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Abstra
t. We study an equilibrium statisti
al me
hani
al model of tree graphswhi
h are made up of a linear subgraph (the spine) to whi
h leaves are atta
hed.We prove that the model has two phases, a generi
 phase where the spine be
omesin�nitely long in the thermodynami
 limit and all verti
es have �nite order and a
ondensed phase where the spine is �nite with probability one and a single vertex ofin�nite order appears in the thermodynami
 limit. We 
al
ulate the spe
tral dimen-sion of the graphs in both phases and prove the existen
e of a Gibbs measure. Wedis
uss generalizations of this model and the relationship with models of nongeneri
random trees.
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1 Introdu
tionThe study of random graphs has been an a
tive area of resear
h in mathemati
sand physi
s for the past few de
ades and remains so. In parti
ular, the study ofrandom trees and random triangulations has found many appli
ations in theoreti
alphysi
s, see e.g. [1℄. Our understanding of the equilibrium statisti
al me
hani
s oftrees with lo
al a
tion is fairly good but not 
omplete. By lo
al a
tion we mean ana
tion whi
h is given by a sum over the verti
es and only depends on their order. Itis now known that so 
alled generi
 trees 
an be viewed as 
riti
al Galton-Watsonpro
esses [12℄ whi
h are very well understood mathemati
ally [3℄. A 
orrespondingpi
ture has not been fully established for nongeneri
 trees whi
h are more di�
ult toanalyse. Mu
h of our knowledge about su
h trees 
omes from numeri
al simulationsand edu
ated guesswork [4, 5, 6, 8, 9℄. However, a 
onsistent pi
ture has emerged[19℄. Typi
ally a vertex of in�nite order appears in the thermodynami
 limit butfull analyti
 
ontrol of this phase of random trees is still missing.In this paper we study a simple model of random graphs whi
h exhibits the samebehavior as random trees with a lo
al a
tion, namely there is a generi
 phase wherethe free energy 
an be 
al
ulated by a saddle point te
hnique and a nongeneri
 phasewhere a vertex of in�nite order appears in the thermodynami
 limit. This modelwas analysed extensively some years ago in a series of papers [4, 5, 6℄ under thename �balls in boxes� and �ba
kgammon� model. Closely related models appear inthe study of the equilibrium distribution for urn models and zero range pro
esses,see e.g. [14, 16℄ and referen
es therein.The graphs that underlie the model studied in this paper have been 
alled 
ater-pillar graphs or simply 
aterpillars by graph theorists [17℄ and we will adopt thatname here. Caterpillars are de�ned as graphs with the property that all verti
es oforder higher than one form a linear subraph, i.e. if all leaves are removed one endsup with a linear graph. Various appli
ations of 
aterpillar graphs in physi
s and
hemistry are des
ribed in [13℄.When the 
aterpillar grows large two things 
an happen: it either be
omes very2



long or some of the verti
es will have a large number of leaves. A priori these twophenomena 
ould 
oexist but we will see that this is not the 
ase in the model we
onsider. Our main motivation is to study the appearan
e of a vertex of in�niteorder in a rigorous fashion.This paper is organized as follows. In the next se
tion we de�ne the model, estab-lish our notation and derive some simple properties. In se
tion 3 we study the generi
phase and prove that generi
 
aterpillars are in�nitely long in the thermodynami
limit with all verti
es of �nite order. We 
al
ulate the order distribution expli
itly.The Hausdor� and spe
tral dimensions of generi
 
aterpillars are both shown to beequal to 1. In se
tion 4, whi
h is the 
ore of this paper, we study nongeneri
 
ater-pillars and begin by establishing an asymptoti
 formula for the 
anoni
al partitionfun
tion. We then prove that there arises exa
tly one vertex of in�nite order in thethermodynami
 limit. We �nd the probability distribution of the distan
e from theroot of the random 
aterpillar (taken to be one of the endpoints of the spine) tothe in�nite order vertex as well as the probability distribution for the orders of theother verti
es.The nongeneri
 
aterpillar graphs have in�nite Hausdor� and spe
tral dimen-sions sin
e there is a vertex of in�nite order at a �nite distan
e from the root withprobability one. However, we will show that the spe
tral dimension de�ned in termsof the ensemble average of the return probability of random walker is �nite andvaries 
ontinuously with the parameters of the model.In se
tion 5 we 
omment on generalizations of this model and dis
uss nongeneri
trees and how they are related to the 
aterpillar model. In an appendix we establishthe existen
e of a probability measure on the set of in�nite 
aterpillar graphs whereverti
es may have in�nite order.2 The modelA �nite 
aterpillar is a �nite graph whi
h 
onsists of a linear graph, whi
h we 
all thespine, to whi
h leaves (i.e. individual links) are atta
hed. We mark the end verti
esof the linear graph by r1 and r2 and 
all r1 the root of the 
aterpillar. Both these3



