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9 Appearane of verties of in�nite orderin a model of random trees
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Abstrat. We study an equilibrium statistial mehanial model of tree graphswhih are made up of a linear subgraph (the spine) to whih leaves are attahed.We prove that the model has two phases, a generi phase where the spine beomesin�nitely long in the thermodynami limit and all verties have �nite order and aondensed phase where the spine is �nite with probability one and a single vertex ofin�nite order appears in the thermodynami limit. We alulate the spetral dimen-sion of the graphs in both phases and prove the existene of a Gibbs measure. Wedisuss generalizations of this model and the relationship with models of nongenerirandom trees.

http://arxiv.org/abs/0908.3847v1


1 IntrodutionThe study of random graphs has been an ative area of researh in mathematisand physis for the past few deades and remains so. In partiular, the study ofrandom trees and random triangulations has found many appliations in theoretialphysis, see e.g. [1℄. Our understanding of the equilibrium statistial mehanis oftrees with loal ation is fairly good but not omplete. By loal ation we mean anation whih is given by a sum over the verties and only depends on their order. Itis now known that so alled generi trees an be viewed as ritial Galton-Watsonproesses [12℄ whih are very well understood mathematially [3℄. A orrespondingpiture has not been fully established for nongeneri trees whih are more di�ult toanalyse. Muh of our knowledge about suh trees omes from numerial simulationsand eduated guesswork [4, 5, 6, 8, 9℄. However, a onsistent piture has emerged[19℄. Typially a vertex of in�nite order appears in the thermodynami limit butfull analyti ontrol of this phase of random trees is still missing.In this paper we study a simple model of random graphs whih exhibits the samebehavior as random trees with a loal ation, namely there is a generi phase wherethe free energy an be alulated by a saddle point tehnique and a nongeneri phasewhere a vertex of in�nite order appears in the thermodynami limit. This modelwas analysed extensively some years ago in a series of papers [4, 5, 6℄ under thename �balls in boxes� and �bakgammon� model. Closely related models appear inthe study of the equilibrium distribution for urn models and zero range proesses,see e.g. [14, 16℄ and referenes therein.The graphs that underlie the model studied in this paper have been alled ater-pillar graphs or simply aterpillars by graph theorists [17℄ and we will adopt thatname here. Caterpillars are de�ned as graphs with the property that all verties oforder higher than one form a linear subraph, i.e. if all leaves are removed one endsup with a linear graph. Various appliations of aterpillar graphs in physis andhemistry are desribed in [13℄.When the aterpillar grows large two things an happen: it either beomes very2



long or some of the verties will have a large number of leaves. A priori these twophenomena ould oexist but we will see that this is not the ase in the model weonsider. Our main motivation is to study the appearane of a vertex of in�niteorder in a rigorous fashion.This paper is organized as follows. In the next setion we de�ne the model, estab-lish our notation and derive some simple properties. In setion 3 we study the generiphase and prove that generi aterpillars are in�nitely long in the thermodynamilimit with all verties of �nite order. We alulate the order distribution expliitly.The Hausdor� and spetral dimensions of generi aterpillars are both shown to beequal to 1. In setion 4, whih is the ore of this paper, we study nongeneri ater-pillars and begin by establishing an asymptoti formula for the anonial partitionfuntion. We then prove that there arises exatly one vertex of in�nite order in thethermodynami limit. We �nd the probability distribution of the distane from theroot of the random aterpillar (taken to be one of the endpoints of the spine) tothe in�nite order vertex as well as the probability distribution for the orders of theother verties.The nongeneri aterpillar graphs have in�nite Hausdor� and spetral dimen-sions sine there is a vertex of in�nite order at a �nite distane from the root withprobability one. However, we will show that the spetral dimension de�ned in termsof the ensemble average of the return probability of random walker is �nite andvaries ontinuously with the parameters of the model.In setion 5 we omment on generalizations of this model and disuss nongeneritrees and how they are related to the aterpillar model. In an appendix we establishthe existene of a probability measure on the set of in�nite aterpillar graphs whereverties may have in�nite order.2 The modelA �nite aterpillar is a �nite graph whih onsists of a linear graph, whih we all thespine, to whih leaves (i.e. individual links) are attahed. We mark the end vertiesof the linear graph by r1 and r2 and all r1 the root of the aterpillar. Both these3



verties have order one by de�nition. Furthermore, we will view the aterpillars asplanar graphs so we distinguish between left leaves and right leaves, see Fig. 1. Theassumption of planarity is not essential. We denote the set of all aterpillars with
r1

