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Abstra
tIn this thesis we study two models of random trees. The �rst model is an equilibriumstatisti
al me
hani
al model of trees where the a
tion is given by a sum over theverti
es and depends only on their degrees. We 
onsider two 
lasses of su
h trees:
aterpillars whi
h are trees with the property that all verti
es of degree greater thanone form a simple path, and planar trees, whi
h are often referred to as bran
hedpolymers. The purpose of this study is to 
hara
terize the phase stru
ture of themodels with a spe
ial emphasis on des
ribing a phase where a vertex of in�nite degreeemerges in the thermodynami
 limit. We show that both 
lasses of trees exhibit twophases, an elongated phase and a 
ondensed phase. We prove 
onvergen
e of the �nitevolume Gibbs measures to a measure on the set of in�nite trees. In the elongatedphase the measure is 
on
entrated on the set of trees with exa
tly one path from agiven vertex to in�nity and in the 
ondensed phase it is 
on
entrated on the set oftrees with exa
tly one vertex of in�nite degree. We 
on
lude the dis
ussion of ea
h
lass by 
al
ulating the Hausdor� and spe
tral dimension in both phases.The se
ond model we 
onsider is a new model of growing random trees, referredto as the vertex splitting model. In ea
h time step, the trees are grown by sele
ting avertex and splitting it into two verti
es whi
h are joined by a new edge. The modelredu
es, in spe
ial 
ases, to the preferential atta
hment model, Ford's alpha modelfor phylogeneti
 trees and its generalization the alpha�gamma model. We develop amean �eld theory for the vertex degree distribution, prove that the mean �eld theoryis exa
t in some spe
ial 
ases and 
he
k that it agrees with numeri
al simulations ingeneral. We 
onstru
t 
ertain 
orrelation fun
tions whi
h enable us to 
al
ulate theHausdor� dimension of the trees. The Hausdor� dimension depends on the parametersof the model and 
an vary from one to in�nity. We study 
orrelations between degreesof neighbouring verti
es and 
ompare the result to graphs where no 
orrelations arepresent. We 
on
lude by showing how the vertex splitting model is related to othermodels of random trees and provide new results on the alpha model.vii



Ágrip (in I
elandi
)Við rannsökum tvö líkön af slembitrjám. Fyrra líkanið er safneðlisfræðilíkan trjáaþar sem orkan er ge�n með summu y�r hnúta og er einungis háð stigi þeirra. Viðskoðum tvö söfn trjáa: margfætlur, sem eru tré með þann eiginleika að allir hnútaraf stigi hærra en einn mynda einfaldan veg og sléttutré. Tilgangur rannsóknarinnarer að lýsa mismunandi fösum líkansins og sérstök áhersla er lögð á að lýsa fasa þarsem hnútur af óendanlegu stigi verður til þegar stærð trjánna stefnir á óendanlegt.Við sýnum að bæði söfnin hafa tvo fasa sem við köllum langan fasa og þéttan fasa.Við sönnum að Gibbs málin, á endanlegum mengjum trjáa, eru samleitin og stefnaá mál á mengi óendanlegra trjáa. Í langa fasanum hefur málið stoð á mengi trjáasem innihalda nákvæmlega einn veg frá gefnum hnútpunkti út í óendanlegt en í þéttafasanum hefur málið stoð á mengi trjá sem innihalda nákvæmlega einn hnútpunkt afóendanlegu stigi. Við ljúkum umræðunni um hvort safn fyrir sig með því að reiknaHausdor�- og litrófsvídd beggja fasa.Síðara líkanið sem við skoðum er nýtt líkan af vaxandi slembitrjám sem við nefnumhnútaskiptingalíkanið. Í hverju tímaskre�, vaxa tréin með þeim hætti að hnútpunkturer valinn af handahó� og honum skipt í tvo hnúta sem tengdir eru með nýjum legg.Líkanið inniheldur sem sértilfelli viðhengilíkanið, alfalíkan Fords af þróun tegunda ogalhæ�ngu þess alfa�gammalíkanið. Við reiknum hnútastigsdreifingu í stórum trjámmeð meðalsviðsfræði, sönnum réttmæti meðalsviðsfræðinnar í sértilfellum en styðjumalmenna tilvikið með tölvuhermunum. Við smíðum ákveðin fylgniföll sem gera okkurkleift að reikna Hausdor�vídd trjánna. Hausdor�víddin er háð stikum líkansins oggetur tekið öll gildi á bilinu einn upp í óendanlegt. Við reiknum fylgni milli hnútastigsnæstu nágranna og berum saman við net þar sem engin fylgni er til staðar. Viðljúkum ritgerðinni með því að bera hnútaskiptingalíkanið saman við önnur líkön afslembitrjám og sönnum m.a. nýjar niðurstöður um alphalíkan Fords.
viii
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1Introdu
tion
1.1 Ba
kgroundRandom graphs are used in many bran
hes of s
ien
e to des
ribe relationships be-tween various entities and to model physi
al obje
ts. The former 
ase in
ludes so
ialnetworks [2℄, phylogeneti
 trees [5,43,45℄, the world-wide web [3℄ and mu
h more. Thelatter 
ase in
ludes dis
rete obje
ts su
h as ma
romole
ules [33℄ and bran
hed poly-mers [2℄. The graphs 
an also serve as a mathemati
al tool to approximate 
ontinuousobje
ts, an example of this being triangulations of manifolds in quantum gravity, seee.g. [8℄.Random trees are random graphs whi
h have, for example, been used to modelfamily trees and evolving populations [46℄, phylogeneti
 trees [5, 43, 45℄, fragmenta-tion and 
oagulation pro
esses [16℄ and more. Trees are also of theoreti
al impor-tan
e in the resear
h of more general random graphs. Planar trees, for instan
e,en
ode information on folded RNA mole
ules through their 
onne
tion with planarar
h stru
tures [33℄ and labelled trees are important in the study of the statisti
s ofplanar maps and their s
aling limits [56,57℄ via S
hae�er's bije
tion [61℄. Planar mapsare a prominent tool in one approa
h to quantum gravity. A simple spe
ial 
ase ofS
hae�er's bije
tion is given in [39℄ between generi
 trees and 2D 
ausal dynami
altriangulations [11℄.In this thesis we study two types of models of random trees. In Part I we 
onsideran equilibrium statisti
al me
hani
al model of two di�erent 
lasses of trees where thea
tion is given by a sum over the verti
es of a tree and depends only on their degrees.1



2 Chapter 1 Introdu
tionThe �rst 
lass of trees we 
onsider are so�
alled 
aterpillars whi
h are trees with theproperty that all verti
es of degree greater than one form a simple path. The se
ond
lass we 
onsider 
ontains all planar trees, whi
h are often referred to as bran
hedpolymers. The purpose of this study is to give a 
omplete 
hara
terization of thephase stru
ture of the models with a spe
ial emphasis on des
ribing a phase whereverti
es of in�nite degree emerge in the thermodynami
 limit. The main motivationis to solve the model of bran
hed polymers and the model of 
aterpillars is a steptowards that solution. Both models have been analysed extensively before; althoughthe 
aterpillar model has usually been studied in a di�erent 
ontext.The equilibrium statisti
al me
hani
al model of bran
hed polymers was introdu
edby Meir and Moon in 1978 [58℄ under the name simply generated trees. They derivedthe asymptoti
 behaviour of the �nite volume partition fun
tion under 
ertain as-sumptions on the parameters of the model. The model, as 
onsidered in the present
ontext, was �rst studied by Ambjørn et al. in the late 1980's in the papers [6, 7℄.In 1996, Bialas and Burda 
al
ulated the 
riti
al exponents in the model and de-s
ribed its phase stru
ture [18℄. They argued that the model exhibits two phases inthe thermodynami
 limit: a �uid (elongated, generi
) phase where the trees are of alarge diameter and have verti
es of �nite degree and a 
ondensed (
rumpled) phasewhere the trees are short and bushy with exa
tly one vertex of in�nite degree. In2007, Durhuus, Jonsson and Wheater gave a 
omplete 
hara
terization of the �uidphase, referred to as generi
 trees, by showing that the Gibbs measures 
onverge to ameasure 
on
entrated on the set of trees with exa
tly one path to in�nity with �nite
riti
al Galton�Watson outgrowths [38℄. They furthermore proved that the treeshave a Hausdor� dimension dH = 2 and a spe
tral dimension ds = 4/3 with respe
tto the in�nite volume measure. The main goal of Part I in this thesis is to establishanalogous results for the 
ondensed phase. Preliminary results in this dire
tion wereobtained by the author in [64℄.One of the motivations for the study of the bran
hed polymer model is that asimilar phase stru
ture is seen for more general 
lasses of graphs in models of simpli
ialgravity [1,9℄. In these models the elongated phase is e�e
tively des
ribed by trees [10℄and it has been established by numeri
al methods that in the 
ondensed phase a singlelarge simplex appears whose size in
reases linearly with the graph volume [27,48℄. A
losely related phenomenon of 
ondensation also appears in dynami
al systems su
has the zero range pro
ess [40℄.In 1997, Bialas et al. proposed [23℄ that the same me
hanism is behind the phasetransition in the di�erent models and the so�
alled 
onstrained mean �eld model was



1.1 Ba
kground 3introdu
ed in order to 
apture this feature. The authors followed up on the idea ina series of papers [17, 19�22℄ where the model was studied under the name balls inboxes or ba
kgammon model. The model 
onsists of pla
ing N balls intoM boxes andassigning a weight to ea
h box depending only on the number of balls it 
ontains. Thismodel is 
losely related to the equilibrium statisti
al me
hani
al model of 
aterpillars.In [20℄ the 
riti
al exponents of the balls in boxes model were 
al
ulated and the twophases 
hara
terized. The distribution of the box o

upan
y number was derived andit was argued that in the 
ondensed phase exa
tly one box 
ontains a large numberof balls whi
h in
reases linearly with the system size.The model of 
aterpillars was studied by the author, in 
ollaboration with ÞórðurJónsson, in a re
ent paper [52℄. Our original motivation for studying the model wasthat, despite its simpli
ity, it was predi
ted to have the same phase stru
ture as themore 
ompli
ated model of bran
hed polymers. The 
aterpillar model was solved byproving 
onvergen
e of the Gibbs measures to a measure on in�nite graphs and a
omplete 
hara
terization of the limiting measure was provided in both phases. Webelieve this to be the �rst rigorous treatment of the 
ondensed phase in models of theabove type and it guided us towards a solution of the 
ondensed phase in the modelof bran
hed polymers. A model of random 
ombs, equivalent to the 
aterpillar modelwas studied in [36℄ where analogous results were obtained for the limiting measure.In Part II we 
onsider a new model of randomly growing planar trees referred to asthe vertex splitting model. This work is based on and extends the paper [32℄ whi
h isa joint work of the author with François David, Mark Dukes and Þórður Jónsson. Wewill des
ribe the model informally here, a pre
ise de�nition will be given in Part II.The parameters of the model are nonnegative weights wi,j and a probability measureis generated on the set of �nite trees by the following growth rule. Start from aninitial tree T0. Sele
t a vertex in T0 of degree k with a probability weight
wk =

k

2

k+1∑

n=1

wn,k+2−nand �split� the vertex into two new verti
es of degree i and j with a probabilityweight wi,j , see Fig. 1.1. The numbers wk are referred to as splitting weights andthe numbers wi,j are referred to as partitioning weights. This pro
ess is repeatedinde�nitely. In most 
ases we will put an upper bound, D, on the degrees of verti
esby 
hoosing wD+1,1 = w1,D+1 = 0 su
h that verti
es of degree D+1 are not produ
edby the pro
ess. The model originates from a slightly di�erent model of growing planar



4 Chapter 1 Introdu
tion
k i jFigure 1.1: The splitting operation.trees, introdu
ed in 2008 by David, Hagendorf and Wiese in 
onne
tion with RNAfolding [33℄. We will des
ribe this relationship in a few words but refer to [33℄ for amore detailed explanation.A 
ompletely folded (planar) RNA mole
ule is represented by a system of noninterse
ting ar
hes whi
h 
onne
t sites 1, . . . , n on a line in su
h a way that no moresites 
an be 
onne
ted without 
rossing ar
hes. The sites represent the bases in themole
ule and the ar
hes represent the pairing of bases. These stru
tures are in oneto one 
orresponden
e with planar trees having verti
es of two types: a grey vertexand a white vertex de
orated with an arrow. The fa
es of the ar
hes 
orrespond tothe verti
es of the tree and the ar
hes 
orrespond to the edges of the tree. If a fa
e isadja
ent to an unpaired base the 
olour of the 
orresponding vertex is white and anarrow points from the vertex to the unpaired base, otherwise the vertex is grey, seeFig. 1.2.The model of the RNA folding pro
ess in [33℄ is de�ned by starting with a strand of

n unpaired sites and depositing ar
hes uniformly at random to the sites su
h that noar
hes 
ross. This is repeated until no more ar
hes 
an be added. The ar
h depositionmodel 
an equivalently be des
ribed by the following growth pro
ess. Start with anempty strand at time zero and in ea
h time step add a site to the strand, its lo
ation
hosen uniformly at random, and pair the new site if it is possible without 
rossing
1       2       3      4       5      6       7       8       9     10     11  Figure 1.2: The 
onne
tion between ar
h stru
tures and de
orated trees.



1.2 Outline 5ar
hes. By viewing the evolution of the 
orresponding tree one �nds that it 
hangesin one of two ways: a grey vertex turns white and is de
orated with an arrow (thenew site is not paired) or an additional arrow is pla
ed on a white vertex whi
h isthen split into two grey verti
es 
onne
ted by a new edge whi
h is orthogonal to thetwo arrows (the new site is paired), see Fig. 1.3. The splitting of the white verti
es inthe above growth pro
ess is essentially the same operation as in the vertex splittingmodel. In the RNA model the splitting weights are �xed by the dynami
s of the ar
hdeposition pro
ess.The vertex splitting model has very general growth rules and in
ludes other pre-viously studied random tree models. It be
omes a spe
ial 
ase of the preferentialatta
hment growth model, also referred to as random re
ursive trees, (see e.g. [2,31℄)when we take wj,k = 0 unless j or k is equal to 1. It also has, as a limiting 
ase,Ford's alpha model of phylogeneti
 trees [43℄ and its generalization, the alpha�gammamodel [28℄.Our main motivation is to develop general tools to study the properties of modelsof random tree growth. In parti
ular we are motivated by the issues of uni�
ationand of universality: Is there a general tree growth pro
ess whi
h 
an en
ompass thedi�erent models whi
h are known at the moment? How many di�erent universality
lasses, i.e. 
ontinuous tree models with di�erent s
aling properties (exponents and
orrelation fun
tions), exist in this framework? The results presented here are a �rststep in this dire
tion.1.2 OutlineChapter 2 of Part I is based on the paper [52℄, written in 
ollaboration with ÞórðurJónsson. We solve the equilibrium statisti
al me
hani
al model of 
aterpillars byproving 
onvergen
e of the Gibbs measures to a measure on in�nite graphs and givea 
omplete 
hara
terization of the limiting measure. We show that in the �uid phase
Figure 1.3: A step in the RNA growth pro
ess.



