follows.

I. There is some i ≥ 1 such that w1,i+1 = 0.
II. There is no i ≥ 1 such that w1,i+1 = 0, and inf{iw1,i+1 : 1 ≤ i < dmax} = 0.

III. It holds that inf{iw1,i+1 : 1 ≤ i < dmax} > 0.

Theorem 1.2 deals with Case I and III, but we do not know how to extend these results to case
II. The assumption inf{iw1,i+1 : 1 ≤ i < dmax} > 0 in some sense ensures that the probability
of performing the split i 7→ (1, i+ 1) does not become too small as i grows large.

The rest of the paper is outlined as follows. In Section 2 we give some examples of the
case dmax = ∞ to which Theorem 1.2 is applicable and where uniqueness of the solution to
(1.5)–(1.6) is proved. The proof of Theorem 1.2 along with some technical results is presented
in Section 3. Finally, in Section 4 we sketch similar results for a two–coloured vertex splitting
model that was originally considered in [4].

2. EXAMPLES

Before we turn to the proof of Theorem 1.2, we consider some explicit examples that can be
analysed using Theorem 1.2. Throughout we assume that wi = ai+ b where ai+ b > 0 for all
2 ≤ i ≤ dmax − 1. If a 6= 0, it is easy to see that the growth rules defined in the introduction
are not changed if we take wi = i + x with x = b/a, so for notational convenience we will
sometimes use this definition instead, unless we are interested in the case of constant splitting
weights.

We will focus on the case where there is no bound on the vertex degrees since the case when
dmax < ∞ is already covered. In general we cannot show that the system of equations in
Theorem 1.2 has a unique solution. However, in some specific cases this is possible, and we
present some of these here.

2.1. Preferential attachment. Preferential attachment–type models are obtained by attaching
new edges to existing vertices, where the vertex is chosen with probability proportional to the
vertex degree. In the vertex–splitting model with dmax = ∞, this is obtained by setting all
partitioning weights to zero, except for wi+1,1 = w1,i+1 = wi

i for all i ≥ 1. The conditions of
Theorem 1.2 are satisfied, so the limiting degree distribution (ai)

∞
i=1 satisfies the equations

(w1 + w2)a1 =

∞∑
i=1

wiai

(wk + w2)ak = wk−1ak−1, k ≥ 2.
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The relations
∑∞

i=1 ai = 1 and
∑∞

i=1 iai = 2 imply that
∑∞

i=1wiai = w2, so a1 = w2
w1+w2

.
Then, iterating (2.1) we find that

ak =
wk−1

wk + w2
ak−1 = · · · = a1

k∏
i=2

wi−1
wi + w2

=
w2

wk

k∏
i=1

wi
wi + w2

,

for all k ≥ 1. It is not difficult to analyse the asymptotics of the sequence (ak)
∞
k=1. One can

show that when a 6= 0

ak =
(2 + x)Γ (2x+ 3) Γ (k + x+ 1)

(k + x)Γ (x+ 1) Γ (k + 2x+ 3)
∼ (2 + x)Γ (2x+ 3)

Γ (x+ 1)
k−3−x as k →∞(2.1)

by using standard asymptotics for the Gamma function.
If wi = i, then the preferential attachment model is equivalent to the model of random plane

recursive trees. In this case the exact solution is given by

ak =
4

k(k + 1)(k + 2)
, k ≥ 1.(2.2)

This was originally proved by Móri [7] using martingale methods. He also achieved results on
joint normality of the degree densities. The case wi = 1 is equivalent to the case of random
recursive trees; the exact solution being

ak = 2−k, k ≥ 1,(2.3)

in this case. Using the connection to generalized Pólya urns mentioned in the introduction,
Janson [6] proved stronger results that imply the almost sure convergence to the densities in
(2.2) and (2.3).

2.2. Uniform partitioning weights. Let wi = i + x, where x > −1. In [3], the expected
degree densities were studied in the case of uniform partitioning weights, i.e.

wi,k+2−i = wk/

(
k + 1

2

)
=

2wk
k(k + 1)

.

The methods in [3] were non-rigorous in this case but the results were correct as we confirm
here. By Theorem 1.2 the asymptotic vertex degree densities (ai)

∞
i=1 satisfy

(w2 + wk)ak =
∞∑

i=k−1

2

i+ 1
wiai, k ≥ 1.