s1 s2 s3 s4 r2Figure 1: An example of a �nite aterpillar graph.
N edges by BN . For a aterpillar τ ∈ BN , denote the graph distane between r1and r2 by ℓ(τ) and all it the length of the aterpillar. For a aterpillar of length ℓwe denote the verties on the spine between r1 and r2 by s1, . . . , sℓ−1.Let wn, n = 1, 2, . . ., be a sequene of nonnegative numbers whih will be alledweight fators. The weight of a aterpillar τ ∈ BN is de�ned as

w(τ) =
∏

i∈τ\{r1,r2}

wσ(i) , (1)where σ(i) denotes the order of the vertex i and by abuse of notation we let τ alsodenote the set of verties in τ . We de�ne the �nite volume partition funtion by
ZN =

∑

τ∈BN

w(τ) (2)and a probability distribution on BN by
νN (τ) =

w(τ)

ZN
. (3)The weight fators wn, or alternatively the measures νN , de�ne what we all aaterpillar ensemble.Sine the probability of a given aterpillar only depends on the order of itsverties, an equivalent way of de�ning this ensemble is the following. If τ ∈ BNonsider the �nite sequene c(τ) = (σ(s1), σ(s2), . . . , σ(sℓ−1)) and assign to it theprobability

ν̃N (c(τ)) = νN (τ)

ℓ(τ)−1
∏

i=1

(σ(si) − 1). (4)4



The produt fator in (4) aounts for the number of di�erent aterpillars whihorrespond to the same sequene c(τ). De�ne the set B̃N = {c(τ) | τ ∈ BN}. It islear that (BN , νN) is equivalent to (B̃N , ν̃N) in the sense that νN (τ) only dependson c(τ). This allows us to extend the notion of �nite aterpillars to in�nite ones:
B̃ =

{

(

bi
)k−2

i=1
| k, bi ∈ {2, 3, . . .} ∪ {∞}, 1 ≤ i ≤ k − 2

} (5)where k = 2 orresponds to the unique aterpillar of length ℓ = 1. Note that anelement in B̃ whih has in�nite terms and/or in�nite length has no ounterpart in
BN for any N .De�ne the �nite volume partition funtion with �xed distane ℓ between r1 and
r2 as

ZN,ℓ =
∑

τ∈BN ,ℓ(τ)=ℓ

w(τ). (6)It is useful to work with the generating funtions
Z(ζ) =

∞
∑

N=1

ZNζ
N (7)and

g(z) =
∞
∑

n=0

wn+1z
n (8)with radii of onvergene ζ0 and ρ, respetively, both of whih we assume to benonzero. De�ne also

Ẑℓ(ζ) =
∞
∑

N=1

ZN,ℓζ
N . (9)Then it is lear that

Z(ζ) =
∞
∑

ℓ=1

Ẑℓ(ζ). (10)We have the reursion relation̂
Zℓ(ζ) = ζg′(w1ζ)Ẑℓ−1(ζ), (11)for any ℓ ≥ 1, see Fig. 2. Using the above equation and Ẑ1(ζ) = ζ gives
Ẑℓ(ζ) = ζ

(

ζg′(w1ζ)
)ℓ−1 (12)5



= ℓ − 1

i − 1

Ẑℓ(ζ)
∑∞

i=1 iζ iwi−1
1 wi+1Ẑℓ−1(ζ)

ℓ

Figure 2: An illustration of the reursion (11).and by (10)
Z(ζ) =

ζ

1 − ζg′(w1ζ)
. (13)From (13) we see that ζ0 is the smallest solution of the equation

ζg′(w1ζ) = 1 (14)on the interval (0, ρ/w1) if suh a solution exists. If it does not exist then ζ0 = ρ/w1.If ζ0 < ρ/w1 then g is analyti at w1ζ0 and we say that we have a generiensemble. This has been alled the ��uid phase� by other authors [6℄. If ζ0 = ρ/w1we have a nongeneri ensemble. Notie that if ρ = ∞ then the ensemble is alwaysgeneri. For nongeneri ensembles we therefore have �nite ρ. In that ase we analways hoose ρ = 1 by saling the weights wn → wnρ
n−1. This saling does nota�et the probabilities (3).Now onsider weights fators with ρ = 1 and let w1 be a free parameter. Thegeneriity ondition is then 1

w1

g′(1) > 1, i.e. w1 < wc where
wc ≡ g′(1) =

∞
∑

n=2

(n− 1)wn (15)is a ritial value for w1. If w1 = wc we have a nongeneri ensemble whih we referto as ritial and if w1 > wc we have a nongeneri ensemble whih we refer to assubritial. This phase has been alled the �ondensed phase� in the literature [6℄.3 The generi phaseLet wn be weight fators with w1 6= 0 and wn 6= 0 for some n > 2 whih lead to ageneri ensemble. 6



