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Abstract. We study an equilibrium statistical mechanical model of tree graphs
which are made up of a linear subgraph (the spine) to which leaves are attached.
We prove that the model has two phases, a generic phase where the spine becomes
infinitely long in the thermodynamic limit and all vertices have finite order and a
condensed phase where the spine is finite with probability one and a single vertex of
infinite order appears in the thermodynamic limit. We calculate the spectral dimen-
sion of the graphs in both phases and prove the existence of a Gibbs measure. We
discuss generalizations of this model and the relationship with models of nongeneric

random trees.
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1 Introduction

The study of random graphs has been an active area of research in mathematics
and physics for the past few decades and remains so. In particular, the study of
random trees and random triangulations has found many applications in theoretical
physics, see e.g. [I]. Our understanding of the equilibrium statistical mechanics of
trees with local action is fairly good but not complete. By local action we mean an
action which is given by a sum over the vertices and only depends on their order. It
is now known that so called generic trees can be viewed as critical Galton-Watson
processes [12] which are very well understood mathematically [3]. A corresponding
picture has not been fully established for nongeneric trees which are more difficult to
analyse. Much of our knowledge about such trees comes from numerical simulations
and educated guesswork [4], 5l [6 8, 9]. However, a consistent picture has emerged
[19]. Typically a vertex of infinite order appears in the thermodynamic limit but
full analytic control of this phase of random trees is still missing.

In this paper we study a simple model of random graphs which exhibits the same
behavior as random trees with a local action, namely there is a generic phase where
the free energy can be calculated by a saddle point technique and a nongeneric phase
where a vertex of infinite order appears in the thermodynamic limit. This model
was analysed extensively some years ago in a series of papers |4, Bl 6] under the
name “balls in boxes” and “backgammon” model. Closely related models appear in
the study of the equilibrium distribution for urn models and zero range processes,
see e.g. [14] 16] and references therein.

The graphs that underlie the model studied in this paper have been called cater-
pillar graphs or simply caterpillars by graph theorists [I7] and we will adopt that
name here. Caterpillars are defined as graphs with the property that all vertices of
order higher than one form a linear subraph, i.e. if all leaves are removed one ends
up with a linear graph. Various applications of caterpillar graphs in physics and
chemistry are described in [13].

When the caterpillar grows large two things can happen: it either becomes very



long or some of the vertices will have a large number of leaves. A priori these two
phenomena could coexist but we will see that this is not the case in the model we
consider. Our main motivation is to study the appearance of a vertex of infinite
order in a rigorous fashion.

This paper is organized as follows. In the next section we define the model, estab-
lish our notation and derive some simple properties. In section 3 we study the generic
phase and prove that generic caterpillars are infinitely long in the thermodynamic
limit with all vertices of finite order. We calculate the order distribution explicitly.
The Hausdorff and spectral dimensions of generic caterpillars are both shown to be
equal to 1. In section 4, which is the core of this paper, we study nongeneric cater-
pillars and begin by establishing an asymptotic formula for the canonical partition
function. We then prove that there arises exactly one vertex of infinite order in the
thermodynamic limit. We find the probability distribution of the distance from the
root of the random caterpillar (taken to be one of the endpoints of the spine) to
the infinite order vertex as well as the probability distribution for the orders of the
other vertices.

The nongeneric caterpillar graphs have infinite Hausdorff and spectral dimen-
sions since there is a vertex of infinite order at a finite distance from the root with
probability one. However, we will show that the spectral dimension defined in terms
of the ensemble average of the return probability of random walker is finite and
varies continuously with the parameters of the model.

In section 5 we comment on generalizations of this model and discuss nongeneric
trees and how they are related to the caterpillar model. In an appendix we establish
the existence of a probability measure on the set of infinite caterpillar graphs where

vertices may have infinite order.

2 The model

A finite caterpillar is a finite graph which consists of a linear graph, which we call the
spine, to which leaves (i.e. individual links) are attached. We mark the end vertices

of the linear graph by r; and 79 and call r; the root of the caterpillar. Both these



vertices have order one by definition. Furthermore, we will view the caterpillars as
planar graphs so we distinguish between left leaves and right leaves, see Fig.[Il The

assumption of planarity is not essential. We denote the set of all caterpillars with
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Figure 1: An example of a finite caterpillar graph.