Subtracting the k:th equation from the (k + 1):st yields the recursion

(w2 + wk)ak − (w2 + wk+1)ak+1 =
2

k
wk−1ak−1, k ≥ 1(2.4)

where we have defined a0 = 0. The solution is given by

ak =
1

C(x)

2k−1Γ(k + x)

Γ(k)Γ(k + 3 + 2x)
(k + 1 + 2x),(2.5)

where

C(x) =
e
√
π2−

3
2
−xI 1

2
+x(1)

2 + x

and I 1
2
+x is the modified Bessel function of the first kind. In particular, for x = 0, i.e. splitting

weights wk = k, we have

ak =
2k+2(k + 1)

(e2 − 1)(k + 2)!
.
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It is easy to see that the obtained solutions are in fact unique. Namely, from (2.4) one can
inductively determine constants C1, C2 . . . such that ak = Cka1 for all k ≥ 1. The condition∑∞

i=1 ai = 1 determines a1 uniquely as a function of these constants.
If the splitting weights are constant, i.e. wi = b for some b > 0, then the solution to (2.4) is

given by

ak =
1

e

1

(k − 1)!
.

However, in this case iw1,i+1 = O(i−1), so the conditions of Theorem 1.2 are not satisfied.
This falls into Case II identified in Remark 1.3, so it does not follow by our results that these are
also the almost sure limiting vertex densities.

2.3. An infinite class. Our next example provides an infinite class of splitting trees for which a
unique solution to the system of equations is attainable. It includes the preferential attachment
model and more generally a model of trees which grow by attachment and grafting, studied in
[8] (see below).

Let (αi)
∞
i=1 be a sequence in (0, 1], such that infi≥1wiαi > 0. Suppose there exists some

M ≥ 2 such that iw1,i+1 = αiwi, iw2,i = (1 − αi)wi for all i ≥ M with the exception that
w2,2 = (1− α2)w2 when M = 2.

The conditions of Theorem 1.2 are satisfied. In particular, for k > M the asymptotic degree
sequence satisfies

(wk + w2)ak = αk−1wk−1ak−1 + (1− αk)wkak

which is similar to the expressions in Section 2.1. Iterating we find

ak = aM

k∏
i=M+1

αi−1wi−1
w2 + αiwi

=: CkaM

for all k > M .
For any 1 ≤ k ≤M

(wk + w2)ak =

∞∑
i=k−1

iwk,i−k+2ai =

M∑
i=k−1

iwk,i−k+2ai + aM

∞∑
i=M+1

iwk,i−k+2Ci

where the final sum is zero unless k = 1 or k = 2. For instance, choosing k = M yields

(wM + w2)aM = (M − 1)wM,1aM−1 +MwM,2aM

so we can determine CM−1 so that aM−1 = CM−1aM . Continue inductively to find a sequence
(Ci)

M−1
i=1 such that ak = CkaM for 1 ≤ k < M . In the case k = 1 and k = 2 one gets a

system of two equations involving a1 and a2 which may easily be seen to have a unique solution
which is a multiple of aM . Now, the condition

∑∞
i=1 ai = 1 means that aM

∑∞
i=1Ci = 1, so

aM = (
∑∞

i=1Ci)
−1, where we have put CM = 1 for consistency. But this allows us to uniquely

determine the entire sequence (ak)
∞
k=1.

An example of a family of weights which belongs to the above class appears in [8] (with a
minor modification in the dynamics which does not affect the limiting densities). The weights
in [8] are defined in terms of two parameters α, γ ∈ [0, 1] by

wi =
(α

2
+ 1− γ

)
i+ 2γ − α− 1, for i ≥ 1
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and by choosing M = 2 and αi = 1 − αi
2wi

for all i ≥ M . Note that when α = 0 this is the
preferential attachment model. In [8] the solution to (1.5) when 0 < γ < 1 was found to be

a1 =
1− α

1 + γ − α
and

ak =
γΓ
(
3−α−γ
1−γ

)
Γ
(
k − 2 + 1−α

1−γ

)
(1 + γ − α)(2− α)Γ

(
1−α
1−γ

)
Γ
(
k − 1 + 2−α

1−γ

) for k ≥ 2

and for γ = 1

a1 =
1− α
2− α

and

ak =
1

(2− α)2

(
1− α
2− α

)k−2
for k ≥ 2.