Lemma 1. Under the stated assumptions on the weight fators, the asymptotibehaviour of ZN is given by
ZN =

1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N
0 (1 +O(N−1)) (16)if the integers n > 0 for whih wn+1 6= 0 have no ommon divisors greater than 1.Otherwise, if their greatest ommon divisor is d ≥ 2, then

ZN =
d

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N
0 (1 +O(N−1)) (17)if N = 1 mod d, and ZN = 0 otherwise.The proof of this Lemma is standard, f. [15℄, where the orresponding result forgeneri trees is established. For generi aterpillars one an show by a straightfor-ward appliation of the methods of [10℄ (see also Appendix A) that the measures

ν̃N onverge as N → ∞ to a measure ν̃ whih is onentrated on loally �niteaterpillars of in�nite length and the orders of the verties on the in�nite spine areindependently and identially distributed by
φ(n) = ζ0(n− 1)wn(w1ζ0)

n−2, n ≥ 2. (18)Denote the expetation with respet to the measure ν̃ by 〈·〉ν̃ . If Vr is the numberof verties within a distane r from the root the Hausdor� dimension dH is de�nedas
〈Vr〉ν̃ ∼ rdH . (19)We write f(x) ∼ xγ if for any ǫ > 0 there are onstants C1 and C2 suh that

C1x
γ+ǫ ≤ f(x) ≤ C2x

γ−ǫ. If 〈Vr〉ν̃ inreases faster than any power of r then we saythat dH is in�nite. We see from (18) that the expetation value (19) is
〈Vr〉ν̃ = (ζ0g

′′(w1ζ0) − 1)(r − 1) + 1. (20)It follows that the Hausdor� dimension of generi aterpillars is 1.Let pτ (t) be the probability that a simple random walk whih leaves the root ofan in�nite aterpillar τ at time 0 is bak at the root at time t, i.e. after t steps. If7



there exists a number ds > 0 suh that
pτ (t) ∼ t−ds/2 (21)as t→ ∞ then we say that the spetral dimension of the graph is ds. If pτ (t) deaysfaster than any power of t then we say that ds is in�nite. For a disussion of thespetral dimension of some random graph ensembles, see [11, 12, 18℄.The spetral dimension is most oveniently analysed by generating funtions.We de�ne

Qτ (x) =
∞
∑

t=0

pτ (t)(1 − x)t/2 (22)and let Q(x) = 〈Qτ (x)〉ν̃ . We de�ne p(1)
τ (t) to be the probability that a simplerandom walk whih leaves the root at time 0 is bak at the root for the �rst timeafter t steps and let Pτ (x) be the orresponding generating funtion de�ned as Qτ (x)with pτ (t) replaed by p(1)

τ (t). Then we have the relation
Qτ (x) =

1

1 − Pτ (x)
. (23)Let n be the smallest nonnegative integer for whih Q(n)

τ (x) diverges as x→ 0. If
(−1)nQ(n)

τ (x) ∼ x−α (24)for some α ∈ [0, 1) then learly
ds = 2(1 − α + n), (25)if ds exists. We de�ne the spetral dimension of the aterpillar ensemble by (25)provided (−1)nQ(n)(x) ∼ x−α.From the monotoniity lemmas in [18℄ we get an upper bound x−1/2 on Q(x) bythrowing away all the legs of the aterpillar. To get a lower bound on Q(x) we use aslight modi�ation of Lemma 7 in [12℄ whih is the following. For a given in�nitelylong aterpillar τ with a �rst return probability generating funtion Pτ (x) we have,for all integers L ≥ 1 and 0 < x ≤ 1,

Pτ (x) ≥ 1 − 1

L
− x

L
∑

i=1

σ(si(τ)). (26)8



We then get, using (23), (26) and Jensen's inequality,
Q(x) ≥ 1

1 − 〈Pτ (x)〉ν̃
≥ 1

1
L

+ 〈σ(s1)〉ν̃Lx
. (27)In the generi phase we see from equation (18) that 〈σ(s1)〉ν̃ is �nite. Choosing