verti
es have order one by de�nition. Furthermore, we will view the 
aterpillars asplanar graphs so we distinguish between left leaves and right leaves, see Fig. 1. Theassumption of planarity is not essential. We denote the set of all 
aterpillars with
r1

s1 s2 s3 s4 r2Figure 1: An example of a �nite 
aterpillar graph.
N edges by BN . For a 
aterpillar τ ∈ BN , denote the graph distan
e between r1and r2 by ℓ(τ) and 
all it the length of the 
aterpillar. For a 
aterpillar of length ℓwe denote the verti
es on the spine between r1 and r2 by s1, . . . , sℓ−1.Let wn, n = 1, 2, . . ., be a sequen
e of nonnegative numbers whi
h will be 
alledweight fa
tors. The weight of a 
aterpillar τ ∈ BN is de�ned as

w(τ) =
∏

i∈τ\{r1,r2}

wσ(i) , (1)where σ(i) denotes the order of the vertex i and by abuse of notation we let τ alsodenote the set of verti
es in τ . We de�ne the �nite volume partition fun
tion by
ZN =

∑

τ∈BN

w(τ) (2)and a probability distribution on BN by
νN (τ) =

w(τ)

ZN
. (3)The weight fa
tors wn, or alternatively the measures νN , de�ne what we 
all a
aterpillar ensemble.Sin
e the probability of a given 
aterpillar only depends on the order of itsverti
es, an equivalent way of de�ning this ensemble is the following. If τ ∈ BN
onsider the �nite sequen
e c(τ) = (σ(s1), σ(s2), . . . , σ(sℓ−1)) and assign to it theprobability

ν̃N (c(τ)) = νN (τ)

ℓ(τ)−1
∏

i=1

(σ(si) − 1). (4)4



The produ
t fa
tor in (4) a

ounts for the number of di�erent 
aterpillars whi
h
orrespond to the same sequen
e c(τ). De�ne the set B̃N = {c(τ) | τ ∈ BN}. It is
lear that (BN , νN) is equivalent to (B̃N , ν̃N) in the sense that νN (τ) only dependson c(τ). This allows us to extend the notion of �nite 
aterpillars to in�nite ones:
B̃ =

{

(

bi
)k−2

i=1
| k, bi ∈ {2, 3, . . .} ∪ {∞}, 1 ≤ i ≤ k − 2

} (5)where k = 2 
orresponds to the unique 
aterpillar of length ℓ = 1. Note that anelement in B̃ whi
h has in�nite terms and/or in�nite length has no 
ounterpart in
BN for any N .De�ne the �nite volume partition fun
tion with �xed distan
e ℓ between r1 and
r2 as

ZN,ℓ =
∑

τ∈BN ,ℓ(τ)=ℓ

w(τ). (6)It is useful to work with the generating fun
tions
Z(ζ) =

∞
∑

N=1

ZNζ
N (7)and

g(z) =
∞
∑

n=0

wn+1z
n (8)with radii of 
onvergen
e ζ0 and ρ, respe
tively, both of whi
h we assume to benonzero. De�ne also

Ẑℓ(ζ) =
∞
∑

N=1

ZN,ℓζ
N . (9)Then it is 
lear that

Z(ζ) =
∞
∑

ℓ=1

Ẑℓ(ζ). (10)We have the re
ursion relation̂
Zℓ(ζ) = ζg′(w1ζ)Ẑℓ−1(ζ), (11)for any ℓ ≥ 1, see Fig. 2. Using the above equation and Ẑ1(ζ) = ζ gives
Ẑℓ(ζ) = ζ

(

ζg′(w1ζ)
)ℓ−1 (12)5



= ℓ − 1

i − 1

Ẑℓ(ζ)
∑∞

i=1 iζ iwi−1
1 wi+1Ẑℓ−1(ζ)

ℓ

Figure 2: An illustration of the re
ursion (11).and by (10)
Z(ζ) =

ζ

1 − ζg′(w1ζ)
. (13)From (13) we see that ζ0 is the smallest solution of the equation

ζg′(w1ζ) = 1 (14)on the interval (0, ρ/w1) if su
h a solution exists. If it does not exist then ζ0 = ρ/w1.If ζ0 < ρ/w1 then g is analyti
 at w1ζ0 and we say that we have a generi
ensemble. This has been 
alled the ��uid phase� by other authors [6℄. If ζ0 = ρ/w1we have a nongeneri
 ensemble. Noti
e that if ρ = ∞ then the ensemble is alwaysgeneri
. For nongeneri
 ensembles we therefore have �nite ρ. In that 
ase we 
analways 
hoose ρ = 1 by s
aling the weights wn → wnρ
n−1. This s
aling does nota�e
t the probabilities (3).Now 
onsider weights fa
tors with ρ = 1 and let w1 be a free parameter. Thegeneri
ity 
ondition is then 1

w1

g′(1) > 1, i.e. w1 < wc where
wc ≡ g′(1) =

∞
∑

n=2

(n− 1)wn (15)is a 
riti
al value for w1. If w1 = wc we have a nongeneri
 ensemble whi
h we referto as 
riti
al and if w1 > wc we have a nongeneri
 ensemble whi
h we refer to assub
riti
al. This phase has been 
alled the �
ondensed phase� in the literature [6℄.3 The generi
 phaseLet wn be weight fa
tors with w1 6= 0 and wn 6= 0 for some n > 2 whi
h lead to ageneri
 ensemble. 6