The results agree with (2.1) and (2.3) when α = 0 (preferential attachment). There was no proof
in [8] that these solutions are the limiting degree densities but our Theorem 1.2 along with the
uniqueness of the solution confirms that they are the almost sure limit. In the case 0 < γ < 1,
standard asymptotics of the Gamma function yield the power law

ak ∼
γΓ
(
3−α−γ
1−γ

)
(1 + γ − α)(2− α)Γ

(
1−α
1−γ

)k− 2−γ
1−γ as k →∞

and when γ = 1 the densities decay exponentially with rate (1− α)/(2− α).

3. PROOF OF THEOREM 1.2

We now turn to the proof of Theorem 1.2. To simplify notation, we deal only with the case
dmax = ∞, the discussion being even simpler when dmax is finite. First we state a key lemma,
that appears in slightly more general form in [1].

Lemma 3.1 (Backhausz, Móri [1]). Let (Ft)∞t=0 be a filtration. Let (ξt)
∞
t=0 be a non-negative

process adapted to (Ft)∞t=0, and let (ut)
∞
t=1, (vt)

∞
t=1 be non–negative predictable processes such

that ut < t for all t ≥ 1 and limt→∞ ut = u > 0 exists almost surely. Let w be a positive
constant. Suppose that there exists δ > 0 such that E[(ξt − ξt−1)2|Ft] = O(t1−δ). If

lim inf
t→∞

vt
w
≥ v

for some constant v ≥ 0 and

E[ξt|Ft−1] ≥
(

1− ut
t

)
ξt−1 + vt,

then

lim inf
t→∞

ξt
tw
≥ v

u+ 1
a.s.

We use Lemma 3.1 to prove the following lemma. This essentially follows the approach taken
in the papers [2, 9]. We note here that the s–term present below does not appear in Theorem 1.2
since we shall later prove that

∑∞
i=1 ai = 1, but this is a priori not known.



8 S.Ö. STEFÁNSSON AND E. THÖRNBLAD

Lemma 3.2. Suppose that s := inf{iw1,i+1 : i ≥ 1} > 0. Then limj→∞ a
(j)
k =: ak exist for

each k, (ak)k≥1 is a positive bounded sequence satisfying

(w2 + w1)a1 =

∞∑
i=1

iw1,i+1ai + s

(
1−

∞∑
i=1

ai

)
,

(w2 + wk)ak =

∞∑
i=k−1

iwk,i+2−kai (k ≥ 2).

and lim inft→∞
nt,k
t ≥ ak holds almost surely,

Let us first state the idea behind the proof of Lemma 3.2. To ease notation we define Ak =
lim inft→∞

nt,k
t for each k ≥ 1.

(1) For each k ≥ 1, show by induction that a(j)k ≤ Ak for all j ≥ 0.
(2) Prove that (a

(j)
k )∞j=1 is monotonically increasing (in j) for each k. Since each such

sequence lies in the bounded set [0, 1], the limit limj→∞ a
(j)
k = ak exists. Then we

have that ak ≤ Ak.

Proof. Recall the definition of the total weight Wt in (1.4). The following expressions for the
expected number of vertices of degree k, conditional on the tree at the previous time step, easily
follow from the growth rules. For k = 1 we have that

E[nt,1 | Ft−1] = nt−1,1 +
1

Wt−1

∞∑
i=2

iw1,i+1nt−1,i

= nt−1,1

(
1− s

Wt−1

)
+

s

Wt−1
nt−1,1 +

1

Wt−1

∞∑
i=2

iw1,i+1nt−1,i

= nt−1,1

(
1− s

Wt−1

)
+

s

Wt−1
(t− 1) +

1

Wt−1

∞∑
i=2

(iw1,i+1 − s)nt−1,i.

In the last line we used the fact that nt−1,1 = (t− 1)−
∑∞

i=2 nt−1,i.
For k ≥ 2 we have that

E[nt,k | Ft−1] = nt−1,k

(
1− wk

Wt−1

)
+

1

Wt−1

∞∑
i=k−1

iwk,i−k+2nt−1,i

We shall use the above analysis along with Lemma 3.1. By induction we prove that a(j)k ≤ Ak
for all j ≥ 0. For j = 0 we clearly have a(0)k = 0 ≤ Ak. Suppose that a(j)k ≤ Ak for some j
and for all k ≥ 1. We prove first that a(j+1)

1 ≤ A1. For this, define the following variables:
ξt = nt,1,

w = 1,

ut = s
Wt−1

t,

vt = s
Wt−1

(t− 1) + 1
Wt−1

∑∞
i=2(iw1,i+1 − s)nt−1,i.