L =
[

x−1/2
] we �nd

Q(x) ≥ cx−1/2 (28)where c is a onstant. It follows from (28), the upper bound on Q(x) and (25) thatthe spetral dimension of generi aterpillars is ds = 1.4 The subritial phaseIn this setion we begin by alulating the asymptoti behaviour of the anonialpartition funtion in the subritial phase. We then show that there is exatly onevertex of in�nite order in the thermodynami limit. The mehanism leading to aunique vertex of in�nite order is similar to the one leading to a unique spine forgeneri trees [10, 12℄. We alulate the probability distribution for the loation ofthe in�nite order vertex as well as the probability distribution for the orders of theother verties. Finally, we disuss the spetral dimension of subritial aterpillars.We take ρ = 1 and w1 > wc so that we are in the subritial phase. We study aonrete model where
wi = i−β , i ≥ 2, (29)and let w1 be a free parameter in the spei�ed range. We omment on extensionsin Setion 5. Figure 3 shows the phase diagram of the aterpillars. A neessaryondition for being in the subritial phase is β > 2 sine otherwise wc = ∞.Lemma 2. For the weights given in (29) and w1 > wc we have

ZN =
1

(w1 − wc)2
N1−βwN

1

(

1 + o(1)
) (30)as N → ∞. 9



�
�
�

�
�
�

��
��
��
��
��

��
��
��
��
�� Sub−critical

2

Generic

Critical

1w

βFigure 3: A diagram showing the di�erent phases of the aterpillars.Proof. We an write
ZN =

N
∑

ℓ=1

ZN,ℓ. (31)De�ne a sequene of funtions fN on the positive integers by
fN(ℓ) =

{

w−N
1 Nβ−1ZN,ℓ ℓ ≤ N

0 ℓ > N . (32)We laim that
lim

N→∞
fN(ℓ) =

1

w2
c

(ℓ− 1)

(

wc

w1

)ℓ

≡ f(ℓ). (33)We aept the laim for a moment and �nish the proof of the Lemma.It is lear that fN (ℓ) is summable for every N . We also see that f(ℓ) is summablesine w1 > wc. Note that for ℓ ≤ N

fN(ℓ) = w−ℓ
1 Nβ−1

∑

N1+...+Nℓ−1=N−ℓ

ℓ−1
∏

i=1

{(Ni + 1)wNi+2}

≤ w−ℓ
1 Nβ−1(ℓ− 1)

∑

N1+...+Nℓ−1=N−ℓ

N1≥
N−ℓ
ℓ−1

N1 + 1

(N1 + 2)β

ℓ−1
∏

i=2

{(Ni + 1)wNi+2}

≤ 1

w2
c

(

wc

w1

)ℓ
Nβ−1(N − 1)
(

N−l
ℓ−1

+ 2
)β

≤ C(ℓ− 1)β

(

wc

w1

)ℓ (34)where C is a positive onstant. The �rst inequality in (34) is obtained by observingthat at least one of the indies Ni must be larger than N−ℓ
ℓ−1

and in the seond onewe used the de�nition of wc. It follows that the sequene {fN}∞1 is dominated by a10



summable funtion and we an alulate the limit
lim

N→∞

(

w−N
1 Nβ−1ZN

)

= lim
N→∞

∞
∑

ℓ=1

fN (ℓ) =
∞
∑

ℓ=1

f(ℓ) =
1

(w1 − wc)
2 . (35)This implies the desired result.It remains to prove the laim (33). There is at least one index i in the sumde�ning fN(ℓ) suh that Ni ≥ N−ℓ

ℓ−1
. If there is another index j 6= i suh that Nj > Awhere A > 1 is a onstant then we get an upper bound on that ontribution to fN (ℓ)of the form

w−ℓ
1 Nβ−1(ℓ− 1)2

∑

N1+...+Nl−1=N−ℓ

N1≥
N−ℓ
ℓ−1

N2>A

N1 + 1

(N1 + 2)β

ℓ−1
∏

i=2

{(Ni + 1)wNi+2}

≤ C(ℓ)
Nβ

(N + ℓ− 2)β

∑

N3,...,Nℓ−1≥0

ℓ−1
∏

i=3

{(Ni + 1)wNi+2}
∑

N2>A

(N2 + 1)wN2+2

≤ D(ℓ)wℓ−3
c

∑

N2>A

(N2 + a)wN2+2 (36)where C(ℓ) and D(ℓ) are numbers whih only depend on ℓ. The last expression goesto zero as A→ ∞ sine g′(1) is �nite. The remaining ontribution to fN (ℓ) is
w−ℓ