Lemma 1. Under the stated assumptions on the weight fa
tors, the asymptoti
behaviour of ZN is given by
ZN =

1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N
0 (1 +O(N−1)) (16)if the integers n > 0 for whi
h wn+1 6= 0 have no 
ommon divisors greater than 1.Otherwise, if their greatest 
ommon divisor is d ≥ 2, then

ZN =
d

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N
0 (1 +O(N−1)) (17)if N = 1 mod d, and ZN = 0 otherwise.The proof of this Lemma is standard, 
f. [15℄, where the 
orresponding result forgeneri
 trees is established. For generi
 
aterpillars one 
an show by a straightfor-ward appli
ation of the methods of [10℄ (see also Appendix A) that the measures

ν̃N 
onverge as N → ∞ to a measure ν̃ whi
h is 
on
entrated on lo
ally �nite
aterpillars of in�nite length and the orders of the verti
es on the in�nite spine areindependently and identi
ally distributed by
φ(n) = ζ0(n− 1)wn(w1ζ0)

n−2, n ≥ 2. (18)Denote the expe
tation with respe
t to the measure ν̃ by 〈·〉ν̃ . If Vr is the numberof verti
es within a distan
e r from the root the Hausdor� dimension dH is de�nedas
〈Vr〉ν̃ ∼ rdH . (19)We write f(x) ∼ xγ if for any ǫ > 0 there are 
onstants C1 and C2 su
h that

C1x
γ+ǫ ≤ f(x) ≤ C2x

γ−ǫ. If 〈Vr〉ν̃ in
reases faster than any power of r then we saythat dH is in�nite. We see from (18) that the expe
tation value (19) is
〈Vr〉ν̃ = (ζ0g

′′(w1ζ0) − 1)(r − 1) + 1. (20)It follows that the Hausdor� dimension of generi
 
aterpillars is 1.Let pτ (t) be the probability that a simple random walk whi
h leaves the root ofan in�nite 
aterpillar τ at time 0 is ba
k at the root at time t, i.e. after t steps. If7



there exists a number ds > 0 su
h that
pτ (t) ∼ t−ds/2 (21)as t→ ∞ then we say that the spe
tral dimension of the graph is ds. If pτ (t) de
aysfaster than any power of t then we say that ds is in�nite. For a dis
ussion of thespe
tral dimension of some random graph ensembles, see [11, 12, 18℄.The spe
tral dimension is most 
oveniently analysed by generating fun
tions.We de�ne

Qτ (x) =
∞
∑

t=0

pτ (t)(1 − x)t/2 (22)and let Q(x) = 〈Qτ (x)〉ν̃ . We de�ne p(1)
τ (t) to be the probability that a simplerandom walk whi
h leaves the root at time 0 is ba
k at the root for the �rst timeafter t steps and let Pτ (x) be the 
orresponding generating fun
tion de�ned as Qτ (x)with pτ (t) repla
ed by p(1)

τ (t). Then we have the relation
Qτ (x) =

1

1 − Pτ (x)
. (23)Let n be the smallest nonnegative integer for whi
h Q(n)

τ (x) diverges as x→ 0. If
(−1)nQ(n)

τ (x) ∼ x−α (24)for some α ∈ [0, 1) then 
learly
ds = 2(1 − α + n), (25)if ds exists. We de�ne the spe
tral dimension of the 
aterpillar ensemble by (25)provided (−1)nQ(n)(x) ∼ x−α.From the monotoni
ity lemmas in [18℄ we get an upper bound x−1/2 on Q(x) bythrowing away all the legs of the 
aterpillar. To get a lower bound on Q(x) we use aslight modi�
ation of Lemma 7 in [12℄ whi
h is the following. For a given in�nitelylong 
aterpillar τ with a �rst return probability generating fun
tion Pτ (x) we have,for all integers L ≥ 1 and 0 < x ≤ 1,

Pτ (x) ≥ 1 − 1

L
− x

L
∑

i=1

σ(si(τ)). (26)8



We then get, using (23), (26) and Jensen's inequality,
Q(x) ≥ 1

1 − 〈Pτ (x)〉ν̃
≥ 1

1
L

+ 〈σ(s1)〉ν̃Lx
. (27)In the generi
 phase we see from equation (18) that 〈σ(s1)〉ν̃ is �nite. Choosing