We note that (ut)
∞
t=1 and (vt)

∞
t=1 are positive predictable sequences and that ξt is non–negative

and adapted. Furthermore, we have that ut = s
Wt−1

t → s
w2

=: u. The condition ut < t in
Lemma 3.1 is satisfied for large enough t, which is enough. In fact, the initial starting tree is
irrelevant, so if ut0 ≥ t0, one can grow the tree and wait until ut < t occurs, at which point
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Lemma 3.1 can be applied. Recall that s = inf{iw1,i+1 : i ≥ 1}. Using Fatou’s lemma and
the induction hypothesis we find that

lim inf
t→∞

vt ≥
s

w2
+

∞∑
i=2

(iw1,i+1 − s) lim inf
t→∞

nt−1,i
Wt−1

≥ s

w2
+

∞∑
i=2

(iw1,i+1 − s)
a
(j)
i

w2

=
s

w2
+

1

w2

∞∑
i=2

(iw1,i+1 − s)a(j)i

:= v.

Applying Lemma 3.1 we find that

A1 = lim inf
t→∞

nt,1
t
≥ v

u+ 1

=
s
w2

+ 1
w2

∑∞
i=2(iw1,i+1 − s)a(j)i
s
w2

+ 1

=
1

w2 + s

(
s+

∞∑
i=2

(iw1,i+1 − s)a(j)i

)
= a

(j+1)
1 .

For k ≥ 2 define the following variables:


ξt = nt,k,

w = 1,

ut = wk
Wt−1

t,

vt = 1
Wt−1

∑∞
i=k−1 iwk,i−k+2nt−1,i.

We note that (ut)
∞
t=1 and (vt)

∞
t=1 are positive predictable sequences and that ξt is non–negative

and adapted. Furthermore, we have that ut = wk
Wt−1

t→ wk
w2

=: u. We now apply Fatou’s lemma
and use the induction hypothesis and find that

lim inf
t→∞

vt ≥
∞∑

i=k−1
iwk,i−k+2 lim inf

t→∞

nt−1,i
Wt−1

≥
∞∑

i=k−1
iwk,i−k+2

a
(j)
i

w2

=
1

w2

∞∑
i=k−1

iwk,i−k+2a
(j)
i

:= v.



10 S.Ö. STEFÁNSSON AND E. THÖRNBLAD

Applying Lemma 3.1 we find that

Ak = lim inf
t→∞

nt,k
t
≥ v

u+ 1

=
1
w2

∑∞
i=k−1 iwk,i−k+2a

(j)
i

wk
w2

+ 1

=
1

w2 + wk

∞∑
i=k−1

iwk,i−k+2a
(j)
i

= a
(j+1)
1 .

We note finally that the technical condition E[(ξt − ξt−1)2|Ft] = O(t1−δ) is satisfied for all
k ≥ 1. Indeed, the conditional expectation E[(ξt − ξt−1)

2|Ft] is bounded above by 4. This
completes the Step 1, i.e. we have showed that a(j)k ≤ Ak for all j ≥ 0 and all k ≥ 1.

We now prove that for each k ≥ 1, the sequence (a
(j)
k )∞j=0 is increasing. We use an inductive

argument. By construction we have that a(0)1 = 0 ≤ s
s+w2

= a
(1)
1 . Suppose that the statement is

true for some j. Recall that s := inf{iw1,i+1 : i ≥ 1} > 0, so in particular iw1,i+1 − s ≥ 0
for all i ≥ 1. Then

a
(j+1)
1 =

1

w2 + s

(
s+

∞∑
i=2

(iw1,i+1 − s)a(j)i

)

≥ 1

w2 + s

(
s+

∞∑
i=2

(iw1,i+1 − s)a(j−1)i

)
≥ a(j)1 .

This proves that the sequence (a
(j)
k )∞j=0 is increasing for k = 1. The proof for k ≥ 2 is similar

and we omit this.
For each k ≥ 1 we thus have that the sequence (a

(j)
k )∞j=0 is an increasing sequence. It is

bounded above byAk ≤ 1, so each such sequence must be convergent and we have the existence
of a limit

lim
j→∞

a
(j)
k = ak.

By taking limits in (1.1–1.1) we find that

a1 =
1

w2 + s

(
s+

∞∑
i=2

(iw1,i+1 − s)ai

)
and for each k ≥ 2

ak =
1

w2 + wk

∞∑
i=k−1

iwk,i−k+2ai.