1 Nβ−1(ℓ− 1)
∑

N1+...Nℓ−1=N−ℓ

N1≥
N−ℓ
ℓ−1

Nj≤A, j 6=1

ℓ−1
∏

i=1

{(Ni + 1)wNi+2}

−→
N→∞ w−ℓ

1 (ℓ− 1)

(

A
∑

n=0

(n+ 1)wn+2

)ℓ−2

−→
A→∞ w−2

c (ℓ− 1)

(

wc

w1

)ℓ

.This ompletes the proof.
�From the above lemma we obtain the following result.Theorem 1. For the weight fators given in (29) with w1 > wc the probability thatthe distane between r1 and r2 is ℓ as the aterpillar size N goes to in�nity is givenby 11



ψ(ℓ) ≡ lim
N→∞

ZN,ℓ

ZN
= (ℓ− 1)

(

1 − w1

wc

)2
(wc

w1

)ℓ

. (37)For a given ℓ, exatly one of the verties on the spine has an in�nite order, and theorders of the other verties are identially and independently distributed by
φ(k) =

1

wc

(k − 1)k−β, k ≥ 2. (38)
Proof. Combining Lemma 2 with (33) we obtain (37). If the length of an in�niteaterpillar is ℓ < ∞ it is lear that there is one or more verties of in�nite order.The inequality (36) shows that there an be at most one vertex of in�nite order inthe limit N → ∞. Finally, the distribution of the orders of the verties whih havea �nite order in the thermodynami limit is obtained by an argument similar to theone leading to Equation (18), f. Equation (71).

�In the appendix we prove the existene of a measure ν̃ on the set of in�niteaterpillars whih desribes the subritial phase and is obtained as the limit ofthe �nite volume measures. The above theorem then implies that the Hausdor�dimension dH of a random aterpillar in the subritial phase is almost sureley (a.s.)in�nite sine with probability one there is a ball of �nite radius whih ontainsin�nitely many verties. Similarly, the spetral dimension is a.s. in�nite beause arandom walk whih hits the in�nite order vertex returns to the root with probability
0. From the analysis below one an easily hek that the return probability on arandomly hosen subritial aterpillar τ , pτ (t), deays faster than any power of t.In the remainder of this setion we show how the de�nition of the spetral di-mension in terms of the ensemble average with respet to ν̃, see (25), leads to aspetral dimension

ds = 2(β − 1) (39)in the subritial phase. We will refer to the unique vertex of in�nite order asthe �trap�. If the walk hits the trap it returns to the root with probability zero.12



Therefore, the part of the aterpillar beyond the trap is irrelevant for the randomwalk. When �nding the spetral dimension it is therefore natural to onsider theprobability that the trap is at a distane ℓ from the root instead of onsidering theprobability of the total length of the aterpillar given in (37).For a aterpillar of a given length, all the verties between r1 and r2 are equallylikely to be of in�nite order so the probability that the trap is at a distane ℓ fromroot is given by
p(ℓ) =

∞
∑

k=ℓ+1

ψ(k)

k − 1
=
(

1 − wc

w1

)(wc

w1

)ℓ−1

. (40)From now on we will disregard the part of the aterpillar beyond the trap. Let Bℓ,kbe the set of aterpillars with distane ℓ between root and trap and whih have onevertex of order k and all other verties of order no greater than k, with the exeptionof the trap of ourse. Let a(k) be the probability that a given vertex on the spinebetween the root and the trap has order no greater than k. Then
a(k) =

k
∑

q=2

φ(q). (41)The probability that at least one of these verties has order k and all the othershave order no greater than k is then
c(k, ℓ) = a(k)ℓ−1 − a(k − 1)ℓ−1. (42)Let πℓ,k(τ) be the ν̃�probability of the aterpillar τ ∈ Bℓ,k given that we are seletingfrom Bℓ,k. The average return generating funtion for the subritial aterpillars isthen

Q(x) =
∞
∑

ℓ=1

p(ℓ)
∞
∑

k=2

c(k, ℓ)
∑

τ∈Bℓ,k

πℓ,k(τ)Qτ (x). (43)For a given distane ℓ between root and trap we denote byMℓ the linear subgraphwhih starts at the root and ends at the trap. The �rst return generating funtionfor Mℓ is given by
PMℓ

(x) = 1 −
√
x

(1 +
√
x)ℓ + (1 −√

x)ℓ

(1 +
√
x)ℓ − (1 −√

x)ℓ
, (44)see e.g. [11℄. Now attah k links to eah vertex of the graph Mℓ exept the root andthe trap and denote the resulting graph by Mℓ,k. Using the methods of [18℄ we �nd13
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PMℓ,k
(x) =