L =
[

x−1/2
] we �nd

Q(x) ≥ cx−1/2 (28)where c is a 
onstant. It follows from (28), the upper bound on Q(x) and (25) thatthe spe
tral dimension of generi
 
aterpillars is ds = 1.4 The sub
riti
al phaseIn this se
tion we begin by 
al
ulating the asymptoti
 behaviour of the 
anoni
alpartition fun
tion in the sub
riti
al phase. We then show that there is exa
tly onevertex of in�nite order in the thermodynami
 limit. The me
hanism leading to aunique vertex of in�nite order is similar to the one leading to a unique spine forgeneri
 trees [10, 12℄. We 
al
ulate the probability distribution for the lo
ation ofthe in�nite order vertex as well as the probability distribution for the orders of theother verti
es. Finally, we dis
uss the spe
tral dimension of sub
riti
al 
aterpillars.We take ρ = 1 and w1 > wc so that we are in the sub
riti
al phase. We study a
on
rete model where
wi = i−β , i ≥ 2, (29)and let w1 be a free parameter in the spe
i�ed range. We 
omment on extensionsin Se
tion 5. Figure 3 shows the phase diagram of the 
aterpillars. A ne
essary
ondition for being in the sub
riti
al phase is β > 2 sin
e otherwise wc = ∞.Lemma 2. For the weights given in (29) and w1 > wc we have

ZN =
1

(w1 − wc)2
N1−βwN

1

(

1 + o(1)
) (30)as N → ∞. 9
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βFigure 3: A diagram showing the di�erent phases of the 
aterpillars.Proof. We 
an write
ZN =

N
∑

ℓ=1

ZN,ℓ. (31)De�ne a sequen
e of fun
tions fN on the positive integers by
fN(ℓ) =

{

w−N
1 Nβ−1ZN,ℓ ℓ ≤ N

0 ℓ > N . (32)We 
laim that
lim

N→∞
fN(ℓ) =

1

w2
c

(ℓ− 1)

(

wc

w1

)ℓ

≡ f(ℓ). (33)We a

ept the 
laim for a moment and �nish the proof of the Lemma.It is 
lear that fN (ℓ) is summable for every N . We also see that f(ℓ) is summablesin
e w1 > wc. Note that for ℓ ≤ N

fN(ℓ) = w−ℓ
1 Nβ−1

∑

N1+...+Nℓ−1=N−ℓ

ℓ−1
∏

i=1

{(Ni + 1)wNi+2}

≤ w−ℓ
1 Nβ−1(ℓ− 1)

∑

N1+...+Nℓ−1=N−ℓ

N1≥
N−ℓ
ℓ−1

N1 + 1

(N1 + 2)β

ℓ−1
∏

i=2

{(Ni + 1)wNi+2}

≤ 1

w2
c

(

wc

w1

)ℓ
Nβ−1(N − 1)
(

N−l
ℓ−1

+ 2
)β

≤ C(ℓ− 1)β

(

wc

w1

)ℓ (34)where C is a positive 
onstant. The �rst inequality in (34) is obtained by observingthat at least one of the indi
es Ni must be larger than N−ℓ
ℓ−1

and in the se
ond onewe used the de�nition of wc. It follows that the sequen
e {fN}∞1 is dominated by a10



summable fun
tion and we 
an 
al
ulate the limit
lim

N→∞

(

w−N
1 Nβ−1ZN

)

= lim
N→∞

∞
∑

ℓ=1

fN (ℓ) =
∞
∑

ℓ=1

f(ℓ) =
1

(w1 − wc)
2 . (35)This implies the desired result.It remains to prove the 
laim (33). There is at least one index i in the sumde�ning fN(ℓ) su
h that Ni ≥ N−ℓ

ℓ−1
. If there is another index j 6= i su
h that Nj > Awhere A > 1 is a 
onstant then we get an upper bound on that 
ontribution to fN (ℓ)of the form

w−ℓ
1 Nβ−1(ℓ− 1)2

∑

N1+...+Nl−1=N−ℓ

N1≥
N−ℓ
ℓ−1

N2>A

N1 + 1

(N1 + 2)β

ℓ−1
∏

i=2

{(Ni + 1)wNi+2}

≤ C(ℓ)
Nβ

(N + ℓ− 2)β

∑

N3,...,Nℓ−1≥0

ℓ−1
∏

i=3

{(Ni + 1)wNi+2}
∑

N2>A

(N2 + 1)wN2+2

≤ D(ℓ)wℓ−3
c

∑

N2>A

(N2 + a)wN2+2 (36)where C(ℓ) and D(ℓ) are numbers whi
h only depend on ℓ. The last expression goesto zero as A→ ∞ sin
e g′(1) is �nite. The remaining 
ontribution to fN (ℓ) is
w−ℓ