Interchanging limits and summation is justified since all terms are positive. Using w1 = w1,2, it
is now easy to see that (3) is equivalent to

(w2 + w1)a1 =
∞∑
i=1

iw1,iai + s

(
1−

∞∑
i=1

ai

)
.

This completes the proof. �
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Next we show that the sequence (ak)
∞
k=1, constructed in Lemma 3.2, defines a probability

distribution. After this we prove Theorem 1.2. First we prove the following lemma, which is in
the spirit of Lemma 2.3 in [3]

Lemma 3.3. The sequence (ak)
∞
k=1 satisfies

∑∞
i=1 ai = 1 and

∑∞
i=1 iai = 2.

Proof. Recall from Lemma 3.2 that for each j and k, a(j)k ≤ lim infn→∞
nt,k
t . Thus, for each j,

∞∑
k=1

a
(j)
k ≤

∞∑
k=1

lim inf
t→∞

nt,k
t
≤ lim inf

t→∞

1

t

∞∑
k=1

nt,k = 1

by Fatou’s lemma and (1.3). Similarly, for each j,
∑∞

k=1 ka
(j)
k ≤ 2. Letting j → ∞ it follows

from monotonicity of a(j)k that the following series are convergent and satisfy
∞∑
k=1

ak ≤ 1 and
∞∑
k=1

kak ≤ 2.(3.1)

Summing (3.2) and (3.2) over k = 1, 2, . . . we find that

w2

∞∑
k=1

ak = −
∞∑
k=1

wkak +

∞∑
k=1

∞∑
i=k−1

iwk,i−k+2ai + s

(
1−

∞∑
i=1

ai

)

= −
∞∑
k=1

wkak + 2
∞∑
i=1

wiai + s

(
1−

∞∑
i=1

ai

)

=
∞∑
i=1

wiai + s

(
1−

∞∑
i=1

ai

)(3.2)

Similarly, multiplying the k:th equation by k and summing over k = 1, 2, . . . , N we find by
swapping sums and using

i+1∑
k=1

kwk,i−k+2 =
i+ 2

2

i+1∑
k=1

wk,i−k+2

that

w2

N∑
k=1

kak = −
N∑
k=1

kwkak +
N∑
k=1

k
∞∑

i=k−1
iwk,i−k+2ai + s

(
1−

N∑
i=1

ai

)

= −
N∑
k=1

kwkak +

N−1∑
i=1

i

(
i+1∑
k=1

kwk,i−k+2

)
ai +

∞∑
i=N

i

N∑
k=1

kwk,i−k+2ai + s

(
1−

N∑
i=1

ai

)

= −
N∑
k=1

kwkak +
N−1∑
i=1

i
i+ 2

2

i+1∑
k=1

wk,i−k+2ai +

∞∑
i=N

i

N∑
k=1

kwk,i−k+2ai + s

(
1−

N∑
i=1

ai

)

= −
N∑
k=1

kwkak +
N−1∑
i=1

(i+ 2)wiai +
∞∑
i=N

i
N∑
k=1

kwk,i−k+2ai + s

(
1−

N∑
i=1

ai

)
which yields, with some simple rewriting

w2

N∑
k=1

kak − 2

N−1∑
k=1

wkak − s

(
1−

N∑
i=1

ai

)
= −NwNaN +

∞∑
i=N

i

N∑
k=1

kwk,i−k+2ai.
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The limit, as N →∞, of the left hand side exists by (3.1) and thus the limit of the right hand
side exists, denote it by

x := lim
N→∞

(
−NwNaN +

∞∑
i=N

i
N∑
k=1

kwk,i−k+2ai

)
.

Then

w2

∞∑
k=1

ak − 2

∞∑
k=1

wkak − s

(
1−

∞∑
i=1

ai

)
= x.(3.3)

Finally, let A =
∑∞

i=1 ai and B =
∑∞

i=1 iai. Putting wk = ak + b in (3.2) and (3.3) we
obtain the linear system of equations{

(2a+ b)A = aB + bA+ s− sA,
(2a+ b)B = 2(aB + bA) + s− sA+ x

having solutions

A = 1 +
ax

s(a+ b)

B = 2 +
(2a+ s)x

s(a+ b)
.