6 Chapter 1 Introdu
tionthe measure is 
on
entrated on the set of 
aterpillars having in�nite length and thatin the 
ondensed phase it is 
on
entrated on the set of 
aterpillars whi
h are of �nitelength and have pre
isely one vertex of in�nite degree. We 
on
lude Chapter 2 by
al
ulating the Hausdor� dimension and spe
tral dimension of the 
aterpillars in bothphases and at the phase transition.In Chapter 3 of Part I we study the equilibrium statisti
al me
hani
al model ofbran
hed polymers. This work is based on the paper [53℄ (in preparation) writtenin 
ollaboration with Þórður Jónsson. We generalize the de�nition of planar treesin [35℄ to allow for verti
es of in�nite degree and de�ne a new metri
 on this setof planar trees. This new metri
 spa
e is 
ompa
t and the subset of �nite trees isdense. We use similar te
hniques as for the 
aterpillar model to prove 
onvergen
eof the Gibbs measures in both phases with respe
t to this metri
. We prove that inthe 
ondensed phase the limiting measure is 
on
entrated on the set of trees of �nitediameter with pre
isely one vertex of in�nite degree and that the rest of the tree isdistributed as a sub
riti
al Galton�Watson pro
ess with mean o�spring probability
m < 1. Furthermore, we prove that in �nite trees the degree of the large vertex growslinearly with the system size, N , as (1 − m)N with probability arbitrarily 
lose toone, 
on�rming the result stated in [26℄ . We 
on
lude by 
al
ulating the spe
traldimension of the in�nite measure in the 
ondensed phase. In [29℄ it was 
laimed,on the basis of s
aling arguments, that the spe
tral dimension is ds = 2. We prove,however, that if the spe
tral dimension exists it depends 
ontinuously on a parameterof the model and 
an take any value greater than two. In fa
t, it takes the samevalues as the spe
tral dimension of the 
ondensed phase in the 
aterpillar model.Part II is based on and extends the paper [32℄, written in 
ollaboration withFrançois David, Mark Dukes and Þórður Jónsson. We �rst give the pre
ise de�nitionof the vertex splitting model. We then study the spe
ial 
ase where the splittingprobability weights are linear with the initial vertex degree i and fo
us on the vertexdegree distribution. In Chapter 6 we write exa
t re
urren
e equations for the generallo
al vertex degree probability distributions. Using the Perron-Frobenius theorem [62℄we show that the single vertex degree probability distribution ρ = {ρk} (ρk is thedensity of verti
es with a given degree k) has a well de�ned limit as the size of thetree goes to in�nity whi
h is independent of the initial tree. We furthermore showthat ρ = {ρk} is given by an eigensystem equation of the form Bρ = λρ, where B isa matrix depending on the weights of the model. The proof depends on the matrix
B being diagonalizable. Similar te
hniques have been used to �nd the asymptoti
degree distribution in random re
ursive trees [49℄.



1.2 Outline 7In Se
tion 6.4 we relax the 
ondition of linearity on the splitting weights wi. Weargue that mean �eld theory is still valid and that the degree probability distribution
ρ is still given by the same linear eigensystem equation as in the linear 
ase. We givegood numeri
al eviden
e of the validity of these mean �eld equations for D = 3 trees.For in�nite D and linear and uniform splitting probabilities we 
an still 
al
ulate thevertex degree distribution in 
losed form using mean �eld theory. This is done inse
tion 6.5, where we show that it agrees with numeri
al simulations. The vertexdegree distribution is found to fall o� fa
torially in this 
ase.In Chapter 7 we study probabilities asso
iated to the lo
al subtree stru
ture of thetree, as seen from any vertex, and as a fun
tion of its 
reation time s. More pre
isely,we are able to write re
ursion relations for the probability pk(ℓ1, · · · , ℓk; s) that thevertex 
reated at time s is of degree k, with the k subtrees with �xed respe
tive sizes
ℓ1, · · · , ℓk. These subtree stru
ture probabilities are related to the radius of the treeand their s
aling properties allow us to extra
t the Hausdor� dimension of the trees.Using a natural s
aling hypothesis, we show that the Hausdor� dimension dH is givenby the solution of an eigensystem equation of the form Cω = w2/dH ω, where C is amatrix whi
h is a fun
tion of the weights of the model. We use a Perron-Frobeniusargument to prove that this eigensystem equation has a unique physi
al solution. Weestablish bounds on the Hausdor� dimension and show that it 
an vary 
ontinuouslywith the splitting weights between 1 and +∞.In Chapter 8 we study the 
orrelations between the degrees of neighbouring ver-ti
es. This amounts to studying the density ρij of links with verti
es of degrees iand j. We write general equations for these 
orrelations in the linear splitting weight
ase. In the simple 
ase of D = 3 trees these 
orrelations are 
al
ulated expli
itly, and
ompared with numeri
al simulations. In Se
tion 8.3 we extend our results for the
ase of non�linear splitting weights, assuming mean �eld theory. We show that thereis a very good agreement between our analyti
al results and numeri
al simulations.We 
on
lude by dis
ussing the amount of assortative mixing in the vertex splittingmodel i.e. whether verti
es of high degree prefer to be neigbours of verti
es of highdegree or to be neighbours of verti
es of low degree. For re
ent resear
h on assortativemixing in networks we refer to [54, 59, 67℄.In the �nal 
hapter we dis
uss in more detail the relationship between our modeland other models of random trees, in parti
ular the alpha model of phylogeneti
 trees.We prove 
onvergen
e of the �nite volume measures generated by the growth rules ofthe alpha model and 
al
ulate the annealed Hausdor� dimension. This work is basedon and extends the paper [65℄ by the author.



8 Chapter 1 Introdu
tion1.3 De�nitionsIn this se
tion we 
olle
t together the basi
 de�nitions and notation whi
h are usedin the following 
hapters.1.3.1 GraphsA graph G is 
omposed of a vertex set V (G) and an edge set E(G) whi
h 
onsists ofunordered pairs {v, w} where v, w ∈ V and v 6= w 1. In the following we will alwayssingle out a vertex in V 
alled the root of the graph and denote it by r. The numberof elements in a set A is denoted by |A|. We de�ne |G| ≡ |E| and 
all it the volume ofthe graph G. Two verti
es v, w ∈ V are 
alled neighbours if {v, w} ∈ E. The numberof neighbours of a vertex v ∈ V is 
alled the degree or order of v and is denoted by
σG(v) or simply σ(v) if it is 
lear to whi
h graph the vertex belongs. A 
ommon
onstraint on graphs is that all verti
es have �nite degree in whi
h 
ase the graph issaid to be lo
ally �nite. However, here we sometimes allow the possibility that graphshave verti
es of in�nite degree.A �nite path γ in a graph G is a �nite sequen
e

γ = (v0, v1, v2, . . . , vn) (1.1)where v0, . . . , vn ∈ V and vi−1 and vi are neighbours for all i = 1, . . . , n. We 
all nthe length of the path γ and de�ne |γ| = n. The verti
es v0 and vn are 
alled theendpoints of γ. If v0 = vn then the path is 
alled a 
y
le. We say that a graph Gis 
onne
ted if for every two verti
es v, w ∈ V , there exists a path between v and w.The graph distan
e dG between any two verti
es v, w ∈ V in a 
onne
ted graph G isde�ned by
dG(v, w) = min{|γ| : γ a path with endpoints v and w} (1.2)and dG(v, v) = 0 for all v ∈ V .A graph is 
alled a tree if it 
ontains no 
y
les. In this thesis we restri
t ourattention to 
onne
ted trees, whi
h are the obje
ts of the models presented. Wewill put the additional 
ondition of planarity on the trees under 
onsideration, whi
hmeans in words that the edges in
ident on a given vertex are ordered. This statementis ambiguous if the vertex has an in�nite degree and therefore we give a proper1Some authors refer to these graphs as �simple graphs� and allow general graphs to have �selflinks� and �multi links�.



1.3 De�nitions 9de�nition in Chapter 3. The 
ondition of planarity is not essential in the models we
onsider, but is rather a 
onvention, and in some 
ases it is motivated by the natureof the model. By 
onvention we assume, unless otherwise stated, that the trees havea root of degree one. We denote the set of all 
onne
ted, rooted planar trees, �niteor in�nite, by Γ and the set of all �nite, 
onne
ted, rooted planar trees by Γ′. Theset of 
onne
ted, rooted planar trees with N edges will be denoted by ΓN . In trees,we denote the unique shortest path between verti
es v and w by (v, w).1.3.2 Random graphsLet GN be some subset of the set of graphs with N edges and let G be the set of all�nite and in�nite graphs of the same type. We will not be pre
ise for the momentabout how G is 
onstru
ted. A random graph is de�ned by a probability distribution
νN on GN . Usually the distribution νN is either (a) 
onstru
ted expli
itly for a given
N or (b) de�ned in a re
ursive way from νN−1, 
ommonly by a growth pro
ess.The models in Part I are of type (a). They are de�ned by a set of nonnegativenumbers w1, w2, . . ., 
alled bran
hing weights, and a probability is assigned to a graph
G ∈ GN by

νN (G) =
1

ZN

∏

v∈V (G)

wσG
(v) (1.3)where

ZN =
∑

G′∈GN

∏

v∈V (G′)

wσG′ (v) (1.4)is a normalization fa
tor whi
h is 
alled the �nite volume partition fun
tion. Thesemodels are referred to as equilibrium statisti
al me
hani
al models and νN is 
alledthe Gibbs measure. We say that the model has a lo
al a
tion, sin
e the energy ofa given graph is the sum over the independent energies of individual verti
es in thegraph.The models in Part II are of type (b). They are de�ned by a growth rule, and theprobability of a graph G ∈ GN is given by
νN (G) =

∑

G′∈GN−1

νN−1(G
′)P(G′ → G) (1.5)where P(G′ → G) is the probability of growing the graph G from G′ a

ording to thegrowth rule.In both the above 
ases we study properties of the graphs when N −→ ∞. In



10 Chapter 1 Introdu
tionsome 
ases it is possible to show that the measures νN , viewed as measures on G,
onverge in a weak sense, to a measure ν whi
h is 
on
entrated on the set of in�nitegraphs. This is referred to as taking the in�nite volume limit. In other 
ases one
an only study 
onvergen
e of some observables (or their expe
tation values), su
has the vertex degrees, the graph diameter et
. In order to de�ne the notion of weak
onvergen
e we assign a metri
 d to the set G. The statement
νN −→ ν (1.6)in a weak sense as N −→ ∞ means that

∫

G

fdνN −→
∫

G

fdν (1.7)as N −→ ∞ for all bounded fun
tions f whi
h are 
ontinuous in the metri
 d. Theproblem of taking the in�nite volume limit involves, among other things, de�ning theset G properly and de�ning a suitable metri
 on G.We will use repeatedly the following result about weak 
onvergen
e of probabilitymeasures whi
h is stated in [35℄ and derived e.g. in [24℄. If νN is a sequen
e ofprobability measures on a metri
 spa
e (G, d) and U is a family of both open and
losed subsets of G su
h that(i) any �nite interse
tion of sets in U are in U ,(ii) any open subset of G may be written as a �nite or a 
ountable union of setsfrom U and(iii) the sequen
e νN (A), 
onverges as N −→ ∞ for all sets A ∈ U ,then the sequen
e νN 
onverges weakly provided it is tight, i.e. for any ǫ > 0 thereexists a 
ompa
t subset C of G su
h that
νN (G \ C) < ǫ for all N. (1.8)The last 
ondition of tightness is automati
ally ful�lled if the metri
 spa
e is 
ompa
t,whi
h is the 
ase in all appli
ations in this thesis.



1.3 De�nitions 111.3.3 Random walks on graphs and the spe
tral dimensionA simple random walk on a graph G is a path ω together with a probability weight
|ω|−1
∏

t=0

(σG(ωt))
−1 (1.9)where ωt denotes the (t + 1)-st vertex of ω. We think about the random walk as apro
ess where at time t a walker, lo
ated at ωt, moves to one of its neighbours withprobabilities (σG(ωt))

−1.We begin by de�ning the spe
tral dimension of a graph whi
h is loosely speaking,the dimension experien
ed by a random walker travelling on the graph. Let pG(t) bethe probability that a simple random walk whi
h begins at the root in G, is lo
atedat the root at time t. The spe
tral dimension of the graph G is de�ned as ds providedthat
pG(t) ≍ t−ds/2 (1.10)where we write f(t) ≍ t−γ if

lim
t→∞

log (f(t))

log(t)
= −γ. (1.11)If pG(t) falls o� faster than any power of t then we say that ds = ∞. This de�nitiononly makes sense on in�nite graphs sin
e on �nite graphs, the return probability isasymptoti
ally a positive 
onstant. It is straightforward to verify that the spe
traldimension of a 
onne
ted, lo
ally �nite graph is independent of the 
hoi
e of a root.The spe
tral dimension of the d�dimensional hyper�
ubi
 latti
e Zd is ds = d in whi
h
ase it agrees with our usual notion of dimension. For general graphs the spe
traldimension need not be an integer and furthermore it might not exist. The spe
traldimension 
an also be de�ned on a 
ontinuous manifold in whi
h 
ase it is the rate ofde
ay of the heat kernel at 
oin
iding points.For an in�nite random graph (G, ν), where ν is a probability distribution on some
lass of graphs G, one 
an de�ne the spe
tral dimension in di�erent ways. First of allthe graphs 
an have, ν almost surely, a spe
tral dimension ds de�ned as above. Thestatement that an event E happens ν almost surely means that ν(E) = 1. Se
ondlywe de�ne the annealed spe
tral dimension as d̄s provided that

〈pG(t)〉ν ≍ t−d̄s/2. (1.12)
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tionwhere 〈·〉ν denotes expe
tation value with respe
t to ν. These de�nitions need notagree and in this thesis we en
ounter examples where d̄s exists and is �nite, whereas
ds is almost surely in�nite.