(

1 +
k

2
x

)

PMℓ
(xk(x)) (45)where

xk(x) =
k2

4
x2 + (1 + k)x
(

1 + k
2
x
)2 . (46)
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Figure 5: The graph Mℓ,k.To �nd an upper bound on the spetral dimension of subritial aterpillars weestablish a lower bound on the n-th derivative of the average return generatingfuntion. Let n be the smallest positive integer suh that Q(n)(x) diverges as x→ 0.We see in the following alulations that we have to hoose n suh that n + 1 <

β ≤ n + 2. By (23) we �nd that (−1)nQ
(n)
τ ≥ (−1)nP

(n)
τ for any τ . Thus, bydi�erentiating (43) n times and throwing away every term in the sum over ℓ exept

ℓ = 2 we get the lower bound
(−1)nQ(n)(x) ≥ (−1)n

(

1 − wc

w1

)

wc

w1

∞
∑

k=2

φ(k)P
(n)
M2,k−2

(x). (47)We easily �nd that
PM2,k−2

(x) =
1 − x

2 + (k − 2)x
(48)and show by indution that

P
(n)
M2,k−2

(x) = (−1)nn!
(k − 2)n−1k

(2 + (k − 2)x)n+1
. (49)14



Then, by (38) and (49),
(−1)n

∞
∑

k=2

φ(k)P
(n)
M2,k−2

(x) =
n!

wc

∞
∑

k=2

(k − 2)n−1k1−β(k − 1)

(2 + (k − 2)x)n+1

≥ Cxβ−n−2

∫ ∞

x

yn+1−β

(2 + y)n+1
dy (50)where C > 0 is a onstant. If β < n+ 2 the last integral is onvergent when x→ 0but if β = n + 2 it diverges logarithmially. In both ases we get an upper boundfor the spetral dimension ds ≤ 2(β − 1).To �nd a lower bound on the spetral dimension of subritial aterpillars weestablish an upper bound on the n-th derivative of the average return generatingfuntion. First note that 1 > a(k) = a(k − 1) + φ(k) and therefore

c(k, ℓ) = (a(k) − a(k − 1))

×
(

a(k)ℓ−2 + a(k)ℓ−3a(k − 1) + . . .+ a(k)a(k − 1)ℓ−3 + a(k − 1)ℓ−2
)

≤ φ(k)(ℓ− 1). (51)Now onsider a aterpillar τ ∈ Bℓ,k and the graph Mℓ. Denote the vertieson the spine of Mℓ between the root and the trap by s1, s2, . . . , sℓ−1. One anobtain the graph τ from Mℓ by attahing mτ (si) links to si, i = 1, . . . , ℓ− 1 where
0 ≤ mτ (si) ≤ k − 2. Using the methods of [18℄ we an write

Qτ (x) =
∑

ω: r1→r1on Mℓ

Kτ (x, ω)WMℓ
(ω)(1 − x)|ω|/2 (52)where the sum is over all random walks ω on Mℓ whih begin and end at the root,

Kτ (x, ω) =

|ω|−1
∏

t=1
ωt∈{s1,...,sℓ−1}

(

1 +
mτ (ωt)

2
x

)−1

, (53)
WMℓ

(ω) =

|ω|−1
∏

t=0

(σ(ωt))
−1 (54)where ωt is the vertex at whih ω is loated at step t and |ω| denotes the length of

ω. The i�th derivative of the funtion Kτ (x, ω) an be estimated as
(−1)i d

i

dxi
K(x, ω) ≤ H(|ω|) (k − 2)i

(2 + (k − 2)x)i
(55)15



where H is a polynomial with positive oe�ients. From the relation (23) and theexpliit formula (44) one an easily see that (−1)iQ
(i)
Mℓ

(0) is a positive polynomialin ℓ of degree 2i+ 1. Therefore, di�erentiating (52) n times and using the estimate(55) we get the upper bound
(−1)nQ(n)

τ (x) ≤
n
∑

i=0

Si(ℓ)
(k − 2)i

(2 + (k − 2)x)i
(56)where the Si are positive polynomials in ℓ. Di�erentiating (43) n times w.r.t. x andusing the estimates (51) and (56) we �nally obtain