Since dmax =∞, a ≥ 0 and thus by (3.1) it necessarily holds that x ≤ 0. If x < 0 then there is
an M such that for all N ≥M , NwNaN > −x/2. Therefore

∞∑
N=1

wNaN >
∞∑

N=M

−x
2N

=∞

which contradicts (3.1). Thus x = 0 which gives A = 1 and B = 2, as desired. �

Proof of Theorem 1.2. Already knowing that lim inft→∞
nt,k
t ≥ ak, the idea is to prove that

lim supt→∞
nt,k
t ≤ ak for all k ≥ 1. By Lemma 3.3 we have that

∑∞
k=1 ak = 1. By definition

it holds that
∑∞

k=1
nt,k
t = 1. The following calculation is routine and only uses Fatou’s lemma

and well–known facts about the limit inferior and limit superior. For any k ≥ 1 we have that

lim sup
t→∞

nt,k
t

= lim sup
t→∞

1−
∞∑
j=1
j 6=k

nt,j
t

 ≤ 1−
∞∑
j=1
j 6=k

lim inf
t→∞

nt,j
t

(Fatou’s Lemma)

≤ 1−
∞∑
j=1
j 6=k

aj (Lemma. 3.2)

= ak.

Thus, by the above along with Lemma 3.2

lim inf
t→∞

nt,k
t
≥ ak ≥ lim sup

t→∞

nt,k
t

almost surely for all k ≥ 1. This implies that for all k ≥ 1

lim
t→∞

nt,k
t

= ak

almost surely. Finally, Equations (1.5) and (1.6) follow from Lemma 3.2 and Lemma 3.3. �
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4. AN EXTENSION TO TWO COLOURS

As mentioned in the introduction, the motivation of this study originally comes from [4],
wherein a two–coloured version of the vertex splitting tree was considered. In this model, each
vertex in the tree is coloured either white or black, the number of black and white vertices of
degree i at time t denoted by n•

t,i and n◦t,i respectively. The parameters of the model are the
splitting weights (w•

i )
∞
i=1, (w

◦
i )
∞
i=1 and symmetric partitioning weights (w◦i,j)i,j≥0, satisfying

w◦i = i
2

∑j+1
i=1 w

◦
j,i+2−j . Start at time t = 2 with a single edge with both its endpoints black. At

each time step, the tree evolves as follows.

(1) Select a vertex v in the tree with probability proportional to w◦deg(v) if v is white, and
w•
deg(v) if v is black.

(2) If v is black, make it white. If v is white, partition its edges into two disjoint sets
of adjacent edges E′ of size k − 1 and E′′ of size deg(v) − k + 1 with probability
w◦
k,deg(v)+2−k
w◦

deg(v)
. Remove the vertex v and its incident edges. Insert two new black vertices

v′ and v′′, such that v′ is connected to all vertices u such that uv is an edge in E′, and
v′′ is connected to all vertices w such that wv is an edge in E′′. Add the edge v′v′′.

The paper [4] considered only the case corresponding to splitting weights w◦k = k + 1 and
w•
k = k (no bound on vertex degrees) and uniform partitioning weights

w◦i,k+2−i = w◦k/

(
k + 1

2

)
for i = 1, . . . , k + 1.

In this case the model is equivalent to a model of random RNA folding, see [4] where the
correspondence is explained in detail. Under the assumption that the limit exists, the authors in
[4] found that

lim
t→∞

E[n◦t,k]

t
=

2kk

e2(k + 2)!
,

lim
t→∞

E[n•
t,k]

t
=

2k

e2(k + 1)!
,

for all k ≥ 1. We consider a wider class of splitting weights and partitioning weights and

are able to prove an analogue of Theorem 1.2 replacing
E[n•t,k]
t and

E[n◦t,k]
t with

n
•
t,k

t and
n◦t,k
t

respectively and proving almost sure convergence. Thus we confirm, strengthen and generalize
the above results from [4].