1 Nβ−1(ℓ− 1)
∑

N1+...Nℓ−1=N−ℓ

N1≥
N−ℓ
ℓ−1

Nj≤A, j 6=1

ℓ−1
∏

i=1

{(Ni + 1)wNi+2}

−→
N→∞ w−ℓ

1 (ℓ− 1)

(

A
∑

n=0

(n+ 1)wn+2

)ℓ−2

−→
A→∞ w−2

c (ℓ− 1)

(

wc

w1

)ℓ

.This 
ompletes the proof.
�From the above lemma we obtain the following result.Theorem 1. For the weight fa
tors given in (29) with w1 > wc the probability thatthe distan
e between r1 and r2 is ℓ as the 
aterpillar size N goes to in�nity is givenby 11



ψ(ℓ) ≡ lim
N→∞

ZN,ℓ

ZN
= (ℓ− 1)

(

1 − w1

wc

)2
(wc

w1

)ℓ

. (37)For a given ℓ, exa
tly one of the verti
es on the spine has an in�nite order, and theorders of the other verti
es are identi
ally and independently distributed by
φ(k) =

1

wc

(k − 1)k−β, k ≥ 2. (38)
Proof. Combining Lemma 2 with (33) we obtain (37). If the length of an in�nite
aterpillar is ℓ < ∞ it is 
lear that there is one or more verti
es of in�nite order.The inequality (36) shows that there 
an be at most one vertex of in�nite order inthe limit N → ∞. Finally, the distribution of the orders of the verti
es whi
h havea �nite order in the thermodynami
 limit is obtained by an argument similar to theone leading to Equation (18), 
f. Equation (71).

�In the appendix we prove the existen
e of a measure ν̃ on the set of in�nite
aterpillars whi
h des
ribes the sub
riti
al phase and is obtained as the limit ofthe �nite volume measures. The above theorem then implies that the Hausdor�dimension dH of a random 
aterpillar in the sub
riti
al phase is almost sureley (a.s.)in�nite sin
e with probability one there is a ball of �nite radius whi
h 
ontainsin�nitely many verti
es. Similarly, the spe
tral dimension is a.s. in�nite be
ause arandom walk whi
h hits the in�nite order vertex returns to the root with probability
0. From the analysis below one 
an easily 
he
k that the return probability on arandomly 
hosen sub
riti
al 
aterpillar τ , pτ (t), de
ays faster than any power of t.In the remainder of this se
tion we show how the de�nition of the spe
tral di-mension in terms of the ensemble average with respe
t to ν̃, see (25), leads to aspe
tral dimension

ds = 2(β − 1) (39)in the sub
riti
al phase. We will refer to the unique vertex of in�nite order asthe �trap�. If the walk hits the trap it returns to the root with probability zero.12



Therefore, the part of the 
aterpillar beyond the trap is irrelevant for the randomwalk. When �nding the spe
tral dimension it is therefore natural to 
onsider theprobability that the trap is at a distan
e ℓ from the root instead of 
onsidering theprobability of the total length of the 
aterpillar given in (37).For a 
aterpillar of a given length, all the verti
es between r1 and r2 are equallylikely to be of in�nite order so the probability that the trap is at a distan
e ℓ fromroot is given by
p(ℓ) =

∞
∑

k=ℓ+1

ψ(k)

k − 1
=
(

1 − wc

w1

)(wc

w1

)ℓ−1

. (40)From now on we will disregard the part of the 
aterpillar beyond the trap. Let Bℓ,kbe the set of 
aterpillars with distan
e ℓ between root and trap and whi
h have onevertex of order k and all other verti
es of order no greater than k, with the ex
eptionof the trap of 
ourse. Let a(k) be the probability that a given vertex on the spinebetween the root and the trap has order no greater than k. Then
a(k) =

k
∑

q=2

φ(q). (41)The probability that at least one of these verti
es has order k and all the othershave order no greater than k is then
c(k, ℓ) = a(k)ℓ−1 − a(k − 1)ℓ−1. (42)Let πℓ,k(τ) be the ν̃�probability of the 
aterpillar τ ∈ Bℓ,k given that we are sele
tingfrom Bℓ,k. The average return generating fun
tion for the sub
riti
al 
aterpillars isthen

Q(x) =
∞
∑

ℓ=1

p(ℓ)
∞
∑

k=2

c(k, ℓ)
∑

τ∈Bℓ,k

πℓ,k(τ)Qτ (x). (43)For a given distan
e ℓ between root and trap we denote byMℓ the linear subgraphwhi
h starts at the root and ends at the trap. The �rst return generating fun
tionfor Mℓ is given by
PMℓ