The return probabilities are most 
onveniently analysed through their generatingfun
tions. In the following dis
ussion, assume that the graph G is a tree. De�ne
QG(x) =

∞∑

t=0

pG(t)(1 − x)t/2. (1.13)The generating fun
tion variable x is de�ned in this way for notational 
onvenien
ein later 
al
ulations. Note that sin
e the graph G is a tree only integer exponentsappear on 1 − x. Let p1
G(t) be the probability that a random walk whi
h leaves theroot at time zero and walks t steps, returns to the root for the �rst time. De�ne thegenerating fun
tion

PG(x) =

∞∑

t=0

p1
G(t)(1 − x)t/2. (1.14)By de
omposing a walk whi
h returns to the root into the �rst return walk, the se
ondreturn walk et
. we �nd the relation

QG(x) =
∞∑

n=0

(PG(x))n =
1

1 − PG(x)
. (1.15)Let n be the smallest nonnegative integer for whi
h Q(n)

τ (x), the n�th derivative of
Q(x), diverges as x −→ 0. If

(−1)nQ(n)
τ (x) ≍ x−α (1.16)for some α ∈ [0, 1) then 
learly

ds = 2(1 − α+ n), (1.17)if ds exists. For random graphs, the same relation holds between the singular be-haviour of 〈Q(n)
τ (x)〉ν as x −→ 0 and the annealed spe
tral dimension. All statementsabout the spe
tral dimension of graphs in the following 
hapters are made under theassumption that it exists.



1.3 De�nitions 131.3.4 Hausdor� dimensionAnother notion of dimension for graphs is the Hausdor� dimension whi
h is de�nedin terms of how the volume of a ball s
ales with its radius. For a graph G = (V,E),denote by BR(G) the subgraph of G whi
h has a vertex set
VR(G) = {v ∈ V | dG(v, r) ≤ R} (1.18)and an edge set

{{v, w} ∈ E | v, w ∈ VR(G), v 6= w}. (1.19)We 
all BR(G) the ball of radius R 
entered on the root r. The Hausdor� dimensionof the graph G is de�ned as dH provided that
|BR(G)| ≍ RdH . (1.20)As for the spe
tral dimension, this de�nition only makes sense on an in�nite graph.On a 
onne
ted, lo
ally �nite graph, dH is independent of the 
hoi
e of a root. Onthe hyper�
ubi
 latti
e Zd it holds that dH = d but in general dH is not an integer.The Hausdor� dimension 
an also be de�ned in di�erent ways for random graphs.First of all the graphs might have, ν almost surely, a Hausdor� dimension dH as de-�ned above and se
ondly we de�ne the annealed Hausdor� dimension as d̄H providedthat

〈|BR(G)|〉ν ≍ Rd̄H . (1.21)The Hausdor� dimension and the spe
tral dimension do not ne
essarily agree, butunder 
ertain 
onditions the inequality
2dH

1 + dH
≤ ds ≤ dH (1.22)holds [30℄. For trees whi
h satisfy 
ertain regularity 
onditions, the left inequality issaturated [13℄, i.e.

ds =
2dH

1 + dH
. (1.23)Examples of random trees whi
h satisfy (1.23) are the uniform spanning tree on Z

2(dH = 8/5 and ds = 16/13) [14℄ and generi
 trees (dH = 2 and ds = 4/3) [38℄.Examples of random trees whi
h satisfy (1.22) but not ne
essarily (1.23) are therandom 
ombs studied in [37℄.It is beyond the s
ope of this thesis to dis
uss the relations (1.22) and (1.23) in
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tiondetail. However, we will see that most of the random tree models we study haveHausdor� and spe
tral dimensions whi
h satisfy (1.23). An ex
eption to this is the
ondensed phase of the equilibrium statisti
al me
hani
al models.There is another de�nition of the Hausdor� dimension whi
h applies when one
onsiders �nite, randomly growing graphs. Let νN , N = 1, 2, . . . be probability dis-tributions on a set of graphs G, 
on
entrated on graphs of volume N , and de�nedfrom νN−1 by a growth rule. The Hausdor� dimension is usually de�ned in terms ofhow the average value of some typi
al distan
e in the graph (the maximum distan
ebetween verti
es, the mean distan
e of verti
es from the root, et
.) s
ales in relationto the volume of the graph as it grows. More pre
isely, we de�ne the radius of thegraph G by
RG =

1

2|G|
∑

v

dG(r, v)σ(v). (1.24)Then we de�ne the Hausdor� dimension as dH if
〈RG〉νN ,G∈G ∼ N1/dH (1.25)as N −→ ∞. By f(x) ∼ g(x) as x −→ ∞ we mean that the limit of the ratio of

f(x) and g(x) is a positive 
onstant. This de�nition of dH should be independent ofthe 
hoi
e of a root r. If the measures νN 
onverge to a measure ν 
on
entrated onin�nite graphs, the de�nition is expe
ted to 
oin
ide with the previous one in (1.21)provided that ν is 
on
entrated on su�
iently regular graphs. We will see examplesof random tree models where this is the 
ase.
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2Caterpillars with a lo
ala
tionIn this 
hapter we 
onsider an equilibrium statisti
al me
hani
al model of a 
ertain
lass of trees whi
h are referred to as 
aterpillars. We start by de�ning the set of
aterpillars of a �nite volume and introdu
e a Gibbs measure on this set, whi
h is
onstru
ted from a lo
al a
tion. We analyse the model by the use of generatingfun
tions and show that there exist two phases, an elongated phase and a 
ondensedphase. The asymptoti
 behaviour of the �nite volume partition fun
tion is establishedin both phases and at the 
riti
al line separating the phases. We prove 
onvergen
eof the �nite volume measures to a measure on the set of in�nite 
aterpillars and
hara
terize it. The Hausdor� and spe
tral dimensions are then 
al
ulated, withrespe
t to the in�nite volume measure, in both phases and on the 
riti
al line. We
on
lude by brie�y dis
ussing a model whi
h generalizes the 
aterpillar model andbrings us one step 
loser to the model of bran
hed polymers whi
h is the subje
t ofthe next 
hapter.2.1 CaterpillarsA �nite 
aterpillar is a �nite graph whi
h 
onsists of a linear graph, whi
h we 
all thespine, to whi
h leaves (i.e. individual links) are atta
hed. We mark the end verti
esof the linear graph by r1 and r2 and 
all r1 the root of the 
aterpillar. Both these17
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al a
tion
r1

s1 s2 s3 s4 r2Figure 2.1: An example of a �nite 
aterpillar graph.verti
es have order one by de�nition. Furthermore, we will view the 
aterpillars asplanar graphs so we distinguish between left leaves and right leaves, see Fig. 2.1. Theassumption of planarity is not essential. We denote the set of all 
aterpillars with Nedges by CN . For a 
aterpillar τ ∈ CN , denote the graph distan
e between r1 and r2by ℓ(τ) and 
all it the length of the 
aterpillar. For a 
aterpillar of length ℓ we denotethe verti
es on the spine between r1 and r2 by s1, . . . , sℓ−1.Let wn, n = 1, 2, . . ., be a sequen
e of nonnegative numbers whi
h will be 
alledweight fa
tors or bran
hing weights. The weight of a 
aterpillar τ ∈ CN is de�ned as
w(τ) =

∏

i∈V (τ)\{r1,r2}

wσ(i). (2.1)We de�ne the �nite volume partition fun
tion by
ZN =

∑

τ∈CN

w(τ) (2.2)and a probability distribution on CN by
νN (τ) =

w(τ)

ZN
. (2.3)The weight fa
tors wn, or alternatively the measures νN , de�ne what we 
all a 
ater-pillar ensemble. The obje
t of this 
hapter is to study the 
aterpillar ensemble fordi�erent 
lasses of weights wn and give a 
omplete and rigorous 
ategorization ofdi�erent phases of the model.Sin
e the probability of a given 
aterpillar only depends on the order of its verti
es,an equivalent way of de�ning this ensemble is the following. If τ ∈ CN 
onsider the�nite sequen
e c(τ) = (σ(s1), σ(s2), . . . , σ(sℓ−1)) and assign to it the probability

ν̃N (c(τ)) = νN (τ)

ℓ(τ)−1
∏

i=1

(σ(si) − 1). (2.4)



2.1 Caterpillars 19The produ
t fa
tor in (2.4) a

ounts for the number of di�erent 
aterpillars whi
h
orrespond to the same sequen
e c(τ). De�ne the set C̃N = {c(τ) | τ ∈ CN}. It is
lear that (CN , νN ) is equivalent to (C̃N , ν̃N ) in the sense that νN (τ) only dependson c(τ). This allows us to extend the notion of �nite 
aterpillars to in�nite ones:
C̃ =

{(
bi
)k−2

i=1

∣
∣
∣ k, bi ∈ {2, 3, . . .} ∪ {∞}

} (2.5)where k = 2 
orresponds to the unique 
aterpillar of length ℓ = 1. Note that anelement in C̃ whi
h has in�nite terms and/or in�nite length has no 
ounterpart in
CN for any N . We denote the subset of �nite 
aterpillars in C̃ by C̃′.In the following se
tions we study the limit of the measures ν̃N as N −→ ∞. Inorder to deal properly with 
onvergen
e questions we need to de�ne a topology on C̃.For a 
aterpillar a = (a1, a2, . . .) ∈ C̃ we de�ne the sequen
e

B̃R(a) = (min{a1, R},min{a2, R}, . . . ,min{amin{ℓ(a)−1,R}, R}). (2.6)We then de�ne a metri
 d̃ on C̃ by
d̃(a, b) = inf

{

1

R

∣
∣
∣
∣
∣
B̃R(a) = B̃R(b)

} (2.7)for any a, b ∈ C̃. It is straightforward to show that this de�nition satis�es the axiomsfor a metri
. We now state and prove a few properties of the metri
 spa
e (C̃, d̃).Proposition 2.1.1 The metri
 spa
e (C̃, d̃) is 
ompa
t.Proof Take a sequen
e (cn)n∈N in C̃. Note that for every R the set {B̃R(b) | b ∈ C̃}is �nite. Therefore there exists a subsequen
e (cni
)i∈N su
h that B̃R(cni

) is 
onstantin i and it 
an be 
hosen su
h that B̃i(cnj
) = B̃i(cni

) for all i ≤ j. Thus, there is aunique 
aterpillar c ∈ C̃ su
h that B̃i(c) = B̃i(cni
) for all i and cni

−→ c as i −→ ∞.
�Denote the open ball in C̃ 
entered on c0 and with radius r by

Br(c0) = {c ∈ C̃ | d̃(c0, c) < r}. (2.8)Proposition 2.1.2 For r > 0 and c0 ∈ C̃, the ball Br(c0) is both open and 
losed.Moreover, if c1 ∈ Br(c0) then Br(c1) = Br(c0).
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al a
tionProof It is easy to see that open balls are 
losed sin
e the positive values of d̃ form adis
rete set but the parameter r is 
ontinuous. To prove the se
ond statement 
hoosea c1 ∈ Br(c0) and a c2 ∈ Br(c1). Clearly, B̃R(c1) = B̃R(c0) and B̃R(c1) = B̃R(c2) forall R < 1/r so B̃R(c0) = B̃R(c2) for all R < 1/r. Therefore
d̃(c2, c0) ≤ inf

{

1

R

∣
∣
∣
∣
∣
B̃R(c2) = B̃R(c0), R < 1/r + 1

}

< r (2.9)and thus c2 ∈ Br(c0) whi
h shows that Br(c1) ⊆ Br(c0). With the same argumentone shows that Br(c0) ⊆ Br(c1) and therefore the equality is established.
�Proposition 2.1.3 The set C̃′ of �nite 
aterpillars is a 
ountable dense subset of C̃.Proof The set C̃′ is 
learly 
ountable sin
e it is a 
ountable union of �nite sets. Toprove that it is dense in C̃ take a c ∈ C̃. The sequen
e (B̃n(c)

)

n∈N

is in C̃′ and
onverges to c.
�2.2 Criti
al point and the di�erent phasesDe�ne the �nite volume partition fun
tion with �xed distan
e ℓ between r1 and r2 as

ZN,ℓ =
∑

τ∈CN ,ℓ(τ)=ℓ

w(τ). (2.10)It is useful to work with the generating fun
tions
Z(ζ) =

∞∑

N=1

ZNζ
N (2.11)and

g(z) =
∞∑

n=0

wn+1z
n (2.12)with radii of 
onvergen
e ζ0 and ρ, respe
tively, both of whi
h we assume to benonzero. De�ne also

Zℓ(ζ) =

∞∑

N=1

ZN,ℓζ
N . (2.13)
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= ℓ− 1

i− 1

Zℓ(ζ)
∑∞

i=1 iζ
iwi−1

1 wi+1Zℓ−1(ζ)

ℓFigure 2.2: An illustration of the re
ursion (2.15).Then it is 
lear that
Z(ζ) =

∞∑

ℓ=1

Zℓ(ζ). (2.14)We have the re
ursion relation
Zℓ(ζ) = ζg′(w1ζ)Zℓ−1(ζ), (2.15)for any ℓ ≥ 2, see Fig. 2.2. Using the above equation and Z1(ζ) = ζ gives
Zℓ(ζ) = ζ

(

ζg′(w1ζ)
)ℓ−1 (2.16)and by (2.14)

Z(ζ) =
ζ

1 − ζg′(w1ζ)
. (2.17)From (2.17) we see that ζ0 is the smallest solution of the equation

ζg′(w1ζ) = 1 (2.18)on the interval (0, ρ/w1) if su
h a solution exists. If it does not exist then ζ0 = ρ/w1.If ζ0 < ρ/w1 then g is analyti
 at w1ζ0 and we say that we have a generi
 ensemble.This has been 
alled the elongated or �uid phase by other authors [20℄. If ζ0 = ρ/w1we have a nongeneri
 ensemble. Noti
e that if ρ = ∞ then the ensemble is alwaysgeneri
. For nongeneri
 ensembles we therefore have �nite ρ. In that 
ase we 
analways 
hoose ρ = 1 by s
aling the weights wn → wnρ
n−1. This s
aling does nota�e
t the probabilities (2.3).Now 
onsider weight fa
tors with ρ = 1 and let w1 be a free parameter. The
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al a
tiongeneri
ity 
ondition is then 1
w1
g′(1) > 1, i.e. w1 < wc where

wc ≡ g′(1) =

∞∑

n=2

(n− 1)wn (2.19)is a 
riti
al value for w1. If w1 = wc we have a nongeneri
 ensemble whi
h we referto as 
riti
al and if w1 > wc we have a nongeneri
 ensemble whi
h we refer to assub
riti
al. This phase has been 
alled the 
ondensed phase in the literature [20℄. Inthe following subse
tion we determine the asymptoti
 behavior as N −→ ∞ of the�nite volume partition fun
tions ZN for the di�erent phases.2.2.1 The generi
 phaseLet wn be weight fa
tors with w1 6= 0 and wn 6= 0 for some n > 2 whi
h lead to ageneri
 ensemble.Lemma 2.2.1 Under the stated assumptions on the weight fa
tors, the asymptoti
behaviour of ZN is given by
ZN =