Let w◦k =
(
a− 3

2b
)
k+a and w•

k =
(
a− 3

2b
)
k+ b. This choice ensures that the total weight

grows linearly, i.e.
∞∑
i=1

(
w◦i n

◦
t,i + w

•
i n

•
t,i

)
= (a− b)t+ b(4.1)

which can be showed by induction. Moreover, up to a multiplicative constant this is the unique
choice of splitting weights resulting in linear growth for the total weight. Note also that a− b =
w•
2/2 = w◦2/3. It is also possible to show that

∞∑
i=1

(
3n◦t,i + 2n

•
t,i

)
= t+ 2.(4.2)

Equations (4.1) and (4.2) correspond to (1.3).
In the following theorem, the sequences (e◦k)

∞
k=1 and (e•k)

∞
k=1 are constructed like the se-

quence (ak)
∞
k=1 in Theorem 1.2, but we leave the exact details to the reader.
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Theorem 4.1. Suppose that inf{iw◦1,i+1 : 1 ≤ i < dmax + 1} > 0. Then there exist two
non–negative sequences (e◦k)

∞
k=1 and (e•k)

∞
k=1 such that

lim
t→∞

n◦t,k
t

a.s.
= e◦k

lim
t→∞

n•
t,k

t

a.s.
= e

•
k

satisfying

(w
•
k + w

•
2/2)e

•
k =

∞∑
i=k−1

iwk,i−k+2e
◦
k,

(w◦k + w◦2/3)e◦k = w
•
ke

•
k,

for all 1 ≤ k < dmax + 1. Moreover
∑∞

i=1(3e
◦
i + 2e•i ) = 1 and

∑∞
i=1(w

◦
i e
◦
i + w•

i e
•
i ) = w•

2/2.

Note that the quantities
n◦t,k
t and

n
•
t,k

t are not degree densities any more, since the tree does
not grow whenever a black vertex is selected. The actual asymptotic degree densities are given
by

ρ
•
i = lim

t→∞

n•
t,i∑∞

j=1(n
•
t,j + n◦t,j)

= lim
t→∞

n•
t,i

t
· t∑∞

j=1(n
•
t,j + n◦t,j)

=
e•i∑∞

j=1(e
•
j + e◦j )

and

ρ◦i =
e◦i∑∞

j=1(e
•
j + e◦j )

.

The proof of Theorem 4.1 is similar to that of Theorem 1.2, so we omit this. Instead we
mention another result that relates the densities of any two–coloured process to a one–coloured
process. Note however that this depends crucially on knowing that the solutions to the equations
in Theorems 1.2 and 4.1 are unique, something we do not know in general. If this is known, the
rest of the proof is straightforward and is omitted – it amounts to showing that the appropriate
conditions and equations in Theorem 1.2 and Theorem 4.1 are satisfied.

Proposition 4.2. Let w◦i and w•
i be the splitting weights for the 2–colour model. Let w◦j,i+2−j

be the partitioning weights. Define a 1–colour process with splitting weights wi = w•
i and

partitioning weights wj,i+2−j =
w
•
i

w◦i
w◦j,i+2−j . Let ρ◦i and ρ•i be the degree densities of the 2–

colour model, and let ai be the degree densities of the 1–colour model. If these are unique as
solutions to the systems in Theorem 1.2 and Theorem 4.1 respectively, then

ρ◦i + ρ
•
i = ai

for all 1 ≤ i < dmax + 1.

Let us illustrate Proposition 4.2 by considering uniform partitioning weights in the the one–
coloured and two–coloured cases, respectively. Indeed, this was the case considered in [4] and
mentioned at the beginning of the section. In any case, it can be shown that

∞∑
k=1

(
2kk

e2(k + 2)!
+

2k

e2(k + 1)!

)
=
e2 − 1

2e2
,
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so the asymptotic vertex densities are given by

ρ◦k =
2e2

e2 − 1

2kk

e2(k + 2)!
=

2k+1k

(e2 − 1)(k + 2)!

ρ
•
k =

2e2

e2 − 1

2k

e2(k + 1)!
=

2k+1

(e2 − 1)(k + 1)!
.

Now, if we follow the notation in Proposition 4.2 we obtain a one–coloured process, which
is precisely the uniform splitting model considered in Section 2.2, with weights wk = k and
partitioning weights

wi,k+2−i =
w•
k

w◦k
w◦i,k+2−i =

k

k + 1
· k + 1(

k+1
2

) =
k(
k+1
2

) =
wk(
k+1
2

) .
Recall (2.5), i.e. that the limiting vertex densities in this case were

ak =
2k+2(k + 1)

(e2 − 1)(k + 2)!
.

In this particular case one verifies that

ak =
2k+2(k + 1)

(e2 − 1)(k + 2)!
=

2k+1k

(e2 − 1)(k + 2)!
+

2k+1

(e2 − 1)(k + 1)!
= ρ◦k + ρ

•
k,

as predicted by Proposition 4.2.
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