(x) = 1 −
√
x

(1 +
√
x)ℓ + (1 −√

x)ℓ

(1 +
√
x)ℓ − (1 −√

x)ℓ
, (44)see e.g. [11℄. Now atta
h k links to ea
h vertex of the graph Mℓ ex
ept the root andthe trap and denote the resulting graph by Mℓ,k. Using the methods of [18℄ we �nd13
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ir
led vertex and the trap byan asterisk.that the �rst return generating fun
tion for Mℓ,k is

PMℓ,k
(x) =

(

1 +
k

2
x

)

PMℓ
(xk(x)) (45)where

xk(x) =
k2

4
x2 + (1 + k)x
(

1 + k
2
x
)2 . (46)
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Figure 5: The graph Mℓ,k.To �nd an upper bound on the spe
tral dimension of sub
riti
al 
aterpillars weestablish a lower bound on the n-th derivative of the average return generatingfun
tion. Let n be the smallest positive integer su
h that Q(n)(x) diverges as x→ 0.We see in the following 
al
ulations that we have to 
hoose n su
h that n + 1 <

β ≤ n + 2. By (23) we �nd that (−1)nQ
(n)
τ ≥ (−1)nP

(n)
τ for any τ . Thus, bydi�erentiating (43) n times and throwing away every term in the sum over ℓ ex
ept

ℓ = 2 we get the lower bound
(−1)nQ(n)(x) ≥ (−1)n

(

1 − wc

w1

)

wc

w1

∞
∑

k=2

φ(k)P
(n)
M2,k−2

(x). (47)We easily �nd that
PM2,k−2

(x) =
1 − x

2 + (k − 2)x
(48)and show by indu
tion that

P
(n)
M2,k−2

(x) = (−1)nn!
(k − 2)n−1k

(2 + (k − 2)x)n+1
. (49)14



Then, by (38) and (49),
(−1)n

∞
∑

k=2

φ(k)P
(n)
M2,k−2

(x) =
n!

wc

∞
∑

k=2

(k − 2)n−1k1−β(k − 1)

(2 + (k − 2)x)n+1

≥ Cxβ−n−2

∫ ∞

x

yn+1−β

(2 + y)n+1
dy (50)where C > 0 is a 
onstant. If β < n+ 2 the last integral is 
onvergent when x→ 0but if β = n + 2 it diverges logarithmi
ally. In both 
ases we get an upper boundfor the spe
tral dimension ds ≤ 2(β − 1).To �nd a lower bound on the spe
tral dimension of sub
riti
al 
aterpillars weestablish an upper bound on the n-th derivative of the average return generatingfun
tion. First note that 1 > a(k) = a(k − 1) + φ(k) and therefore

c(k, ℓ) = (a(k) − a(k − 1))

×
(

a(k)ℓ−2 + a(k)ℓ−3a(k − 1) + . . .+ a(k)a(k − 1)ℓ−3 + a(k − 1)ℓ−2
)

≤ φ(k)(ℓ− 1). (51)Now 
onsider a 
aterpillar τ ∈ Bℓ,k and the graph Mℓ. Denote the verti
eson the spine of Mℓ between the root and the trap by s1, s2, . . . , sℓ−1. One 
anobtain the graph τ from Mℓ by atta
hing mτ (si) links to si, i = 1, . . . , ℓ− 1 where
0 ≤ mτ (si) ≤ k − 2. Using the methods of [18℄ we 
an write

Qτ (x) =
∑

ω: r1→r1on Mℓ

Kτ (x, ω)WMℓ
(ω)(1 − x)|ω|/2 (52)where the sum is over all random walks ω on Mℓ whi
h begin and end at the root,

Kτ (x, ω) =

|ω|−1
∏

t=1
ωt∈{s1,...,sℓ−1}

(

1 +
mτ (ωt)

2
x

)−1

, (53)
WMℓ

(ω) =

|ω|−1
∏

t=0

(σ(ωt))
−1 (54)where ωt is the vertex at whi
h ω is lo
ated at step t and |ω| denotes the length of

ω. The i�th derivative of the fun
tion Kτ (x, ω) 
an be estimated as
(−1)i d

i

dxi
K(x, ω) ≤ H(|ω|) (k − 2)i

(2 + (k − 2)x)i
(55)15



where H is a polynomial with positive 
oe�
ients. From the relation (23) and theexpli
it formula (44) one 
an easily see that (−1)iQ
(i)
Mℓ

(0) is a positive polynomialin ℓ of degree 2i+ 1. Therefore, di�erentiating (52) n times and using the estimate(55) we get the upper bound
(−1)nQ(n)

τ (x) ≤
n
∑

i=0

Si(ℓ)
(k − 2)i

(2 + (k − 2)x)i
(56)where the Si are positive polynomials in ℓ. Di�erentiating (43) n times w.r.t. x andusing the estimates (51) and (56) we �nally obtain