N edges by By. For a caterpillar 7 € By, denote the graph distance between 7
and 7o by £(7) and call it the length of the caterpillar. For a caterpillar of length ¢
we denote the vertices on the spine between ry and 79 by s1,...,5ss_1.

Let w,, n =1,2,..., be a sequence of nonnegative numbers which will be called

weight factors. The weight of a caterpillar 7 € By is defined as
wr) = ] wow (1)
ier\{r1,r2}
where o(i) denotes the order of the vertex ¢ and by abuse of notation we let 7 also
denote the set of vertices in 7. We define the finite volume partition function by
Zy =Y w(r) (2)
TEBN

and a probability distribution on By by

w(r)
o )

I/N(T) =

The weight factors w,, or alternatively the measures vy, define what we call a
caterpillar ensemble.

Since the probability of a given caterpillar only depends on the order of its
vertices, an equivalent way of defining this ensemble is the following. If 7 € By
consider the finite sequence ¢(7) = (o(s1),0(s2),...,0(s¢—1)) and assign to it the

probability
L(r)—1

on(e(m) = vv(r) T] (o(s:) = 1). (4)

P
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The product factor in (@) accounts for the number of different caterpillars which
correspond to the same sequence ¢(7). Define the set By = {c(7) | 7 € By}. It is
clear that (By,vy) is equivalent to (By,7y) in the sense that vy (7) only depends

on ¢(7). This allows us to extend the notion of finite caterpillars to infinite ones:

B:{(bi)f:‘f|k,b,.e{2,3,...}u{oo},1gigk—2} (5)

where k£ = 2 corresponds to the unique caterpillar of length £ = 1. Note that an
element in B which has infinite terms and/or infinite length has no counterpart in
By for any N.

Define the finite volume partition function with fixed distance ¢ between r; and

r9 as

ZN,Z = Z w(T) (6)

TEBN ,Z(T):Z

It is useful to work with the generating functions
Z2(¢) =Y Zn¢N (7)
N=1
and

g(Z) = an-‘rlzn (8)

with radii of convergence (y and p, respectively, both of which we assume to be

nonzero. Define also

Zi(¢) = Z ZnoCN. (9)

Then it is clear that

Z() =Y Zi(Q). (10)

We have the recursion relation

Zi(¢) = Cq' (wi$) Ze1(C), (11)

for any ¢ > 1, see Fig. 2l Using the above equation and Z;(¢) = ¢ gives

200) = (¢gi0)) (12)
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Figure 2: An illustration of the recursion (II]).

and by (L0)

¢
200) = —> 13
=T w0 )
From (I3) we see that (y is the smallest solution of the equation
Cg'(wi¢) =1 (14)

on the interval (0, p/wy) if such a solution exists. If it does not exist then (o = p/wy.

If (o < p/w; then ¢ is analytic at wi(y and we say that we have a generic
ensemble. This has been called the “fluid phase” by other authors [6]. If (o = p/w:
we have a nongeneric ensemble. Notice that if p = oo then the ensemble is always
generic. For nongeneric ensembles we therefore have finite p. In that case we can

always choose p = 1 by scaling the weights w,, — w,p" .

This scaling does not
affect the probabilities (3)).

Now consider weights factors with p = 1 and let w; be a free parameter. The
genericity condition is then wilg’(l) > 1, i.e. wy < w, where

oo

we=g'(1)=> (n—1w, (15)

n=2
is a critical value for w;. If w; = w, we have a nongeneric ensemble which we refer
to as critical and if w; > w, we have a nongeneric ensemble which we refer to as

subcritical. This phase has been called the “condensed phase” in the literature [6].

3 The generic phase

Let w, be weight factors with w; # 0 and w, # 0 for some n > 2 which lead to a

generic ensemble.



Lemma 1. Under the stated assumptions on the weight factors, the asymptotic
behaviour of Zy is given by

1

In = g'(w1Go) + Gow1g” (w1Co)

G (L+O(NT) (16)

if the integers n > 0 for which wy,11 # 0 have no common divisors greater than 1.