1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N
0 (1 +O(N−1)) (2.20)if the integers n > 0 for whi
h wn+1 6= 0 have no 
ommon divisors greater than 1.Otherwise, if their greatest 
ommon divisor is d ≥ 2, then

ZN =
d

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N
0 (1 +O(N−1)) (2.21)if N = 1 mod d, and ZN = 0 otherwise.The proof of this Lemma is standard, 
f. [42℄, where the 
orresponding result forgeneri
 trees is established. We in
lude it here for 
ompleteness.Proof First assume that gcd{n|n > 0, wn+1 6= 0} = 1. The fun
tion

f(ζ) = 1 − ζg′(w1ζ) (2.22)has a zero at ζ0. The multipli
ity of the zero is 1 sin
e it is easily seen that f ′(ζ0) 6= 0.We therefore see that Z has a simple pole at ζ0 and sin
e gcd{n|n > 0, wn+1 6= 0} = 1there is no other pole on the 
ir
le |ζ| = ζ0. By Taylor expanding g′(w1ζ) around
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w1ζ0 we get

Z(ζ) =
1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)

(
ζ

ζ0 − ζ

)

+O(ζ0 − ζ). (2.23)Now de�ne
h(ζ) = Z(ζ) − 1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)

(
ζ

ζ0 − ζ

) (2.24)and denote its radius of 
onvergen
e by R. The fun
tion h has no poles for |ζ| ≤ ζ0and therefore R > ζ0. We 
on
lude that for any ǫ > 0 the 
oe�
ients of h 
annotgrow faster than
[ζn]{h(ζ)} = O

(
1

R
+ ǫ

)n (2.25)for n large. Therefore,
ZN =

1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
[ζN ]

(
ζ

ζ0 − ζ

)

+O

(
1

R
+ ǫ

)N

. (2.26)The result follows by straightforward 
al
ulation of [ζN ]
(

ζ
ζ0−ζ

) and noti
ing that
O(ζ−N

0 /N) > O(1/R+ ǫ)N (2.27)for ǫ small enough.Now assume that d = gcd{n|n > 1, wn+1 6= 0} ≥ 2. Then the fun
tion g is of theform g(z) = g̃(zd) and therefore Z has d simple poles ζ0, ζ1, . . . , ζd−1 on the 
ir
le
|ζ| = ζ0, whi
h are the d'th roots of ζd

0 . We then de�ne
h(ζ) = Z(ζ) −

d−1∑

i=0

1

g′(w1ζi) + ζiw1g′′(w1ζi)

(
ζ

ζi − ζ

) (2.28)whi
h is analyti
 with radius of 
onvergen
e R > ζ0. We then get with the sameargument as above that
ZN =

d−1∑

i=0

1

g′(w1ζi) + ζiw1g′′(w1ζi)
ζ−N
i (1 +O(N−1))

=
1

ζ0g′(w1ζ0) + ζ2
0w1g′′(w1ζ0)

d−1∑

i=0

ζ−N+1
i (1 +O(N−1)) (2.29)where the latter equality follows from ζig

′(w1ζi) = ζ0g
′(w1ζ0) and
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ζ2
i g

′′(w1ζi) = ζ2
0g

′′(w1ζ0) for i = 0, . . . , d−1. The last sum equals dζ−N+1
0 if N−1 = 0mod d but is zero otherwise. This 
ompletes the proof.

�2.2.2 The sub
riti
al phaseWe take ρ = 1 and w1 > wc so that we are in the sub
riti
al phase. We study a
on
rete model of weights wi, i ≥ 2 where
wi = i−β(1 + o(1)) (2.30)and let w1 be a free parameter in the spe
i�ed range. Figure 2.3 shows the phasediagram of the 
aterpillars. A ne
essary 
ondition for being in the sub
riti
al phaseis β > 2 sin
e otherwise wc = ∞.Lemma 2.2.2 For the weights given in (2.30) and w1 > wc we have

ZN =
1

(w1 − wc)2
N1−βwN

1

(
1 + o(1)

) (2.31)as N −→ ∞.Proof We 
an write
ZN =

N∑

ℓ=1

ZN,ℓ. (2.32)

�
�
�

�
�
�

��
��
��
��

��
��
��
�� Subcritical

2

Generic

Critical

1w

βFigure 2.3: A diagram showing the di�erent phases of the 
aterpillars.
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al point and the di�erent phases 25De�ne a sequen
e of fun
tions fN on the positive integers by
fN (ℓ) = w−N

1 Nβ−1ZN,ℓ = w−ℓ
1 Nβ−1

∑

N1+...+Nℓ−1=N−ℓ

ℓ−1∏

i=1

(Ni + 1)wNi+2. (2.33)We begin by showing that
lim

N−→∞
fN(ℓ) =

1

w2
c

(ℓ− 1)

(
wc

w1

)ℓ

≡ f(ℓ). (2.34)There is at least one index i in the sum de�ning fN (ℓ) su
h that Ni ≥ N−ℓ
ℓ−1 . Ifthere is another index j 6= i su
h that Nj > A where A > 1 is a 
onstant then we getan upper bound on that 
ontribution to fN(ℓ) of the form

w−ℓ
1 w−1

N N−1(ℓ− 1)2
∑

N1+...+Nl−1=N−ℓ

N1≥
N−ℓ
ℓ−1

N2>A

N1 + 1

(N1 + 2)
β

ℓ−1∏

i=2

(Ni + 1)wNi+2

≤ C(ℓ)
Nβ

(N + ℓ− 2)
β

∑

N3,...,Nℓ−1≥0

∑

N2>A

(N2 + 1)wN2+2

ℓ−1∏

i=3

(Ni + 1)wNi+2

≤ D(ℓ)wℓ−3
c

∑

N2>A

(N2 + 1)wN2+2 (2.35)where C(ℓ) and D(ℓ) are numbers whi
h only depend on ℓ. The last expression goesto zero as A −→ ∞ sin
e g′(1) is �nite. The remaining 
ontribution to fN (ℓ) is
w−ℓ

1 w−1
N N−1

ℓ−1∑

k=1

∑

N1+...Nℓ−1=N−ℓ

Nk≥
N−ℓ
ℓ−1

Nj≤A, j 6=k

ℓ−1∏

i=1

(Ni + 1)wNi+2

−−−−→
N→∞

w−ℓ
1 (ℓ− 1)

(
A∑

n=0

(n+ 1)wn+2

)ℓ−2

−−−−→
A→∞

w−2
c (ℓ− 1)

(
wc

w1

)ℓwhi
h proves (2.34).Note that fN (ℓ) = 0 if ℓ > N and therefore it is 
lear that fN (ℓ) is summable for
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al a
tionevery N . We also see that f(ℓ) is summable sin
e w1 > wc. For ℓ ≤ N

fN (ℓ) = w−ℓ
1 Nβ−1

∑

N1+...+Nℓ−1=N−ℓ

ℓ−1∏

i=1

(Ni + 1)wNi+2

≤ Cw−ℓ
1 Nβ−1(ℓ− 1)

∑

N1+...+Nℓ−1=N−ℓ

N1≥
N−ℓ
ℓ−1

N1 + 1

(N1 + 2)β

ℓ−1∏

i=2

(Ni + 1)wNi+2

≤ C
1

w2
c

(
wc

w1

)ℓ
Nβ−1(N − 1)
(

N−ℓ
ℓ−1 + 2

)β
≤ C′(ℓ− 1)β

(
wc

w1

)ℓ (2.36)where C and C′ are positive 
onstants. The �rst inequality in (2.36) is obtained byobserving that at least one of the indi
es Ni must be larger than N−ℓ
ℓ−1 and in these
ond one we used the de�nition of wc. It follows that the sequen
e (fN )

∞
N=1 isdominated by a summable fun
tion and we 
an 
al
ulate the limit

lim
N→∞

(
w−N

1 w−1
N N−1ZN

)
= lim

N→∞

∞∑

ℓ=1

fN (ℓ) =

∞∑

ℓ=1

f(ℓ) =
1

(w1 − wc)
2 . (2.37)This 
ompletes the proof.

�From the above lemma we obtain the following result
lim

N→∞

ZN,ℓ

ZN
= (ℓ− 1)

(

1 − w1

wc

)2 (wc

w1

)ℓ (2.38)whi
h indi
ates that with probability 1 the 
aterpillar has �nite length whi
h is expo-nentially distributed with a parameter wc/w1. If the length of an in�nite 
aterpillaris ℓ < ∞ it is 
lear that it has one or more verti
es of in�nite order. The inequal-ity (2.35) shows that there 
an be at most one vertex of in�nite order in the limit
N −→ ∞. We will state this observation more pre
isely in the next se
tion when weprove the 
onvergen
e of the measures ν̃N .2.2.3 The 
riti
al lineWe take ρ = 1 and w1 = wc so that we are on the 
riti
al line and 
hoose the weightsas in (2.30) where β > 2. We make the extra assumption that the generating fun
tion
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Z is analyti
 in a domain

D(∆, φ, ζ0) = {ζ : |ζ| < ζ0 + ∆, φ/2 < Arg(ζ − ζ0) < 2π − φ/2, ζ 6= ζ0} (2.39)for some ∆ > 0 and some angle φ ∈ (0, π/2), and that
Z(ζ) ∼ (ζ0 − ζ)2−β (2.40)as ζ −→ ζ0 on D(∆, φ, ζ0). This 
ondition allows one to dedu
e the asymptoti
behaviour of ZN , the 
oe�
ients of Z, see [42, Se
tion VI. 3 pages 389-392℄ for adetailed explanation. The above 
ondition on the weights is not empty. For example,the expli
it 
hoi
e

w1 = 1, w2 = 0 and wn =
(β − 2)Γβ−2(n− 2)

(n− 1)!
, n ≥ 3 (2.41)where Γγ(n) = (n− 1 − γ)(n − 2 − γ) · · · (2 − γ)(1 − γ), n ≥ 2 and Γγ(1) = 1 yields

wn ∼ n−β and
Z(ζ) =

ζ

1 − ζ(1 − (1 − ζ)β−2)
, (2.42)whi
h satis�es the above 
onditions for ζ0 = 1, any ∆ > 0 and any φ ∈ (0, π/2).We will en
ounter this parti
ular 
hoi
e of weights again at the end of Part II. Astraightforward appli
ation of [42, Corollary VI. 1℄ gives the following lemmaLemma 2.2.3 Choose bran
hing weights as in (2.30) with w1 = wc, su
h that Z isanalyti
 in a domain D(∆, φ, ζ0) for some ∆ > 0,φ ∈ (0, π/2) and obeys

Z(ζ) ∼ (ζ0 − ζ)2−β (2.43)as ζ −→ ζ0 on D(∆, φ, ζ0). Then
ZN ∼ Nβ−3ζ−N

0 . (2.44)as N −→ ∞.2.3 Convergen
e of the �nite volume measuresIn this se
tion we prove that the measures ν̃N 
onverge weakly as N −→ ∞ to ameasure ν̃ and we give a 
omplete des
ription of ν̃ for di�erent phases of the model.
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al a
tionTheorem 2.3.1 For the generi
 and nongeneri
 bran
hing weights in Lemmas 2.2.1�2.2.3, the measures ν̃N 
onverge weakly as N −→ ∞ to a probability measure ν̃
on
entrated on the set of in�nite 
aterpillars. If w1 ≤ wc, ν̃ is 
on
entrated on theset of 
aterpillars of in�nite length and the degrees of the verti
es s1, s2, . . . on thespine are independently distributed by
φ(n) = ζ0(n− 1)wn(w1ζ0)

n−2, n ≥ 2. (2.45)If w1 > wc, ν̃ is 
on
entrated on the set of 
aterpillars of �nite length with exa
tlyone vertex of in�nite degree. The length of the spine is distributed by
ψ(ℓ) = (ℓ− 1)

(

1 − w1

wc

)2(
wc

w1

)ℓ

. (2.46)All the verti
es between r1 and r2 are equally likely to be of in�nite degree and thedegree of the others are independently distributed by 1
φ(n) =

1

wc
(n− 1)wn. (2.47)Proof We de�ne a family of sets

U = {B 1
k
(c) | k ∈ N, c ∈ C̃′}. (2.48)From the properties of the metri
 spa
e (C̃, d̃) the family U 
learly satis�es (i)and (ii) in Se
tion 1.3.2 and sin
e (C̃, d̃) is 
ompa
t, tightness is automati
ally ful-�lled. It therefore only remains to prove property (iii). Choose a k ∈ N and a

c = (c1, c2, . . . , cℓ(c)−1) ∈ C̃′ and de�ne A = B 1
k
(c). Denote the set of indi
es

i ≤ min{k, ℓ(c) − 1} for whi
h ci < k by I and the set of indi
es i ≤ min{k, ℓ(c) − 1}su
h that ci ≥ k by I. We 
onsider seperately the following 
ases.
w1 < wc: In this 
ase we are in the generi
 phase so w1ζ0 < ρ and ZN ∼ ζ−N

0
f. Lemma 2.2.1. We assume that ℓ(c) ≥ k and if this 
onditions is not ful�lled weget a simple spe
ial 
ase of the 
al
ulations below. The set A is then given by
A = {b ∈ C̃ | bi = ci if i ∈ I, bi ≥ k if i ∈ I, ℓ(b) ≥ k}. (2.49)Denote the number of elements in I by K. Now, order the indi
es in I in in
reasingorder and for a given 
aterpillar in A let Ni, 1 ≤ i ≤ K be the term in the 
aterpillar1We use the same notation for the degree distribution as in the 
ase w1 ≤ wc.
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orresponding to the i�th index in I. We 
an then write
ν̃N (A) = Z−1

N W0

∑

N1+···+NK+M=N+k−c0
Nj≥k, ∀j

ZM

K∏

i=1

(Ni − 1)wNi
wNi−2

1 (2.50)where
W0 =

∏

i∈I

(ci − 1)wci
wci−2

1 and c0 =
∑

i∈I

ci. (2.51)First 
onsider the 
ontribution to the sum in (2.50) from terms for whi
h Ni ≥
(N + k − c0)/(K + 1) for some i = 1, . . . ,K. It 
an be estimated from above by