(−1)nQ(n)(x) ≤
n
∑

i=0

∞
∑

ℓ=1

p(ℓ)Si(ℓ)(ℓ− 1)
∞
∑

k=2

φ(k)
(k − 2)i

(2 + (k − 2)x)i
. (57)The sum over ℓ is onvergent sine Si is a polynomial in ℓ and p(ℓ) deays expo-nentially. The sum over k is estimated from above by an integral as in (50) whihyields a lower bound on the spetral dimension ds ≥ 2(β − 1). This proves (39).5 DisussionIn this paper we have given a desription of the phases of the random aterpillarmodel. However, it is not omplete. First of all, in the subritial nongeneri phase,when w1 > wc we limit ourselves to the partiular hoie of weights in (29). Thisstrit power law an easily be relaxed to an asymptoti power law. It is however notlear how to generalize this to arbitrary weights satisfying w1 > wc.Seondly, we have no rigorous results on what happens on the ritial line of thephase diagram in Fig. 3 when w1 = wc. This problem is disussed in similar modelsin [6, 8℄ where it is argued that when g′′(1) < ∞ the phase is haraterised as thegeneri phase and when g′′(1) = ∞ the ritial exponent of ZN hanges ontinuouslywith β.The order of the phase transition from the ondensed phase to the �uid phasealso depends on whether g′′(1) is �nite or in�nite. De�ne the free energy as

F (w1) = lim
N→∞

logZN(w1)

N
. (58)16



Using (14), (16) and (30) one �nds that
F ′(w1) =

{
(

1
ζ2

0
g′′(w1ζ0(w1))

+ w1

)−1 if w1 < wc

w−1
1 if w1 > wc

(59)and thus
lim

w1→w−

c

F ′(w1) =
1

w2
c

g′′(1)
+ wc

. (60)This shows that when g′′(1) <∞ the phase transition is �rst order but when g′′(1) =

∞ it is ontinuos in agreement with [6, 8℄.The aterpillar model an be generalized to more ompliated tree models byreplaing the leaves on the spine by trees with verties of order bounded by K, theaterpillars orresponding to K = 1. With similar analysis as for the aterpillars,one obtains two phases: a �uid phase (generi) and a ondensed phase (nongeneri),seperated by a ritial value of w1 given by
wc(K) = g′(1) −

K
∑

n=2

wn. (61)In the �uid phase, the �nite volume probability measures onverge to a measureonentrated on trees with an in�nite spine with ritial Galton Watson outgrowthsanalogous to the generi trees in [12℄. In the rumpled phase the measures onvergeto trees with spine of a �nite length ℓ distributed by
ψ(ℓ,K) = (ℓ− 1)

(

1 − w1

wc(K)

)2(
wc(K)

w1

)ℓ

. (62)Exatly one of the verties on the spine has in�nite degree and the order of otherverties is independently distributed by
φ(k,K) =

1

wc(K)
(k − 1)wk, k ≥ 2. (63)The outgrowths from the spine are independent subritial Galton Watson treeswith o�spring probabilities

pn(K) =
wn+1

∑K
n=1wn

, 0 ≤ n ≤ K − 1. (64)As N → ∞ one �nds that the size of the large vertex is approximately (1−m(K))Nwhere m(K) < 1 is the mean o�spring probability of the Galton Watson proess.17



This is in agreement with analogous results in [6, 8, 19℄. What makes the alulationseasy in the ondensed phase in the above models is the fat that the large vertexwhih emerges as N → ∞ has to stay on the spine due to the restrition on the orderof the verties in the outgrowths. When the uto� on the vertex orders is removed(K = ∞) one obtains nongeneri trees. In this ase it is more di�ult to loatethe large vertex and one has to use other methods in the alulations. However,we expet the above haraterisation of the ondensed phase to hold with minoradjustements as is argued in [19℄. This will be addressed in a forthoming paper onnongeneri trees.Aknowledgment. This work is supported in part by Marie Curie grant MRTN-CT-2004-005616, the Ielandi Siene Fund, the University of Ieland ResearhFund and the Eimskip Researh Fund at the University of Ieland. We would liketo aknowledge hospitality at the Jagellonian University and disussions with PiotrBialas, Zdzislaw Burda, Berg�nnur Durhuus and Jerzy Jurkiewiz.Appendix A - The Gibbs measure in the ondensedphaseIn this appendix we onsider the set B̃ of all aterpillars de�ned in (5). We equipthis set with a metri and adopt the methods of [10℄ (see also [2, 7℄) to prove theexistene of a probability measure on this set whih desribes the subritial phase.We de�ne a metri d on B̃ by
d(b, c) =