Otherwise, if their greatest common divisor is d > 2, then

d
g'(wiCo) + Cowrg" (w1 o)

if N =1 mod d, and Zn = 0 otherwise.

Zy = G (1+O(NT) (17)

The proof of this Lemma is standard, cf. [I5], where the corresponding result for
generic trees is established. For generic caterpillars one can show by a straightfor-
ward application of the methods of [10] (see also Appendix A) that the measures
vy converge as N — oo to a measure 7 which is concentrated on locally finite
caterpillars of infinite length and the orders of the vertices on the infinite spine are

independently and identically distributed by

p(n) = Co(n — Dywy (w1G)" 2, n > 2. (18)

Denote the expectation with respect to the measure 7 by (-);. If V. is the number
of vertices within a distance r from the root the Hausdorff dimension dg is defined

as

(Vi) ~ ri. (19)

We write f(x) ~ 27 if for any € > 0 there are constants C) and Cj such that
Cra7te < f(x) < Cyx?~c. If (V,); increases faster than any power of r then we say

that dg is infinite. We see from (I8) that the expectation value (19) is

(Vi)o = (Cog"(wiGo) = )(r = 1) + 1. (20)

It follows that the Hausdorff dimension of generic caterpillars is 1.
Let p,(t) be the probability that a simple random walk which leaves the root of

an infinite caterpillar 7 at time 0 is back at the root at time ¢, i.e. after ¢ steps. If



there exists a number d,; > 0 such that
pe(t) ~ t7%/2 (21)

as t — oo then we say that the spectral dimension of the graph is d,. If p.(t) decays
faster than any power of ¢ then we say that d, is infinite. For a discussion of the
spectral dimension of some random graph ensembles, see [11], [12] [18§].

The spectral dimension is most coveniently analysed by generating functions.

We define o
Qr(z) => p(t)(1— )" (22)

and let Q(z) = (Q,(x))s. We define p&l)(t) to be the probability that a simple
random walk which leaves the root at time 0 is back at the root for the first time
after t steps and let P,(x) be the corresponding generating function defined as @, (x)
with p,(¢) replaced by p(Tl)(t). Then we have the relation

1

QT(:B) = 1— PT($)

(23)
Let n be the smallest nonnegative integer for which Qg")(x) diverges as x — 0. If
(—1)"QY (&) ~a™ (24)
for some a € [0,1) then clearly
ds =2(1—a+n), (25)

if dy exists. We define the spectral dimension of the caterpillar ensemble by (25
provided (—1)"Q™ (z) ~ z~°.

From the monotonicity lemmas in [I8] we get an upper bound /2 on Q(x) by
throwing away all the legs of the caterpillar. To get a lower bound on Q(z) we use a
slight modification of Lemma 7 in [I2] which is the following. For a given infinitely
long caterpillar 7 with a first return probability generating function P, (z) we have,

for all integers L > 1 and 0 < x <1,

Prr)>1-+ —z Y o(si(7)). (26)



We then get, using (23)), (26) and Jensen’s inequality,

Q) > — !

T - T5 o(shle 27)

In the generic phase we see from equation (I8) that (o(s1))s is finite. Choosing
L = [z7'/2] we find

Qz) = ca™'/? (28)

where ¢ is a constant. It follows from (28)), the upper bound on Q(x) and (25]) that

the spectral dimension of generic caterpillars is ds = 1.

4 The subcritical phase

In this section we begin by calculating the asymptotic behaviour of the canonical
partition function in the subcritical phase. We then show that there is exactly one
vertex of infinite order in the thermodynamic limit. The mechanism leading to a
unique vertex of infinite order is similar to the one leading to a unique spine for
generic trees [10, 12]. We calculate the probability distribution for the location of
the infinite order vertex as well as the probability distribution for the orders of the
other vertices. Finally, we discuss the spectral dimension of subcritical caterpillars.

We take p =1 and w; > w, so that we are in the subcritical phase. We study a
concrete model where

and let w; be a free parameter in the specified range. We comment on extensions
in Section 5. Figure B shows the phase diagram of the caterpillars. A necessary

condition for being in the subcritical phase is § > 2 since otherwise w, = co.