C sup{(Ni − 1)wNi
wNi−2

1 ζNi−2
0 | Ni ≥ (N + k − c0)/(K + 1)} (2.52)where C is a number independent of N . This 
learly 
onverges to zero as N −→ ∞sin
e w1ζ0 < ρ. The remaining 
ontribution to the sum is from terms where M ≥

(N + k − c0)/(K + 1). We then �nd that
ν̃N (A) −→ ζk

0

∏

i∈I

(ci − 1)wci
(w1ζ0)

ci−2

(
∞∑

i=k

(i− 1)wi(w1ζ0)
i−2

)K (2.53)as N −→ ∞. It is 
lear from the above 
al
ulations and the formula (2.53) that ν̃has the stated properties.
w1 = wc: In this 
ase w1ζ0 = ρ = 1 and ZN ∼ Nβ−3ζ−N

0 where β > 2, 
f. Lemma2.2.3. We pro
eed as in the generi
 
ase up to Equation (2.52) whi
h is repla
ed bythe estimate
C sup{Z−1

N ζ−N
0 (Ni − 1)wNi

| Ni ≥ (N + k − c0)/(K + 1)} ∼ N2(2−β) (2.54)whi
h 
onverges to zero as N −→ ∞ sin
e β > 2. We then 
ontinue and get the result(2.53) as above.
w1 > wc: In this 
ase w1ζ0 = 1 and ZN ∼ N−β+1ζ−N

0 
f. Lemma 2.2.2 where β > 2.First assume that ℓ(c) ≥ k as in the previous 
ases. Then Equation (2.50) ap-plies. However, the upper bound (2.52) no longer 
onverges to zero. We there-fore 
onsider the 
ontribution from terms for whi
h two di�erent numbers n1, n2 ∈
{N1, . . . , NK ,M} obey n1 ≥ (N + k − c0)/(K + 1) and n2 > J for some positive
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al a
tionnumber J > k. As in (2.35), this 
ontribution is estimated from above by
C
∑

i>J

i−β+1 (2.55)where C is a positive number independent of N and J . This 
onverges to zero as
J −→ ∞ sin
e β > 2. The only remaining 
ontribution to ν̃N (A) is

Z−1
N W0

( K∑

i=1

∑

N1+···+NK+M=N+k−c0
k≤Nj≤J, j 6=i, M≤J

Ni≥k

ZM

K∏

j=1

(Nj − 1)wNj
w

Nj−2
1

+
∑

N1+···+NK+M=N+k−c0
k≤Nj≤J, ∀j

ZM

K∏

j=1

(Nj − 1)wNj
w

Nj−2
1

)

−−−−→
N→∞

W0ζ
−k+2K+c0
0

(

K(w1 − wc)
2

J∑

n=1

Znζ
n
0

( J∑

n=k

(n− 1)wn

)K−1

+
( J∑

n=k

(n− 1)wn

)K
)

−−−−→
J→∞

ζk
0

∏

i∈I

(ci − 1)wci

( ∞∑

n=k

(n− 1)wn

)K−1
(

K(w1 − wc) +
∞∑

n=k

(n− 1)wn

)

.(2.56)Now assume that ℓ(c) < k. Then with pre
isely the same 
al
ulation (with no ZMfa
tor) one gets
ν̃N (A) −→ ζ

ℓ(c)
0

∏

i∈I

(ci − 1)wci

( ∞∑

n=k

(n− 1)wn

)K−1

K(w1 − wc)
2 (2.57)as N −→ ∞. From (2.57) one sees that ν̃ is 
on
entrated on the set of 
aterpillarsof �nite length with the stated length distribution ψ. The estimate (2.55) shows thatthere appears pre
isely one vertex of in�nite degree on the spine and one 
an dedu
ethe distribution of the degree of the others from (2.57).

�



2.4 Dimensions of the di�erent phases 312.4 Dimensions of the di�erent phasesThe generi
 phase is very simple and it is one dimensional for any sensible notion ofdimension. The same applies on the 
riti
al line when g′′(1) < ∞. We state this inthe following theorem.Theorem 2.4.1 For the generi
 bran
hing weights in Lemma 2.2.1 and the 
riti
albran
hing weights in Lemma 2.2.3 with β > 3, it holds that
d̄s = d̄H = 1 (2.58)and
ds = dH = 1 (2.59)almost surely.Proof We start by 
onsidering the Hausdor� dimension. For an in�nitely long ran-dom 
aterpillar c ∈ (C̃, ν̃), let (Xn(c))n be a sequen
e of random variables 
orre-sponding to the number of leaves atta
hed to the verti
es s1, s2, . . . of c. De�ne

SR(c) =
∑R

i=1Xi(c). Then |BR(c)| = SR−1(c) +R. From (2.45) it is 
lear that
〈|BR|〉ν̃ = (ζ0g

′′(w1ζ0) − 2)(R− 1) +R. (2.60)Sin
e g′′(w1ζ0) < ∞ it follows from (1.21) that the annealed Hausdor� dimension is
d̄H = 1. By the strong law of large numbers

|BR(c)|/R −→ ζ0g
′′(w1ζ0) − 1 <∞ (2.61)almost surely as R −→ ∞ whi
h shows that dH = 1 almost surely.Next we �nd the spe
tral dimension by establishing bounds on the return probabil-ity generating fun
tion. Let c be an in�nitely long 
aterpillar with the 
orrespondingreturn and �rst return generating fun
tions Qc(x) and Pc(x). We get an upper boundon Qc(x) by throwing away all the leaves from the spine. Then, by the monotoni
ityresults of [37℄ we �nd that

Qc(x) ≤ x−1/2 (2.62)whi
h shows that d̄s ≥ 1 and ds ≥ 1 almost surely. To get a lower bound on Qc(x) weuse a slight modi�
ation of Lemma 7 in [38℄ whi
h is the following. For all integers
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R > 1 and 0 < x ≤ 1,

Pc(x) ≥ 1 − 1

R− 1
− x− x|BR(c)|. (2.63)We then get, using (1.15),

Qc(x) ≥
1

1
R−1 + x+ x|BR(c)| (2.64)and by Jensen's inequality

〈Qc(x)〉ν̃ ≥ 1
1

R−1 + x+ x〈|BR|〉ν̃
. (2.65)Choose R =

[
x−1/2

]. We �nd, using (2.60) and (2.65), that d̄s ≤ 1. Using (2.64) andthe fa
t that |BR(c)| ∼ R almost surely shows that ds ≤ 1 almost surely.
�Next we 
onsider a point on the 
riti
al line where g′′(1) = ∞. We see straight awayfrom (2.60) that the annealed Hausdor� dimension is in�nite in this 
ase and Equation(2.65) provides no useful bound on the annealed spe
tral dimension. However we 
anobtain almost sure results on the dimensions.Theorem 2.4.2 For the 
riti
al bran
hing weights in Lemma 2.2.3 with 2 < β ≤ 3,it holds that

dH =
1

β − 2
(2.66)almost surely.Proof To make the notation more 
ompa
t de�ne γ = β − 2. We prove a strongerstatement, namely that there exist 
onstants C1 and C2 and for ν̃�almost all 
ater-pillars c a 
onstant Rc > 0 su
h that

C1(log(R)−1R)1/γ ≤ |BR(c)| ≤ (λ(R)R)1/γ (2.67)for all R ≥ Rc. Here, λ(R) 
an by any positive fun
tion with the property that
∞∑

R=1

1

Rλ(R)
<∞. (2.68)
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ular we 
an 
hoose λ(R) = (log(R))η for any η > 1 whi
h is su�
ient toobtain the desired result. Let (Xn(c))n be the sequen
e of random variables de�nedin the proof of Theorem 2.4.1. Sin
e 1/γ ≥ 1 it is 
learly su�
ient to prove theinequalities (2.67) for SR(c). Begin with the lower bound. Take κ, θ > 0. UsingMarkov's inequality and the independen
e of the Xi's we get
P(SR(c) < κ) = P

(
e−θSR > e−θκ

)
≤ eθκ

(

E

(

e−θXi(c)
))R

= eθκ
(
ζ0g

′(e−θ)
)R
.Taylor expanding g′(e−θ) around 1 yields

g′(e−θ) = g′(1) − (1 − e−θ)g′′(ξ) (2.69)for some number ξ ∈ (e−θ, 1). Sin
e g′′ is in
reasing, it holds that g′′(ξ) > g′′(e−θ).Estimating g′′(e−θ) by an integral and using ζ0g′(1) = 1 yields
ζ0g

′(e−θ) ≤ 1 − C(1 − e−θ)γ ≤ e−C(1−e−θ)γ

= e−Cθγ(1+O(θ)) (2.70)where C is a 
onstant. Now 
hoose κ = K(log(R))−1/γR1/γ and θ = 1/κ. Then, for
R large enough

P(SR(c) < K(log(R))−1/γR1/γ) ≤ C3e
−CK−γ log(R) = C3R

−CK−γ (2.71)where C3 is a positive 
onstant. Choosing K = C1 small enough we see that
∞∑

R=1

P(SR(c) < C1(log(R))−1/γR1/γ) <∞ (2.72)and therefore, by the Borel�Cantelli lemma, there exists a 
onstant Rc su
h that
SR(c) ≥ C1(log(R))−1/γR1/γ almost surely for all R ≥ Rc.The upper bound follows from [41, Theorem 2℄ whi
h states, for our purposes,that the probability of the event

SR(c) > aR, for in�nitely many R (2.73)is zero if the sum
∞∑

R=0

P(Xk ≥ aR) (2.74)
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al a
tion
onverges, where aR is a positive sequen
e with the property that aR/R −→ ∞ as
R −→ ∞. Now

P(Xk ≥ aR) ≤ C4a
−γ
R (2.75)for a suitable 
onstant C4. Choosing aR = (λ(R)R)1/γ , where λ(R) has the propertiesstated above, 
ompletes the proof.

�Theorem 2.4.3 For the 
riti
al bran
hing weights in Lemma 2.2.3 with 2 < β ≤ 3,it holds that
ds =

2

β − 1
(2.76)almost surely.Proof Let c be an in�nitely long 
aterpillar. Equation (2.64) provides a lower boundon Qc(x) and Equation (6) in [38℄ provides an upper bound su
h that

1
1

R−1 + x+ x|BR(c)| ≤ Qc(x) ≤ R+
2

x|BR(c)| . (2.77)Using (2.67) for a suitable 
hoi
e of λ(R) we get ν̃�almost surely the inequality
1

1
R−1 + x+ x(λ(R)R)1/(β−2)

≤ Qc(x) ≤ R+
2

xC1(log(R)−1R)1/(β−2)
(2.78)for all R ≥ Rc and Rc large enough. Choosing R = [x−

β−2
β−1 ] we �nd that there arenumbers K1(c) and K2(c) su
h that ν̃�almost surely

K1(c)λ([x
− β−2

β−1 ])−1x−
β−2
β−1 ≤ Qc(x) ≤ K2(c) log([x−

β−2
β−1 ])x−

β−2
β−1 . (2.79)This yields the desired result.

�Theorem 2.3.1 implies that the Hausdor� dimension dH of a random 
aterpillarin the sub
riti
al phase is almost surely in�nite sin
e with probability one there is aball of �nite radius whi
h 
ontains in�nitely many verti
es. The annealed Hausdor�dimension is in�nite by the same argument. Similarly, the spe
tral dimension is almostsurely in�nite be
ause a random walk whi
h hits the in�nite order vertex returns tothe root with probability 0. From the analysis below one 
an easily 
he
k that the
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hosen sub
riti
al 
aterpillar τ , pτ (t), de
ays fasterthan any power of t.In the remainder of this se
tion we show that, although the spe
tral dimension isalmost surely in�nite, the annealed spe
tral dimension is �nite.Theorem 2.4.4 For sub
riti
al 
aterpillars de�ned by the weight fa
tors given in(2.30) with w1 > wc it holds that
d̄s = 2(β − 1). (2.80)Proof We will refer to the unique vertex of in�nite order as the trap. If the walkhits the trap it returns to the root with probability zero. Therefore, the part ofthe 
aterpillar beyond the trap is irrelevant for the random walk. When �nding thespe
tral dimension it is therefore natural to 
onsider the probability that the trap isat a distan
e ℓ from the root instead of 
onsidering the probability of the total lengthof the 
aterpillar given in (2.46).For a 
aterpillar of a given length, all the verti
es between r1 and r2 are equallylikely to be of in�nite order so the probability that the trap is at a distan
e ℓ fromroot is given by

p(ℓ) =

∞∑

k=ℓ+1

ψ(k)

k − 1
=
(

1 − wc

w1

)(wc

w1

)ℓ−1

. (2.81)From now on we will disregard the part of the 
aterpillar beyond the trap. Let Bℓ,kbe the set of 
aterpillars with distan
e ℓ between root and trap and whi
h have onevertex of order k and all other verti
es of order no greater than k, with the ex
eptionof the trap of 
ourse. Let a(k) be the probability that a given vertex on the spinebetween the root and the trap has order no greater than k. Then
a(k) =

k∑

q=2

φ(q). (2.82)The probability that at least one of these verti
es has order k and all the others haveorder no greater than k is then
c(k, ℓ) = a(k)ℓ−1 − a(k − 1)ℓ−1. (2.83)



36 Chapter 2 Caterpillars with a lo
al a
tionThe average return generating fun
tion for the sub
riti
al 
aterpillars is then
Q(x) =

∞∑

ℓ=1

p(ℓ)
∞∑

k=2

c(k, ℓ)
∑

τ∈Bℓ,k

ν̃({c | c ∈ Bℓ,k})Qτ (x). (2.84)For a given distan
e ℓ between root and trap we denote byMℓ the linear subgraphwhi
h starts at the root and ends at the trap, see Fig. 2.4. The �rst return generatingfun
tion for Mℓ is given by
PMℓ

(x) = 1 −√
x

(1 +
√
x)ℓ + (1 −√

x)ℓ

(1 +
√
x)ℓ − (1 −√

x)ℓ
, (2.85)see e.g. [37℄. Now atta
h k − 2 links to ea
h vertex of the graph Mℓ ex
ept the rootand the trap and denote the resulting graph by Mℓ,k, see Fig. 2.5. Then Mℓ,k is thelargest graph in the set Bℓ,k. Using the methods of [51℄ we �nd that the �rst returngenerating fun
tion for Mℓ,k is