(−1)nQ(n)(x) ≤
n
∑

i=0

∞
∑

ℓ=1

p(ℓ)Si(ℓ)(ℓ− 1)
∞
∑

k=2

φ(k)
(k − 2)i

(2 + (k − 2)x)i
. (57)The sum over ℓ is 
onvergent sin
e Si is a polynomial in ℓ and p(ℓ) de
ays expo-nentially. The sum over k is estimated from above by an integral as in (50) whi
hyields a lower bound on the spe
tral dimension ds ≥ 2(β − 1). This proves (39).5 Dis
ussionIn this paper we have given a des
ription of the phases of the random 
aterpillarmodel. However, it is not 
omplete. First of all, in the sub
riti
al nongeneri
 phase,when w1 > wc we limit ourselves to the parti
ular 
hoi
e of weights in (29). Thisstri
t power law 
an easily be relaxed to an asymptoti
 power law. It is however not
lear how to generalize this to arbitrary weights satisfying w1 > wc.Se
ondly, we have no rigorous results on what happens on the 
riti
al line of thephase diagram in Fig. 3 when w1 = wc. This problem is dis
ussed in similar modelsin [6, 8℄ where it is argued that when g′′(1) < ∞ the phase is 
hara
terised as thegeneri
 phase and when g′′(1) = ∞ the 
riti
al exponent of ZN 
hanges 
ontinuouslywith β.The order of the phase transition from the 
ondensed phase to the �uid phasealso depends on whether g′′(1) is �nite or in�nite. De�ne the free energy as

F (w1) = lim
N→∞

logZN(w1)

N
. (58)16



Using (14), (16) and (30) one �nds that
F ′(w1) =

{
(

1
ζ2

0
g′′(w1ζ0(w1))

+ w1

)−1 if w1 < wc

w−1
1 if w1 > wc

(59)and thus
lim

w1→w−

c

F ′(w1) =
1

w2
c

g′′(1)
+ wc

. (60)This shows that when g′′(1) <∞ the phase transition is �rst order but when g′′(1) =

∞ it is 
ontinuos in agreement with [6, 8℄.The 
aterpillar model 
an be generalized to more 
ompli
ated tree models byrepla
ing the leaves on the spine by trees with verti
es of order bounded by K, the
aterpillars 
orresponding to K = 1. With similar analysis as for the 
aterpillars,one obtains two phases: a �uid phase (generi
) and a 
ondensed phase (nongeneri
),seperated by a 
riti
al value of w1 given by
wc(K) = g′(1) −

K
∑

n=2

wn. (61)In the �uid phase, the �nite volume probability measures 
onverge to a measure
on
entrated on trees with an in�nite spine with 
riti
al Galton Watson outgrowthsanalogous to the generi
 trees in [12℄. In the 
rumpled phase the measures 
onvergeto trees with spine of a �nite length ℓ distributed by
ψ(ℓ,K) = (ℓ− 1)

(

1 − w1

wc(K)

)2(
wc(K)

w1

)ℓ

. (62)Exa
tly one of the verti
es on the spine has in�nite degree and the order of otherverti
es is independently distributed by
φ(k,K) =

1

wc(K)
(k − 1)wk, k ≥ 2. (63)The outgrowths from the spine are independent sub
riti
al Galton Watson treeswith o�spring probabilities

pn(K) =
wn+1

∑K
n=1wn

, 0 ≤ n ≤ K − 1. (64)As N → ∞ one �nds that the size of the large vertex is approximately (1−m(K))Nwhere m(K) < 1 is the mean o�spring probability of the Galton Watson pro
ess.17



This is in agreement with analogous results in [6, 8, 19℄. What makes the 
al
ulationseasy in the 
ondensed phase in the above models is the fa
t that the large vertexwhi
h emerges as N → ∞ has to stay on the spine due to the restri
tion on the orderof the verti
es in the outgrowths. When the 
uto� on the vertex orders is removed(K = ∞) one obtains nongeneri
 trees. In this 
ase it is more di�
ult to lo
atethe large vertex and one has to use other methods in the 
al
ulations. However,we expe
t the above 
hara
terisation of the 
ondensed phase to hold with minoradjustements as is argued in [19℄. This will be addressed in a forth
oming paper onnongeneri
 trees.A
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z.Appendix A - The Gibbs measure in the 
ondensedphaseIn this appendix we 
onsider the set B̃ of all 
aterpillars de�ned in (5). We equipthis set with a metri
 and adopt the methods of [10℄ (see also [2, 7℄) to prove theexisten
e of a probability measure on this set whi
h des
ribes the sub
riti
al phase.We de�ne a metri
 d on B̃ by
d(b, c) =