Lemma 2. For the weights given in (29) and wy > w. we have

1

7=
N (w; —w,)

SNl (1+0(1)) (30)

as N — 0.
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Figure 3: A diagram showing the different phases of the caterpillars.

Proof. We can write

N
Zn=Y Zne (31)
=1
Define a sequence of functions fy on the positive integers by
—N n78-1
. (U N ZN,Z 14 S N
We claim that ,
1 w
li O=—=U-1) =) = f0. 33
dm () = (0= 1) (£ = 70 (33

We accept the claim for a moment and finish the proof of the Lemma.
It is clear that fy(¢) is summable for every N. We also see that f(¢) is summable

since w; > w,. Note that for { < N

) = wp'NT Y T+ Dwws)

Ni+..4+Ny_1=N—{ i=1

/—1
Ny +1
—0 A7B—1 1 :
< w;'N7(0-1) > N, +2) H {(Ni + Dwn, 12}
N1+...+N571=N—Z 1=2
N>
1 (we\" NOY(N -1 A\
S_ﬁ(ﬁj___L_TQSC@_UﬁGﬂ) (34)
we \w1/ (75 +2) w1

where C' is a positive constant. The first inequality in (B4]) is obtained by observing

that at least one of the indices /N; must be larger than % and in the second one

we used the definition of w,.. It follows that the sequence {fx}7° is dominated by a

10



summable function and we can calculate the limit
- 1
lim (w;"N°"'Zy) = = Jim = T 35
This implies the desired result.
It remains to prove the claim (B3]). There is at least one index ¢ in the sum
defining fy(¢) such that N; > Z=L. If there is another index j # i such that N; > A

where A > 1 is a constant then we get an upper bound on that contribution to fx (¢)

of the form
-1
NPT Ny +1
wi NP1 (0 —1)? Z ! 5H{N+1 Wy, 42}
Ni+..4+N_1=N—¢ (N +2
Ny >0
Na>A
o —22 > H{N Do} 3 (N +1)
- + U)N +2 2 + ’UJN +2
(N+0-2)° 4 s =, 2
< D(OwE? 3 (N +a)wN2+2 .
Na>A

where C'(¢) and D({) are numbers which only depend on ¢. The last expression goes

to zero as A — oo since ¢/(1) is finite. The remaining contribution to fy(¢) is

wENI -1 Y TN+ Dwsa)

Ni+..Ny_1=N—£i=1

N> 85
Nj<A, A1
Njoo w1—£(£ - 1) <Z(n + 1>wn+2>
n=0
w /
— -2 c
oo (=1 — ) .
= ut(e-n ()

This completes the proof.

From the above lemma we obtain the following result.

Theorem 1. For the weight factors given in (29) with wy > w,. the probability that

the distance between r1 and ro is € as the caterpillar size N goes to infinity is given

by

11



v(t) = lim X (0 1) (1 _ ﬂ)z (2" (37)

N—oo 4N We wy
For a given €, exactly one of the vertices on the spine has an infinite order, and the

orders of the other vertices are identically and independently distributed by

(k) = i(k; —1)k7", k> 2. (38)

We

Proof. Combining Lemma 2 with (33) we obtain (37). If the length of an infinite
caterpillar is ¢ < oo it is clear that there is one or more vertices of infinite order.
The inequality (B6]) shows that there can be at most one vertex of infinite order in
the limit N — oo. Finally, the distribution of the orders of the vertices which have
a finite order in the thermodynamic limit is obtained by an argument similar to the

one leading to Equation (I8), cf. Equation ().

O

In the appendix we prove the existence of a measure 7 on the set of infinite
caterpillars which describes the subcritical phase and is obtained as the limit of
the finite volume measures. The above theorem then implies that the Hausdorff
dimension dy of a random caterpillar in the subcritical phase is almost sureley (a.s.)
infinite since with probability one there is a ball of finite radius which contains
infinitely many vertices. Similarly, the spectral dimension is a.s. infinite because a
random walk which hits the infinite order vertex returns to the root with probability
0. From the analysis below one can easily check that the return probability on a
randomly chosen subcritical caterpillar 7, p,(t), decays faster than any power of ¢.