PMℓ,k
(x) =

(

1 +
k − 2

2
x

)

PMℓ
(xk(x)) (2.86)where

xk(x) =
(k−2)2

4 x2 + (k − 1)x
(
1 + k−2

2 x
)2 . (2.87)To �nd an upper bound on the spe
tral dimension of sub
riti
al 
aterpillars weestablish a lower bound on the n-th derivative of the average return generating fun
-tion. Let n be the smallest positive integer su
h that Q(n)(x) diverges as x −→ 0. Wesee in the following 
al
ulations that we have to 
hoose n su
h that n+1 < β ≤ n+2.By (1.15) we �nd that (−1)nQ

(n)
τ ≥ (−1)nP

(n)
τ for any τ . Thus, by di�erentiating(2.84) n times and throwing away every term in the sum over ℓ ex
ept the ℓ = 2 term,

�
�
�
�

�� �
�
�
�

�� *
ℓFigure 2.4: The graph Mℓ. The root is denoted by a 
ir
led vertex and the trap by anasterisk.
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(−1)nQ(n)(x) ≥ (−1)n

(

1 − wc

w1

)
wc

w1

∞∑

k=2

φ(k)P
(n)
M2,k

(x). (2.88)We easily �nd that
PM2,k

(x) =
1 − x

2 + (k − 2)x
(2.89)and show by indu
tion that

P
(n)
M2,k

(x) = (−1)nn!
(k − 2)n−1k

(2 + (k − 2)x)n+1
. (2.90)Then, by (2.47) and (2.90),

(−1)n
∞∑

k=2

φ(k)P
(n)
M2,k

(x) =
n!

wc

∞∑

k=2

(k − 2)n−1k1−β(k − 1)

(2 + (k − 2)x)n+1

≥ Cxβ−n−2

∫ ∞

x

yn+1−β

(2 + y)n+1
dy (2.91)where C > 0 is a 
onstant. If β < n+ 2 the last integral is 
onvergent when x −→ 0but if β = n+ 2 it diverges logarithmi
ally. In both 
ases we get an upper bound forthe annealed spe
tral dimension d̄s ≤ 2(β − 1).To �nd a lower bound on the spe
tral dimension of sub
riti
al 
aterpillars weestablish an upper bound on the n-th derivative of the average return generatingfun
tion. First note that 1 > a(k) = a(k − 1) + φ(k) and therefore

c(k, ℓ) = (a(k) − a(k − 1))

×
(
a(k)ℓ−2 + a(k)ℓ−3a(k − 1) + . . .+ a(k)a(k − 1)ℓ−3 + a(k − 1)ℓ−2

)

≤ φ(k)(ℓ − 1). (2.92)
�
�
�
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*
ℓ

k − 2 k − 2 k − 2

Figure 2.5: The graph Mℓ,k.



38 Chapter 2 Caterpillars with a lo
al a
tionNow 
onsider a 
aterpillar τ ∈ Bℓ,k and the graphMℓ. Denote the verti
es on thespine of Mℓ between the root and the trap by s1, s2, . . . , sℓ−1. One 
an obtain thegraph τ from Mℓ by atta
hing mτ (si) links to si, i = 1, . . . , ℓ− 1 where 0 ≤ mτ (si) ≤
k − 2. Using the methods of [51℄ we 
an write

Qτ (x) =
∑

ω: r1−→r1on Mℓ

Kτ (x, ω)WMℓ
(ω)(1 − x)|ω|/2 (2.93)where the sum is over all random walks ω on Mℓ whi
h begin and end at the root,

Kτ (x, ω) =

|ω|−1
∏

t=1
ωt∈{s1,...,sℓ−1}

(

1 +
mτ (ωt)

2
x

)−1 and (2.94)
WMℓ

(ω) =

|ω|−1
∏

t=0

(σ(ωt))
−1. (2.95)The i�th derivative of the fun
tion Kτ (x, ω) 
an be estimated as

(−1)i d
i

dxi
K(x, ω) ≤ H(|ω|) (k − 2)i

(2 + (k − 2)x)i
(2.96)where H is a polynomial with positive 
oe�
ients. From the relation (1.15) and theexpli
it formula (2.85) one 
an easily see that (−1)iQ

(i)
Mℓ

(0) is a positive polynomialin ℓ of degree 2i+ 1. Therefore, di�erentiating (2.93) n times and using the estimate(2.96) we get the upper bound
(−1)nQ(n)

τ (x) ≤
n∑

i=0

Si(ℓ)
(k − 2)i

(2 + (k − 2)x)i
(2.97)where the Si are positive polynomials in ℓ. Di�erentiating (2.84) n times w.r.t. x andusing the estimates (2.92) and (2.97) we �nally obtain

(−1)nQ(n)(x) ≤
n∑

i=0

∞∑

ℓ=1

p(ℓ)Si(ℓ)(ℓ− 1)
∞∑

k=2

φ(k)
(k − 2)i

(2 + (k − 2)x)i
. (2.98)The sum over ℓ is 
onvergent sin
e Si is a polynomial in ℓ and p(ℓ) de
ays exponen-tially. The sum over k is estimated from above by an integral as in (2.91) whi
h yieldsa lower bound on the annealed spe
tral dimension d̄s ≥ 2(β − 1). This proves (2.80).

�



2.5 Generalization of the 
aterpillar model 392.5 Generalization of the 
aterpillar modelThe 
aterpillar model 
an be generalized to more 
ompli
ated tree models by repla
ingthe leaves on the spine by trees with verti
es of orders bounded by K, the 
aterpillars
orrespond to K = 1. We will not go into details of the 
al
ulations for this model,however using a similar analysis as for the 
aterpillars, one obtains two phases: a �uidphase (generi
) and a 
ondensed phase (nongeneri
), separated by a 
riti
al value of
w1 given by

wc(K) = g′(1) −
K∑

n=2

wn. (2.99)In the �uid phase, the �nite volume probability measures 
onverge to a measure
on
entrated on trees with an in�nite spine with 
riti
al Galton�Watson2 outgrowthsanalogous to the generi
 trees in [38℄. In the 
ondensed phase the measures 
onvergeto trees with spine of a �nite length ℓ distributed by
ψ(ℓ,K) = (ℓ− 1)

(

1 − w1

wc(K)

)2(
wc(K)

w1

)ℓ

. (2.100)Exa
tly one of the verti
es on the spine has in�nite degree and the order of otherverti
es is independently distributed by
φ(k,K) =

1

wc(K)
(k − 1)wk, k ≥ 2. (2.101)The distribution of the distan
e between the root and the vertex of in�nite degree isgiven by

p(ℓ,K) =

(

1 − wc(K)

w1

)(
wc(K)

w1

)ℓ−1

. (2.102)The outgrowths from the spine are independent sub
riti
al Galton�Watson trees witho�spring probabilities
pn(K) =

wn+1
∑K

n=1 wn

, 0 ≤ n ≤ K − 1. (2.103)As N −→ ∞ one �nds that the size of the large vertex is approximately (1−m(K))Nwith high probability, where m(K) < 1 is the mean o�spring probability of theGalton�Watson pro
ess. What makes the 
al
ulations easy in the 
ondensed phase inthe above models is the fa
t that the large vertex whi
h emerges as N −→ ∞ has to2Galton�Watson pro
esses are de�ned in Se
tion 3.2.
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al a
tionstay on the spine due to the restri
tion on the order of the verti
es in the outgrowths.When the 
uto� on the vertex orders is removed (K = ∞) one obtains the tree modelwhi
h is studied in the next 
hapter (with the di�eren
e that there are two markedverti
es in the present model). In this 
ase it is more di�
ult to lo
ate the largevertex and one has to use other methods in the 
al
ulations. It is tempting to simplylet K −→ ∞ in the above formulas to 
hara
terize the K = ∞ model, on the otherhand it is not 
lear that inter
hanging the K −→ ∞ and N −→ ∞ limits is allowed.However the analysis in the next 
hapter shows that the above 
hara
terization ofthe 
ondensed phase holds and one arrives at the same formulas as one would get bysimply taking K −→ ∞.



3Planar trees with a lo
ala
tionIn this 
hapter we study an equilibrium statisti
al me
hani
al model of planar treeswith a lo
al a
tion. We start by de�ning the set of planar trees and endow it witha metri
. We then introdu
e the model and show that it exhibits two phases, anelongated and a 
ondensed phase. The main results are the proof of the asymptoti
behaviour of the �nite volume partition fun
tion in the 
ondensed phase. This resultis used to prove 
onvergen
e of the �nite volume measures to a measure on in�nitetrees. We 
on
lude by 
al
ulating the annealed spe
tral dimension, with respe
t tothe in�nite volume measure, in the 
ondensed phase.3.1 Planar treesIn this se
tion we de�ne rooted planar trees and 
onstru
t a metri
 on the set of allrooted planar trees. The de�nition resembles the one given in [35℄, however here wealso allow verti
es of in�nite degree. We in
lude verti
es of in�nite degree sin
e theyappear in the 
ondensed phase of the random tree model in Se
tion 3.3. In words,the planarity 
ondition means that edges in
ident on a vertex are ordered. Whenthe degree of a vertex is in�nite one has many di�erent possibilities of ordering thelinks and therefore the planarity 
ondition must by 
arefully de�ned. The de�nitionsbelow take 
are of this point, the verti
es are allowed to have at most 
ountably41



42 Chapter 3 Planar trees with a lo
al a
tionin�nite degree and the edges are given the simplest possible ordering.We start by introdu
ing a sequen
e of pairwise disjoint, 
ountable sets (DR)R≥0with the properties that if DR = ∅ then DS = ∅ for all S ≥ R. The sets D0 and D1are de�ned to have only a single element. The set DR will eventually denote the setof verti
es at a distan
e R from the root. To introdu
e the edges and the planarity
ondition, we de�ne orderings on ea
h of the sets DR and order preserving maps
φR : DR −→ DR−1, R ≥ 1 (3.1)whi
h satisfy the following: For ea
h vertex v ∈ DR−1 su
h that |φ−1

R (v)| = ∞, thereexists an order isomorphism
ψv : N −→ φ−1

R (v)where N has the standard ordering. If |φ−1
R (v)| <∞ we de�ne the order isomorphism

ψv : {1, 2, . . . , |φ−1
R (v)|} −→ φ−1

R (v). One 
an show by indu
tion on R that su
horderings on DR 
an be de�ned and that they are well�orderings. It is 
lear thatgiven the ordered sets DR, R ≥ 0 and the order preserving maps φR, R ≥ 1 with theabove properties, the maps ψv are unique.Let Γ̃ be the set of all pairs of sequen
es {(D0, D1, D2, . . .), (φ1, φ2, . . .)} whi
hsatisfy the above 
onditions. De�ne an equivalen
e relation ∼ on Γ̃ by identifyingthe elements {(D0, D1, . . .), (φ1, φ2, . . .)} and {(D′
0, D

′
1, . . .), (φ

′
1, φ

′
2, . . .)} if and onlyif for all R ≥ 1 there exist order isomorphisms χR : DR −→ D′
R su
h that φ′R =

χR−1 ◦ φR ◦ χ−1
R . De�ne Γ := Γ̃/ ∼. If τ ∈ Γ̃ we denote the equivalen
e 
lass of τ by

[τ ] and 
all it a rooted planar tree, 
f. Se
tion 1.3.1. As a graph, the tree has a vertexset
V =

∞⋃

R=0

DRand an edge set
E = {(v, φR(v)) | v ∈ DR, R ≥ 1}whi
h are independent of the representative {(D0, D1, . . .), (φ1, φ2, . . .)} up to graphisomorphisms. The single element in D0 is taken to be the root. In the following, allproperties of trees [τ ] ∈ Γ we are interested in are independent of representatives andwe write τ instead of [τ ]. Rather than always spe
ifying the sequen
es (D0, D1, D2, . . .)and (φ1, φ2, . . .), we will refer to the elements in Γ with a single Greek letter, usually

τ . We then write DR(τ), φR(·, τ) et
. when we need more detailed information on τ .Note that sin
e the sets DR, D
′
R are well�ordered for all R ≥ 1 the order isomor-
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ψv(1)

ψv(2)
ψv(3)

v

Towards rootFigure 3.1: The ordering of φ−1
R (v).phisms χR in the above de�nition are unique. When we draw the trees in the plane weuse the 
onvention that ψv(k) is the k-th vertex 
lo
kwise from the nearest neighbourof v 
losest to the root. See Figure 3.1.We de�ne the left ball of graph radius R, LR(τ) as the subtree of BR(τ) gen-erated by subsets ES ⊆ DS(BR(τ)), S = 1, ..., R su
h that E0 = D0(BR(τ)),

E1 = D1(BR(τ)) and
ES = {ψv(i) | v ∈ ES−1, i = 1, 2, . . . ,min{R, σ(v)} − 1} (3.2)for S ≥ 2, see Fig. 3.2. It is easy to 
he
k that for all τ ∈ Γ

|LR(τ)| ≤ (R− 1)R − 1

R− 2
. (3.3)We de�ne a metri
 d on Γ by

d(τ1, τ2) = inf

{
1

R

∣
∣
∣
∣
LR(τ1) = LR(τ2), R ∈ N

}

, τ1, τ2 ∈ Γ. (3.4)The metri
 used in [35,38℄, in the study of the generi
 phase, is de�ned in the same
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L3(τ)

Figure 3.2: An example of the subgraphs BR(τ ) and LR(τ ).
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al a
tionway as d but the ball BR is used instead of LR. Trees whi
h are di�erent 
lose to theroot are always �far apart� in this metri
 and therefore it is only suitable to measuredistan
es between trees of a large diameter whi
h have verti
es of �nite degree. Inthe new metri
 d however, trees 
an be 
lose to ea
h other if they do not di�er toomu
h 
lose to the root.Denote the open ball in Γ 
entered at τ0 and with radius r by
Br(τ0) = {τ ∈ Γ | d(τ0, τ) < r}. (3.5)In the same way as in the previous 
hapter on the 
aterpillars we �nd that the metri
spa
e (Γ, d) has the following properties.Proposition 3.1.1 The metri
 spa
e (Γ, d) is 
ompa
t.Proposition 3.1.2 For r > 0 and τ0 ∈ Γ, the ball Br(τ0) is both open and 
losed.Moreover, if τ1 ∈ Br(τ0) then Br(τ1) = Br(τ0).Proposition 3.1.3 The set Γ′ of �nite trees is a 
ountable dense subset of Γ.3.2 The modelLet wn, n ≥ 1 be a sequen
e of nonnegative numbers whi
h we 
all bran
hing weights.For te
hni
al 
onvenien
e we will always take

w1, w2 > 0 and wn > 0 for some n ≥ 3. (3.6)De�ne the �nite volume partition fun
tion
ZN =