{

max
{

1
1+min{bi,ci}

∣

∣

∣
bi 6= ci

} if ℓ(b) = ℓ(c),
1 otherwise (65)where b = (b1, b2, . . .) and c = (c1, c2, . . .). We de�ne the maximum of the emptyset to be 0. It is an elementary 
al
ulation to verify that this de�nition ful�lls theaxioms for a metri
. Denote the open ball 
entered at b and with radius s by Bs(b).It is easy to verify that these balls are both open and 
losed and that if c ∈ Bs(b)then Bs(c) = Bs(b). Denote the set of 
aterpillars of �xed length ℓ by B̃(ℓ). For any18



ℓ ∈ N the set B̃(ℓ) is 
ompa
t. De�nẽ
B′ =

∞
⋃

N=1

B̃N . (66)The set B̃′ is a 
ountable dense subset of B̃.From now on we 
onsider the weight fa
tors (29) with w1 > wc. The probabilitymeasures ν̃N on B̃N will be shown to 
onverge to a measure ν̃ on B̃.Theorem A1. For the weight fa
tors (29) with w1 > wc the measures ν̃N viewedas probability measures on B̃ 
onverge weakly to a measure ν̃ as N → ∞ and ν̃is 
on
entrated on the set of 
aterpillars of �nite length with exa
tly one vertex ofin�nite order. The length of the spine is distributed by (37). All the verti
es between
r1 and r2 are equally likely to be of in�nite order and the orders of the others areindependently distributed by (38).Proof. Applying the methods of [10℄ we need to show the following:1. The sequen
e (ν̃N

(

B 1

k
(b)
))∞

N=1

onverges for all k ∈ N and all b ∈ B̃′.2. For every ǫ > 0 there exists a 
ompa
t subset C ⊆ B̃ su
h that

ν̃N

(

B̃ \ C
)

< ǫ, for all N ∈ N. (67)To prove Property 1 take a �nite 
aterpillar b = (b1, . . . , bℓ(b)−1) ∈ B̃′. In orderto streamline the notation we write ℓ(b) = ℓ. Denote the set of indi
es i for whi
h
bi < k by I and the set of indi
es i for whi
h bi ≥ k by I. Then

B 1

k
(b) =

{

c ∈ B̃(ℓ) | ci = bi if i ∈ I, ci ≥ k if i ∈ I
}

. (68)Denote the number of elements in I by R. Now order the indi
es in I in in
reasingorder and for a given 
aterpillar in B 1

k
(b) let Ni, 1 ≤ i ≤ R be the term in the
aterpillar 
orresponding to the i-th index in I. We 
an then write

ν̃N

(

B 1

k
(b)
)

= Z−1
N wN−ℓ

1 W0

∑

N1+...+NR=N+ℓ−2−b0
Ni≥k, ∀i

R
∏

i=1

[(Ni − 1)wNi
)] (69)19



where
b0 =

∑

i∈I

bi and W0 =
∏

i∈I

[(bi − 1)wbi
] .First note that if I is empty then ν̃N

(

B 1

k
(b)
)

−→ 0 when N −→ ∞. If it is notempty, there exists an index i ∈ I in the above sum su
h that Ni ≥ N+l−2−b0
R

. Ifthere is another index j 6= i su
h that Nj > C where C ≥ k is a 
onstant then weget an upper bound
K
∑

N2>C

(N2 − 1)wN2
(70)on that 
ontribution to the above sum using (30) and the methods in the proof ofLemma 2 where K is a positive number whi
h only depends on b and k. The lastexpression goes to zero as C −→ ∞ sin
e g′(1) is �nite. Estimating the remaining
ontribution to (69) we get

(w1 − wc)
2w−l

1 N
β−1W0

R
∑

i=1

∑

N1+...+NR=N+l−2−b0
k≤Nj≤C, j 6=i

∏

i∈I

[(Ni − 1)wNi
)] (1 + o(1))

−→
N→∞ (w1 − wc)

2w−l
1 W0R

(

C
∑

n=k

(n− 1)wn

)R−1

−→
C→∞ (w1 − wc)

2w−l
1 W0R

(

∞
∑

n=k

(n− 1)wn

)R−1 (71)proving the 
onvergen
e. The 
al
ulations show that the measure is 
on
entratedon the set of 
aterpillars with exa
tly one in�nite term.In order to prove Property 2 we take our 
ompa
t set to be
CL =

L
⋃

ℓ=1

B̃(ℓ) (72)and we need to show that
ν̃N

({

b ∈ B̃
∣

∣

∣
ℓ(b) > L

})

−→ 0 as L −→ ∞ (73)uniformly in N . We estimate as in the proof of Lemma 2
ν̃N

({

b ∈ B̃ | ℓ(b) = ℓ
})

=
ZN,l

ZN
≤ C

(

wc

w1

)l

(l − 1)βwhere C is a 
onstant. Sin
e w1 > wc this 
ompletes the proof of the 
onvergen
e.The distribution of the length of the spine and order of verti
es follows from (71).20
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