In the remainder of this section we show how the definition of the spectral di-
mension in terms of the ensemble average with respect to 7, see (25]), leads to a

spectral dimension
ds =2(6—1) (39)

in the subcritical phase. We will refer to the unique vertex of infinite order as

the “trap”. If the walk hits the trap it returns to the root with probability zero.

12



Therefore, the part of the caterpillar beyond the trap is irrelevant for the random
walk. When finding the spectral dimension it is therefore natural to consider the
probability that the trap is at a distance ¢ from the root instead of considering the
probability of the total length of the caterpillar given in (37).

For a caterpillar of a given length, all the vertices between r; and ry are equally
likely to be of infinite order so the probability that the trap is at a distance ¢ from
root is given by .

o= 3 M- (2 () w
k=t+1

From now on we will disregard the part of the caterpillar beyond the trap. Let By
be the set of caterpillars with distance ¢ between root and trap and which have one
vertex of order k and all other vertices of order no greater than k, with the exception
of the trap of course. Let a(k) be the probability that a given vertex on the spine

between the root and the trap has order no greater than k. Then

k
a(k) =" é(q). (41)
q=2

The probability that at least one of these vertices has order k£ and all the others

have order no greater than £ is then
c(k,0) = a(k)™" —a(k — 1) (42)

Let 7 (7) be the —probability of the caterpillar 7 € By, given that we are selecting

from B,j. The average return generating function for the subcritical caterpillars is

then
Q@) =Y p0)> clk, ) Y mun(T)Qr (). (43)

For a given distance ¢ between root and trap we denote by M, the linear subgraph
which starts at the root and ends at the trap. The first return generating function

for M, is given by

(14 V@) + (1 - VB
(Vo) — (1= Vo) “

see e.g. [11]. Now attach k links to each vertex of the graph M, except the root and

Puy(a) =1 -z

the trap and denote the resulting graph by M, ;. Using the methods of [18] we find

13



Figure 4: The graph M,. The root is denoted by a circled vertex and the trap by
an asterisk.

that the first return generating function for My, is

P, () = (1 + gx) Py, (zr(x)) (45)
where , 148
%xz +1+ k)
xp(x) = (- gx)z (46)
Pt -~ . ’k‘\ .
o NSNSONS

Figure 5: The graph M.

To find an upper bound on the spectral dimension of subcritical caterpillars we
establish a lower bound on the n-th derivative of the average return generating
function. Let n be the smallest positive integer such that Q™ (z) diverges as x — 0.
We see in the following calculations that we have to choose n such that n +1 <
3 < n+2 By @) we find that (=1)"Q" > (=1)"P!™ for any 7. Thus, by
differentiating ([@3]) n times and throwing away every term in the sum over ¢ except

¢ =2 we get the lower bound

_1ymo® Y ARCANCE - (n)
QU@ 2 1 (1) S P @
We easily find that
11—z
P e 4
My 2 (‘T) 2+ (/{5 — 2)1, ( 8)
and show by induction that
n " k—2)" 1k
Py, (@) = (=1)"n! (k—2) (49)

2+ (k- 2)a)

14



Then, by ([B8) and (49),

= I o= (K —2)" 'k Bk — 1)
1y p) -
(1) ;as(k) Vaia(T) = - > ot =D
> (Oghb—n—2 mﬂd (50)
= . 2y

where C' > 0 is a constant. If 3 < n + 2 the last integral is convergent when x — 0
but if # = n + 2 it diverges logarithmically. In both cases we get an upper bound
for the spectral dimension ds < 2(3 — 1).

To find a lower bound on the spectral dimension of subcritical caterpillars we
establish an upper bound on the n-th derivative of the average return generating

function. First note that 1 > a(k) = a(k — 1) + ¢(k) and therefore

c(k,0) = (a(k)—a(k—1))
X (a(k)e_2 +a(k)Balk = 1) + ...+ ak)a(k — )3 + a(k — 1)£_2)
< o(k)(€—1). (51)

Now consider a caterpillar 7 € By, and the graph M,. Denote the vertices
on the spine of M, between the root and the trap by sq,s2,...,8_1. One can
obtain the graph 7 from M, by attaching m.(s;) links to s;, i = 1,...,¢ — 1 where
0 < m,(s;) <k — 2. Using the methods of [18] we can write