∑

τ∈ΓN

∏

i∈V (τ)\{r}

wσ(i). (3.7)De�ne a probability distribution νN on ΓN by
νN (τ) = Z−1

N

∏

i∈V (τ)\{r}

wσ(i). (3.8)The weights wn, or alternatively the measures νN , de�ne a tree ensemble. Note that
νN is not a�e
ted by a res
aling of the bran
hing weights of the form wn → wnab

n
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Z(ζ)ζ

=
∞∑

i=0

wi+1

Z(ζ)

Z(ζ)

Z(ζ)

iFigure 3.3: A diagram explaining the re
ursion (3.11). The root is indi
ated by a 
ir
ledpoint.where a, b > 0. We introdu
e the generating fun
tions
Z(ζ) =

∞∑

N=1

ZNζ
N (3.9)and

g(z) =

∞∑

n=0

wn+1z
n. (3.10)Then we have the standard relation

Z(ζ) = ζg(Z(ζ)) (3.11)whi
h is explained in Fig. 3.3.Denote the radius of 
onvergen
e of Z(ζ) and g(z) by ζ0 and ρ respe
tively andde�ne Z0 = Z(ζ0). If Z0 < ρ then we say that we have a generi
 (elongated, �uid)ensemble of trees. Otherwise we say that we have a nongeneri
 ensemble. If ρ = ∞then we always have a generi
 ensemble. If ρ is �nite then we �x ρ = 1 by s
aling thebran
hing weights wn → wnρ
n−1.There is an interesting and useful relation between the tree ensemble (ΓN , νN )and trees generated by the so 
alled Galton�Watson pro
ess. The pro
ess is de�nedin the following way. We start with a single an
estor (in general there 
an be many)whi
h has n o�springs with probability pn where pn are nonnegative numbers and

∞∑

n=0

pn = 1. (3.12)
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al a
tionEa
h o�spring then has n o�springs itself independently with the same probabilities
pn and so on. For 
onvenien
e we add a root r to the Galton�Watson trees by linkinga vertex of order one to the an
estor. The pro
ess generates a probability measureon the set of all �nite trees

µ(τ) =
∏

i∈V (τ)\{r}

pσ(i)−1, where τ ∈ Γ′. (3.13)We de�ne a generating fun
tion for the o�spring probabilities
f(z) =

∞∑

n=0

pnz
n. (3.14)Galton�Watson pro
esses are usually divided into three 
ategories depending on thesize of the �rst moment of the generating fun
tion m = f ′(1). It is 
lear that mrepresents the mean number of o�springs of ea
h individual. If m > 1 the pro
essis said to be super
riti
al and the probability that it survives forever is positive. If

m = 1 the pro
ess is said to be 
riti
al and it dies out eventually with probabilityone. If m < 1 the pro
ess is said to be sub
riti
al and it dies out eventually withprobability one, mu
h faster than in the 
riti
al 
ase.The probability distribution νN 
an be obtained from a Galton�Watson pro
esswith o�spring probabilities
pn = ζ0wn+1Zn−1

0 (3.15)by 
onditioning the trees to be of size N
νN (τ) =

µ(τ)

µ(ΓN )
. (3.16)The mean o�spring probability is then

m = Z0
g′(Z0)

g(Z0)
(3.17)whi
h we will show to be ≤ 1 by (3.11). Generi
 trees are always 
riti
al and non-generi
 trees 
an be either 
riti
al or sub
riti
al. We will now analyse this in moredetail. As mentioned above ρ = ∞ is always generi
. Let us start with a set ofbran
hing weights wn whi
h give ρ = 1. At this stage the model 
an be either generi
or nongeneri
. We �x the values of wn for n ≥ 2 but for now we let w1 be a free



3.2 The model 47parameter of the model. De�ne
h(Z) ≡ g(Z)

Z . (3.18)From (3.11) we see that h(Z) = 1/ζ(Z) for Z ≤ Z0. Di�erentiating h we get
h′(Z) =

g(Z)

Z2

[

Z g
′(Z)

g(Z)
− 1

] (3.19)and again
h′′(Z) =

g′′(Z)

Z − 2

Z h
′(Z). (3.20)The generi
ity 
ondition 
an be interpreted as h having a quadrati
 minimum at

Z = Z0 < 1, see Fig. 3.4. This means thatm = Z0
g′(Z0)
g(Z0) = 1 showing that the generi
phase 
orresponds to 
riti
al Galton�Watson trees. This shows that given a Z0 < 1and the bran
hing weights wn, n ≥ 2, it must hold that w1 =

∑∞
n=2(n− 2)wnZn−1

0 .We 
an therefore make any model with ρ = 1 generi
 by 
hoosing
w1 <

∞∑

n=2

(n− 2)wn ≡ wc (3.21)where wc is a 
riti
al value for w1 whi
h depends on wn for n ≥ 3. It is interestingto note that the 
riti
al value is independent of w2. Also note that if wc = ∞, i.e. if
g′(z) diverges as z −→ 1, we always have a generi
 ensemble.The next possible s
enario is that h has a quadrati
 minimum at Z = Z0 = 1. Thishappens when w1 = wc or in other words when m = g′(1)

g(1) = 1. This is a nongeneri

(a)

h(Z)

ZZ0 ρ = 1

h(Z)

ZZ0 = ρ = 1

(b)

h(Z)

Z0 = ρ = 1 Z
(c)Figure 3.4: The three possible s
enarios. (a) Generi
, 
riti
al, w1 < wc.(b) Nongeneri
, 
riti
al, w1 = wc. (
) Nongeneri
, sub
riti
al, w1 > wc.
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�
�
�

�
�
�

��
��
��
��

��
��
��
�� Subcritical

2

Generic

Critical

1w

βFigure 3.5: A diagram showing the possible phases of the trees. The 
riti
al line is deter-mined by the equation w1 = wc.ensemble whi
h still 
orresponds to 
riti
al Galton�Watson trees.Finally, by 
hoosing w1 > wc, h has no quadrati
 minimum and m = g′(1)
g(1) < 1. Inthis 
ase the trees are nongeneri
 and 
orrespond to sub
riti
al Galton�Watson trees.We will refer to this phase as the sub
riti
al nongeneri
 phase or the 
ondensed phase.3.3 Sub
riti
al nongeneri
 treesIn this se
tion we examine the sub
riti
al nongeneri
 phase and determine the asymp-toti
 behaviour of ZN . We �x a number β and for n ≥ 2 we �x the bran
hing weightssu
h that

wn = n−β(1 + o(1)), n ≥ 2 (3.22)and for now w1 is a free parameter. In this 
ase ρ = 1. If β ≤ 2 then g′(1) = ∞ andtherefore we are in the generi
 phase for all values of w1. If β > 2 we 
an have anyone of the three 
ases dis
ussed in the previous se
tion depending on the value of w1,see Fig. 3.5. Now 
hoose β > 2 and w1 > wc su
h that
m =

g′(1)

g(1)
< 1, (3.23)meaning we are in the nongeneri
, sub
riti
al phase. Then Z0 = ρ = 1 and we seefrom (3.11) that

ζ0 =
1

g(1)
. (3.24)The main result of this se
tion is the following.
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riti
al nongeneri
 trees 49Theorem 3.3.1 For the bran
hing weights (3.22) whi
h satisfy (3.23) it holds that
ZN = (1 −m)−βN−βζ1−N

0 (1 + o(1)) . (3.25)To determine the large N behaviour of ZN we split it into the following sum
ZN = Z1,N + EN (3.26)where Z1,N is the 
ontribution to ZN from trees whi
h have exa
tly 1 vertex ofmaximum degree and EN is the 
ontribution to ZN from trees whi
h have ≥ 2 verti
esof maximum degree. The plan is to estimate these two terms separately and show thatfor largeN the main 
ontribution is from Z1,N . It will follow from the proof that largetrees, of sizeN , are most likely to have exa
tly one large vertex whi
h is approximatelyof degree (1−m)N . This will be stated more pre
isely in Se
tion 3.4. The argumentsused in the proof of Theorem 3.3.1 rely on a �trun
ation method� and some 
lassi
alresults from probability theory. We begin the proof by de�ning trun
ated versionsof the generating fun
tions introdu
ed in the previous se
tion. Then we introdu
enotation from probability theory and state a few lemmas. In Subse
tion 3.3.1 weanalyse the asymptoti
 behaviour of Z1,N and in Subse
tion 3.3.2 we do the same for

EN .For the trun
ation method, we will need the following de�nitions. Let Li,N be the�nite volume partition fun
tion for trees of N edges whi
h have all verti
es of degree
≤ i and de�ne the fun
tions

Li(ζ) =
∞∑

N=1

Li,Nζ
N (3.27)and

ℓi(z) =

i−1∑

n=0

wn+1z
n. (3.28)We have the standard relation

Li(ζ) = ζℓi(Li(ζ)) (3.29)obtained in the same way as (3.11).
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al a
tionLet Yj,i,N be the �nite volume partition fun
tion for trees of N edges whi
h haveall verti
es of degree ≤ i and one marked (not weighted) vertex of degree one atdistan
e j from the root. De�ne
Yj,i(ζ) =

∞∑

N=1

Yj,i,Nζ
N (3.30)and

Yi(ζ) =

∞∑

j=1

Yj,i(ζ). (3.31)With generating fun
tion arguments we �nd that
Yj,i(ζ) = ζℓ′i(Li(ζ))Yj−1,i(ζ) (3.32)for j ≥ 2, see Fig. 3.6. Using Y1,i(ζ) = ζ this yields
Yj,i(ζ) = ζ

(

ζℓ′i(Li(ζ))
)j−1

, (3.33)and by summing over j we get
Yi(ζ) =

ζ

1 − ζℓ′i(Li(ζ))
. (3.34)

j

≤ i

≤ i
≤ i

≤ i
ζ Yj−1,i(ζ)

Li(ζ)

Li(ζ)

Yj,i(ζ)

=
i−1∑

k=0

k wk+1

≤ i k

Li(ζ)

j − 1

Figure 3.6: A diagram explaining (3.33). The marked vertex is indi
ated by ⊗. Theballoons whi
h in
lude the �≤ i� are trees whi
h have verti
es of degree at most i. If thedegree of the nearest neighbour to the root is k + 1, there are k di�erent ways of pla
ing themarked vertex onto a balloon.



3.3 Sub
riti
al nongeneri
 trees 51It will be useful to formulate our problem in the language of probability theory.De�ne the probability generating fun
tions
fi(z) =

ℓi(z)

ℓi(1)
and f(z) =

g(z)

g(1)
. (3.35)Let X(i)

1 , X
(i)
2 , . . . be i.i.d. random variables whi
h have a probability generating fun
-tion fi(z) i.e.

P(X
(i)
j = k) =

{

wk+1/ℓi(1) if 0 ≤ k ≤ i− 1,

0 if k > i− 1,
(3.36)and let X1, X2, . . . be i.i.d. random variables whi
h have a probability generatingfun
tion f(z). De�ne

mi = E(X
(i)
j ), σ2

i = Var(X(i)
j ), S

(i)
N = X

(i)
1 + . . .+X

(i)
N (3.37)and

SN = X1 + . . .+XN . (3.38)Note that m = E(Xj) and from (3.23) we know that m < 1. Clearly mi −→ m as
i −→ ∞. We need the following lemmas, the �rst three deal with 
onvergen
e ratesin the weak law of large numbers.Lemma 3.3.2 For any ǫ > 0 and any s < β − 2 it holds that

lim
N→∞

Ns
P

(∣
∣
∣
∣

SN

N
−m

∣
∣
∣
∣
> ǫ

)

= 0. (3.39)Proof It is 
lear that E(|Xj |t) <∞ for all t < β−1. The result then follows dire
tlyfrom [60, Theorem 28, pg. 286℄.
�The next Lemma is a 
lassi
al result of Bennett [15℄.Lemma 3.3.3 (Bennett's inequality) If W1,W2, . . . are independent random vari-ables, E(Wj) = 0, Var(Wj) = σ2

W and Wj ≤ b a.s. for every j, where b and σW arepositive numbers, then for any ǫ > 0

P




1

N

N∑

j=1

Wj > ǫ



 ≤ exp

{

−η
[(

1 +
1

λ

)

log (1 + λ) − 1

]} (3.40)
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al a
tionwith
η =

Nǫ

b
and λ =

bǫ

σ2
W

. (3.41)Lemma 3.3.4 If i = O(Nγ) where γ < 1 then for any ǫ > 0 small enough thefollowing holds
P

(

S
(i)
N

N
−mi > ǫ

)

≤ exp
{
−CǫN1−γ

}
. (3.42)where C is a positive 
onstant.Proof This follows dire
tly from Bennett's inequality with Wj = X

(i)
j −mi. Then

σW = σi and we 
an take b = i sin
e X(i)
j < i almost surely. Now assume that

i = O(Nγ). Then
η = ǫO(N1−γ). (3.43)If β > 3 then σi <∞ and λ = O(Nγ) and the result follows. If 2 < β ≤ 3 then

σ2
i =

{

O(i3−β) if β < 3,

O(log(i)) if β = 3
(3.44)so λ −→ ∞ as N −→ ∞ whi
h 
ompletes the proof.