{

max
{

1
1+min{bi,ci}

∣

∣

∣
bi 6= ci

} if ℓ(b) = ℓ(c),
1 otherwise (65)where b = (b1, b2, . . .) and c = (c1, c2, . . .). We de�ne the maximum of the emptyset to be 0. It is an elementary alulation to verify that this de�nition ful�lls theaxioms for a metri. Denote the open ball entered at b and with radius s by Bs(b).It is easy to verify that these balls are both open and losed and that if c ∈ Bs(b)then Bs(c) = Bs(b). Denote the set of aterpillars of �xed length ℓ by B̃(ℓ). For any18



ℓ ∈ N the set B̃(ℓ) is ompat. De�nẽ
B′ =

∞
⋃

N=1

B̃N . (66)The set B̃′ is a ountable dense subset of B̃.From now on we onsider the weight fators (29) with w1 > wc. The probabilitymeasures ν̃N on B̃N will be shown to onverge to a measure ν̃ on B̃.Theorem A1. For the weight fators (29) with w1 > wc the measures ν̃N viewedas probability measures on B̃ onverge weakly to a measure ν̃ as N → ∞ and ν̃is onentrated on the set of aterpillars of �nite length with exatly one vertex ofin�nite order. The length of the spine is distributed by (37). All the verties between
r1 and r2 are equally likely to be of in�nite order and the orders of the others areindependently distributed by (38).Proof. Applying the methods of [10℄ we need to show the following:1. The sequene (ν̃N

(

B 1

k
(b)
))∞

N=1
onverges for all k ∈ N and all b ∈ B̃′.2. For every ǫ > 0 there exists a ompat subset C ⊆ B̃ suh that

ν̃N

(

B̃ \ C
)

< ǫ, for all N ∈ N. (67)To prove Property 1 take a �nite aterpillar b = (b1, . . . , bℓ(b)−1) ∈ B̃′. In orderto streamline the notation we write ℓ(b) = ℓ. Denote the set of indies i for whih
bi < k by I and the set of indies i for whih bi ≥ k by I. Then

B 1

k
(b) =

{

c ∈ B̃(ℓ) | ci = bi if i ∈ I, ci ≥ k if i ∈ I
}

. (68)Denote the number of elements in I by R. Now order the indies in I in inreasingorder and for a given aterpillar in B 1

k
(b) let Ni, 1 ≤ i ≤ R be the term in theaterpillar orresponding to the i-th index in I. We an then write

ν̃N

(

B 1

k
(b)
)

= Z−1
N wN−ℓ

1 W0

∑

N1+...+NR=N+ℓ−2−b0
Ni≥k, ∀i

R
∏

i=1

[(Ni − 1)wNi
)] (69)19



where
b0 =

∑

i∈I

bi and W0 =
∏

i∈I

[(bi − 1)wbi
] .First note that if I is empty then ν̃N

(

B 1

k
(b)
)

−→ 0 when N −→ ∞. If it is notempty, there exists an index i ∈ I in the above sum suh that Ni ≥ N+l−2−b0
R

. Ifthere is another index j 6= i suh that Nj > C where C ≥ k is a onstant then weget an upper bound
K
∑

N2>C

(N2 − 1)wN2
(70)on that ontribution to the above sum using (30) and the methods in the proof ofLemma 2 where K is a positive number whih only depends on b and k. The lastexpression goes to zero as C −→ ∞ sine g′(1) is �nite. Estimating the remainingontribution to (69) we get

(w1 − wc)
2w−l

1 N
β−1W0

R
∑

i=1

∑

N1+...+NR=N+l−2−b0
k≤Nj≤C, j 6=i

∏

i∈I

[(Ni − 1)wNi
)] (1 + o(1))

−→
N→∞ (w1 − wc)

2w−l
1 W0R

(

C
∑

n=k

(n− 1)wn

)R−1

−→
C→∞ (w1 − wc)

2w−l
1 W0R

(

∞
∑

n=k

(n− 1)wn

)R−1 (71)proving the onvergene. The alulations show that the measure is onentratedon the set of aterpillars with exatly one in�nite term.In order to prove Property 2 we take our ompat set to be
CL =

L
⋃

ℓ=1

B̃(ℓ) (72)and we need to show that
ν̃N

({

b ∈ B̃
∣

∣

∣
ℓ(b) > L

})

−→ 0 as L −→ ∞ (73)uniformly in N . We estimate as in the proof of Lemma 2
ν̃N

({

b ∈ B̃ | ℓ(b) = ℓ
})

=
ZN,l

ZN
≤ C

(

wc

w1

)l

(l − 1)βwhere C is a onstant. Sine w1 > wc this ompletes the proof of the onvergene.The distribution of the length of the spine and order of verties follows from (71).20
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