Qr(x) = D Ko(w,w)Wa,(w)(1— )2 (52)
w: Ty
on M,

where the sum is over all random walks w on M, which begin and end at the root,

jwl-1 1
K= I1 (1475 (53)
th{Sf,:--l-#efl}
w1
Wi w) = [] (o) (54

where w; is the vertex at which w is located at step ¢ and |w| denotes the length of

w. The i—th derivative of the function K. (z,w) can be estimated as

(1) K o) < HOel) i gy

(55)

15



where H is a polynomial with positive coefficients. From the relation (23) and the
explicit formula ([@4) one can easily see that (—1)° 5\2(0) is a positive polynomial
in ¢ of degree 2i + 1. Therefore, differentiating (52)) n times and using the estimate
(G5) we get the upper bound

Q) < 350

=0

(56)

where the S; are positive polynomials in ¢. Differentiating (43]) n times w.r.t.  and

using the estimates (BI) and (B6) we finally obtain

(=1)"Q"™ (x <22p 01 igb k= 2)2)) (57)

=0 (=1 =2

The sum over ¢ is convergent since S; is a polynomial in ¢ and p(¢) decays expo-
nentially. The sum over k is estimated from above by an integral as in (50) which

yields a lower bound on the spectral dimension ds; > 2(8 — 1). This proves (39]).

5 Discussion

In this paper we have given a description of the phases of the random caterpillar
model. However, it is not complete. First of all, in the subcritical nongeneric phase,
when w; > w, we limit ourselves to the particular choice of weights in (29). This
strict power law can easily be relaxed to an asymptotic power law. It is however not
clear how to generalize this to arbitrary weights satisfying w; > w..

Secondly, we have no rigorous results on what happens on the critical line of the
phase diagram in Fig. B when w; = w,. This problem is discussed in similar models
in 6, 8] where it is argued that when ¢”(1) < oo the phase is characterised as the
generic phase and when ¢”(1) = oo the critical exponent of Zy changes continuously
with (.

The order of the phase transition from the condensed phase to the fluid phase
also depends on whether ¢”(1) is finite or infinite. Define the free energy as

F(w) = lim log Z (w1)

Jim N (58)

16



Using (I4), (I6) and (B0) one finds that

-1
1 .
Fl(wn) = (m +“’1> if wy <we (59)
and thus
1
w1 —We We + W,

g"(1)

This shows that when ¢”(1) < oo the phase transition is first order but when ¢”(1) =
oo it is continuos in agreement with [6] [§].

The caterpillar model can be generalized to more complicated tree models by
replacing the leaves on the spine by trees with vertices of order bounded by K, the
caterpillars corresponding to K = 1. With similar analysis as for the caterpillars,
one obtains two phases: a fluid phase (generic) and a condensed phase (nongeneric),

seperated by a critical value of w; given by

wilK) = ¢/(1) = 3w, (61)

In the fluid phase, the finite volume probability measures converge to a measure
concentrated on trees with an infinite spine with critical Galton Watson outgrowths
analogous to the generic trees in [I2]. In the crumpled phase the measures converge

to trees with spine of a finite length ¢ distributed by

b, K) = (0 — 1) (1 - w:‘&()y (wﬁ())é. (62)

Exactly one of the vertices on the spine has infinite degree and the order of other

vertices is independently distributed by

¢k, K) =

s e k22 (63)

The outgrowths from the spine are independent subcritical Galton Watson trees

with offspring probabilities
Wn+1
pu(K)==——, 0<n<K-1 (64)

As N — oo one finds that the size of the large vertex is approximately (1 —m(K))N
where m(K) < 1 is the mean offspring probability of the Galton Watson process.

17



This is in agreement with analogous results in [6l [, [19]. What makes the calculations
easy in the condensed phase in the above models is the fact that the large vertex
which emerges as N — oo has to stay on the spine due to the restriction on the order
of the vertices in the outgrowths. When the cutoff on the vertex orders is removed
(K = o00) one obtains nongeneric trees. In this case it is more difficult to locate
the large vertex and one has to use other methods in the calculations. However,
we expect the above characterisation of the condensed phase to hold with minor
adjustements as is argued in [19]. This will be addressed in a forthcoming paper on

nongeneric trees.
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Appendix A - The Gibbs measure in the condensed
phase

In this appendix we consider the set B of all caterpillars defined in ). We equip
this set with a metric and adopt the methods of [10] (see also |2] [7]) to prove the
existence of a probability measure on this set which describes the subcritical phase.
We define a metric d on B by
1 . . ] =
d(b,c) = { max{l—i—min{bi,ci} ’ b; # Cz} if £(b) = {(c), (65)

1 otherwise

where b = (by,b,...) and ¢ = (¢q,¢9,...). We define the maximum of the empty
set to be 0. It is an elementary calculation to verify that this definition fulfills the
axioms for a metric. Denote the open ball centered at b and with radius s by Bs(b).
It is easy to verify that these balls are both open and closed and that if ¢ € B(b)
then B,(c) = By(b). Denote the set of caterpillars of fixed length ¢ by B®. For any
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¢ € N the set BY is compact. Define
B'= | By. (66)
N=1

The set B’ is a countable dense subset of B.
From now on we consider the weight factors (29) with w; > w.. The probability

measures Uy on By will be shown to converge to a measure v on B.

Theorem A1l. For the weight factors (29) with wy > w. the measures Uy viewed
as probability measures on B converge weakly to a measure U as N — oo and ¥
15 concentrated on the set of caterpillars of finite length with exactly one vertex of
infinite order. The length of the spine is distributed by (37). All the vertices between
r1 and ro are equally likely to be of infinite order and the orders of the others are

independently distributed by (38).

Proof. Applying the methods of [10] we need to show the following:

o

1. The sequence (ﬁN (B% (b))) converges for all k € N and all b € B’

N=1

2. For every € > 0 there exists a compact subset C' C B such that

. (B \ 0) <e, forall NeN, (67)

To prove Property 1 take a finite caterpillar b = (b, ..., byp)—1) € B'. In order
to streamline the notation we write ¢(b) = ¢. Denote the set of indices i for which

b; < k by I and the set of indices i for which b; > k by I. Then

B

1
k

(b):{ceB“Hci:biifz’eL ciZkifiET}. (68)

Denote the number of elements in 7 by R. Now order the indices in I in increasing
order and for a given caterpillar in B% (b) let N;, 1 < i < R be the term in the

caterpillar corresponding to the i-th index in 7. We can then write

i (B ®) = Zzwiwe 3 TTI - Des)] (69

N1+---+NR=N-iT£—2—b() =1

N>k, Vi
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where

bo= Y b and Wo =[] 16 = 1) wy,].

iel iel
First note that if T is empty then Dy <B% (b)) — 0 when N — oo. If it is not
empty, there exists an index ¢ € I in the above sum such that N; > W. If
there is another index j # ¢ such that N; > C' where C' > k is a constant then we

get an upper bound

K Y (N = 1wy, (70)

No>C

on that contribution to the above sum using (30) and the methods in the proof of
Lemma 2 where K is a positive number which only depends on b and k. The last
expression goes to zero as C' — oo since ¢'(1) is finite. Estimating the remaining
contribution to ([69) we get
R
(w1 = we)*wi NI Y > [TV = Dww )] (1 + (1))

i=1 Ni+..+Nr=N+l-2-by ;T
k<N;<C, j#i

c R—1
Nowo (w1 — wc)le_lWOR (Z(n — 1)wn>

n=~k

0ooe (w1 — we)*wi ' WoR (Z(n - 1)wn> (71)

n=~k

proving the convergence. The calculations show that the measure is concentrated
on the set of caterpillars with exactly one infinite term.

In order to prove Property 2 we take our compact set to be

L
c,=|JBY (72)
=1
and we need to show that
ﬂN<{beB‘£(b)>L}>—>0 as L — o0 (73)

uniformly in N. We estimate as in the proof of Lemma 2
5 <{bef3|€(b):€}> _ v (e l(z-1)ﬁ
N ZN T wq
where C' is a constant. Since w; > w, this completes the proof of the convergence.

The distribution of the length of the spine and order of vertices follows from ([ZT]).
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