�In the following we will use Lagrange's inversion formula repeatedly [66, pg. 167℄. Weunderstand [zn] {f(z)} as the 
oe�
ient of zn in the Taylor expansion of f about
z = 0.Lemma 3.3.5 (Lagrange's inversion formula) If h(z) is a formal power series in zand Li satis�es (3.29) then

[ζN ] {h(Li(ζ))} =
1

N
[zN−1]

{
h′(z)ℓi(z)

N
}
. (3.45)Applying the above to the fun
tion h(z) = zj we get

[ζN ]
{
Li(ζ)

j
}

=
j

N
[zN−j]

{
ℓi(z)

N
}
. (3.46)The following lemma will be helpful. We omit the proof sin
e it is trivial.
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≤ i

≤ i

≤ i

≤ i

≤ i

wi+1

{ }

Z1,N =
∑N−1

i=0 [ζN ]

Li(ζ)

Li(ζ)

Li(ζ)

Li(ζ)

Yi(ζ)

Figure 3.7: An illustration of Equation (3.47). The balloons whi
h in
lude the �≤ i� aretrees whi
h have verti
es of degree at most i. There is thus pre
isely one vertex of maximumdegree i + 1.Lemma 3.3.6 If X ≥ 0 and Y are random variables then for any ǫ > 0

P (|X + Y | ≤ ǫ) ≥ P (X ≤ ǫ/2)P (|Y | ≤ ǫ/2)and
P (|X + Y | > ǫ) ≤ P (|Y | > ǫ/2) + P (X > ǫ/2) .3.3.1 Cal
ulation of Z1,NUsing the lemmas in the previous subse
tion we are ready to study the asymptoti
behaviour of Z1,N . It is easy to see that

Z1,N =

N−1∑

i=0

wi+1[ζ
N ]
{
Yi(ζ)Li(ζ)

i
}
, (3.47)as is explained in Fig. 3.7. Combining Equations (3.29) and (3.34) one 
an use theLagrange inversion formula (3.45) for the fun
tion

hij(z) =
zj+1

ℓi(z) − zℓ′i(z)
(3.48)to get

[ζN ]
{
Yi(ζ)Li(ζ)

j
}

=
1

N
[zN−j−1]

{(

j + 1

ℓi(z) − zℓ′i(z)
+

z2ℓ′′i (z)

(ℓi(z) − zℓ′i(z))
2

)

ℓi(z)
N

}

.
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al a
tionNote that the left hand side is in
reasing in i and therefore of 
ourse also the righthand side. This fa
t will be used repeatedly in the proof of Lemma 3.3.8. De�ne thefun
tions
fi,1(z) =

ℓi(1) − ℓ′i(1)

ℓi(z) − zℓ′i(z)
(3.49)and

fi,2(z) =
z2ℓ′′i (z)

(ℓi(z) − zℓ′i(z))
2

(ℓi(1) − ℓ′i(1))2

ℓ′′i (1)
. (3.50)It is easy to 
he
k that all derivatives of the fun
tions are positive for 0 ≤ z ≤ 1 andthat fi,1(1) = fi,2(1) = 1. We then de�ne X(i,1) and X(i,2) to be random variableshaving fi,1 and fi,2, respe
tively, as probability generating fun
tions. We will needthe following lemmaLemma 3.3.7 If i = O(N) as N −→ ∞ then for any ǫ > 01. P

(
X(i,1) ≥ ǫN

)
≤ C1N

2−β,2. ℓ′′N(1)P
(
X(i,2) ≥ ǫN

)
≤ C2

{

N3−β if β 6= 3,

log(N) if β = 3,where C1 and C2 are positive numbers whi
h in general depend on ǫ and β.Proof We use a weighted version of Chebyshev's inequality whi
h states that if X isa random variable and φ(x) > 0 for x > 0 is monotoni
ally in
reasing and E(φ(X))exists then
P (|X | ≥ t) ≤ E(φ(X))

φ(t)
. (3.51)First we prove 
ase (1). Choose φ(x) = x⌊β⌋ where ⌊·⌋ denotes the �oor fun
tion. Itis 
lear that f (n)

i,1 (1) < ∞ for all n and therefore E(φ(X(i,1))) < ∞. One 
an 
he
kthat as i −→ ∞

E(φ(X(i,1))) = O(ℓ
(⌊β⌋+1)
i (1)) = O(i−β+⌊β⌋+2). (3.52)If i = O(N) as N −→ ∞ then by the Chebyshev inequality there exists a positive
onstant C su
h that

P

(

X(i,1) ≥ ǫN
)

≤ C
N−β+⌊β⌋+2

(ǫN)⌊β⌋
= C

N2−β

ǫ⌊β⌋
. (3.53)
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 trees 55In the proof of 
ase (2) �rst 
onsider the 
ase when 2 < β ≤ 3. Then
ℓ′′N(1) =

{

O(N3−β) if β 6= 3,

O(log(N)) if β = 3,
(3.54)as N −→ ∞ whi
h proves the 
laim. If β > 3 then ℓ′′N(1) is �nite when N −→ ∞ andthe proof is exa
tly the same as in 
ase (1).

�We are now ready to prove the main result of this subse
tion.Lemma 3.3.8
Z1,N = (1 −m)−βN−βζ1−N

0 (1 + o(1)) . (3.55)Proof In this proof we let C,C1, C2, . . . denote positive numbers independent of Nwhose values may di�er between equations. De�ne
GN (a, b) = g(1)1−NNβ−1

∑

a≤n≤b

wN−n[zn]

{

ℓN−n−1(z)
N

×
(

N − n

ℓN−n−1(z) − zℓ′N−n−1(z)
+

z2ℓ′′N−n−1(z)

(ℓN−n−1(z) − zℓ′N−n−1(z))
2

)}

.(3.56)It follows that
NβζN−1

0 Z1,N = GN (0, N − 1). (3.57)Now 
hoose an ǫ > 0 small enough and a γ su
h that 2/β < γ < 1 and split the aboveexpression into four terms
NβζN−1

0 Z1,N = GN (0, ⌊(m− ǫ)N⌋) +GN (⌊(m− ǫ)N⌋ + 1, ⌊(m+ ǫ)N⌋)
+ GN (⌊(m+ ǫ)N⌋ + 1, ⌊N −Nγ⌋) +GN (⌊N −Nγ⌋ + 1, N − 1).(3.58)We show that as N −→ ∞ and ǫ −→ 0 the se
ond term has a positive limit but theother terms 
onverge to zero. To make the notation more 
ompa
t de�ne

N+ = N − ⌊(m+ ǫ)N⌋ − 1 and N− = N − ⌊(m− ǫ)N⌋. (3.59)
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al a
tionThe �rst term in (3.58) 
an be estimated from above by
GN (0, ⌊(m− ǫ)N⌋)

≤
(
N

N−

)β−1 ⌊(m−ǫ)N⌋
∑

n=0

[zn]

{

f(z)N

(

C1fN,1(z) +
C2ℓ

′′
N (1)

N − n
fN,2(z)

)}

≤ C3P

(∣
∣
∣
∣

SN +X(N,1)

N
−m

∣
∣
∣
∣
> ǫ

)

+
C4ℓ

′′
N(1)

N
P

(∣
∣
∣
∣

SN +X(N,2)

N
−m

∣
∣
∣
∣
> ǫ

)

.(3.60)By Lemma 3.3.6 we have for i = 1, 2,

P

(∣
∣
∣
∣

SN +X(N,i)

N
−m

∣
∣
∣
∣
> ǫ

)

≤ P

(∣
∣
∣
∣

SN

N
−m

∣
∣
∣
∣
> ǫ/2

)

+ P

(

X(N,i) > Nǫ/2
)

. (3.61)This, 
ombined with Equation (3.54) and Lemmas 3.3.2 and 3.3.7, shows that the twoterms in (3.60) go to zero as N −→ ∞.The third term in (3.58) is estimated from above by
GN (⌊(m+ ǫ)N⌋ + 1, ⌊N −Nγ⌋) ≤

(
N

N − ⌊N −Nγ⌋

)β−1

×
⌊N−Nγ⌋
∑

n=⌊(m+ǫ)N⌋+1

[zn]

{

f(z)N

(

C1fN,1(z) +
C2ℓ

′′
N (1)

(N − ⌊N −Nγ⌋)fN,2(z)

)}

≤ C3N
(1−γ)(β−1)

P

(∣
∣
∣
∣

SN +X(N,1)

N
−m

∣
∣
∣
∣
> ǫ

)

+ C4N
(1−γ)(β−1)−γℓ′′N (1)P

(∣
∣
∣
∣

SN +X(N,2)

N
−m

∣
∣
∣
∣
> ǫ

)

. (3.62)Sin
e γ > 2/β it holds that (1−γ)(β−1) < β−2 and (1−γ)(β−1)−γ < β−3. Thenby (3.54), (3.61) and Lemmas 3.3.2 and 3.3.7 we see that last two terms 
onverge tozero as N −→ ∞.To estimate the fourth term of (3.58) from the above we �rst note that
[ζN ] {Yi(ζ)} = [ζN ]

{
∂

∂w1
Li(ζ)

}

≤ N

w1
[ζN ] {Li(ζ)} (3.63)
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 trees 57and thus
GN (a, b) ≤ w−1

1 g(1)1−NNβ
∑

a≤n≤b

wN−n(N − n)[zn]
{
ℓN−n−1(z)

N
}
. (3.64)Using this for N large enough and ǫ small enough we get

GN (⌊N −Nγ⌋ + 1, N − 1) ≤ C1N
β

N−1∑

n=⌊N−Nγ⌋+1

[zn]
{
fN−⌊N−Nγ⌋(z)

N
}

≤ C1N
β
P

(

S
(N−⌊N−Nγ⌋)
N

N
−mN−⌊N−Nγ⌋ ≥ ǫ

)

≤ C1N
β exp

(
−C2ǫN

1−γ
) (3.65)where in the last step we used Lemma 3.3.4. The last expression 
onverges to zero as

N −→ ∞ sin
e γ < 1.Finally we show that the se
ond term in (3.58) has a nonzero 
ontribution as
N −→ ∞. By (3.22) we 
an 
hoose n large enough su
h that

(1 − ǫ)n−β ≤ wn ≤ (1 + ǫ)n−β .We then get the upper bound
GN (⌊(m− ǫ)N⌋ + 1, ⌊(m+ ǫ)N⌋) ≤ (1 + ǫ)g(1)

(
N

N+

)β−1

×
(

1

ℓN(1) − ℓ′N (1)

⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN,1(z)f(z)N

}

+
ℓ′′N(1)

(ℓN (1) − ℓ′N(1))2N+

⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN,2(z)f(z)N

}

)

≤ (1 + ǫ)g(1)

(
N

N+

)β−1(
1

ℓN (1) − ℓ′N (1)
+

ℓ′′N(1)

(ℓN (1) − ℓ′N(1))2N+

)

−→ (1 + ǫ)(1 − (m+ ǫ))1−β

1 −m
(3.66)as N −→ ∞ by (3.54). In a similar way we get the lower bound
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GN (⌊(m− ǫ)N⌋ + 1, ⌊(m+ ǫ)N⌋) ≥ (1 − ǫ)g(1)

(
N

N−

)β−1(ℓN+(1)

g(1)

)N

×
(

1

ℓN+(1) − ℓ′N+
(1)

⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN+,1(z)fN+(z)N

}

+
ℓ′′N+

(1)

(ℓN+(1) − ℓ′N+
(1))2N−

⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN+,2(z)fN+(z)N

}

)

.(3.67)By (3.54) the se
ond term 
onverges to zero as N −→ ∞. Looking at the �rst termwe �nd that
(1 − ǫ)g(1)

ℓN+(1) − ℓ′N+
(1)

(
N

N−

)β−1

−→ (1 − ǫ)(1 − (m− ǫ))1−β

1 −m
(3.68)as N −→ ∞ and

(
ℓN+(1)

g(1)

)N

=



1 − 1

g(1)

∞∑

n=N+

wn+1





N

=
(
1 +O(N−β+1)

)N −→ 1 (3.69)as N −→ ∞ sin
e β > 2. Finally we have for N large enough
⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN+,1(z)fN+(z)N

}
= P

(∣
∣
∣
∣
∣

S
(N+)
N +X(N+,1)

N
−m

∣
∣
∣
∣
∣
≤ ǫ

)

≥ P

(∣
∣
∣
∣
∣

S
(N+)
N +X(N+,1)

N
−mN+

∣
∣
∣
∣
∣
≤ ǫ/2

)

≥ P

(∣
∣
∣
∣
∣

S
(N+)
N

N
−mN+

∣
∣
∣
∣
∣
≤ ǫ/4

)

P

(

X(N+,1) ≤ Nǫ/4
)

≥
(

1 −
σ2

N+

N (ǫ/4)
2

)

(
1 − CN2−β

) (3.70)where in the se
ond last step we used Lemma 3.3.6 and in the last step we usedChebyshev's inequality and Lemma 3.3.7. It is 
lear from (3.44) that σ2
N+
/N −→ 0as N −→ ∞ and therefore the last expression 
onverges to 1.
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 trees 59From the above estimates (3.60), (3.62) and (3.65�3.70) we �nd that
(1 − ǫ) (1 − (m− ǫ))1−β

1 −m
≤ lim inf

N→∞
NβζN−1

0 Z1,N

≤ lim sup
N→∞

NβζN−1
0 Z1,N ≤ (1 + ǫ) (1 − (m+ ǫ))

1−β

1 −m
.Sin
e this holds for all ǫ > 0 small enough, the limit exists and

lim
N→∞

NβζN−1
0 Z1,N = (1 −m)−β (3.71)whi
h 
ompletes the proof.

�3.3.2 An estimate of ENWe now estimate EN , the remaining 
ontribution to ZN . Note that Li+1(ζ) − Li(ζ)is the grand 
anoni
al partition fun
tion for trees whi
h have at least one vertex ofdegree i + 1 and no vertex of degree greater than i + 1. Consider a tree whi
h hasat least 2 verti
es of max degree i + 1. Denote the two max degree verti
es 
losestto the root and se
ond 
losest to the root by s1 and s2 respe
tively. They are notne
essarily unique but for the following purpose we 
an 
hoose any we like. Denotethe path from the root to s2 by (r, s2). We 
an write
(a) (b)

r s1

s2

r

deg = j + 1

s2

s1

Figure 3.8: (a) The 
ase when s1 /∈ (r, s2). At least two balloons atta
hed to the vertexof degree j + 1 (ex
luding the rooted one) indi
ated in the �gure have to have at least onevertex of degree i+1, namely s1 and s2. (b) The 
ase when s1 ∈ (r, s2). At least one balloonatta
hed to the vertex s1 (ex
luding the rooted one) has to have at least one vertex of degree
i + 1 , namely s2.
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EN =

⌊N+1
2 ⌋−1
∑

i=0

(
i−1∑

j=0

wj+1[ζ
N ]







Yi(ζ)

j
∑

n=2

(
j

n

)

(Li+1(ζ) − Li(ζ))
n

︸ ︷︷ ︸

s1 and s2 in here Li(ζ)
j−n







+ wi+1
︸︷︷︸

s1

[ζN ]







Yi(ζ)

i∑

n=1

(
i

n

)

(Li+1(ζ) − Li(ζ))
n

︸ ︷︷ ︸

s2 in here Li(ζ)
i−n







)

.(3.72)The outermost sum is over all possible max degrees. The �rst term in the bra
ketstakes 
are of the 
ase when s1 /∈ (r, s2). Then j + 1 is the degree of the vertex where
(r, s1) and (r, s2) start to di�er. At least two of the subtrees atta
hed to this vertex(ex
luding the rooted one) have to have at least one vertex of degree i+1. See Figure3.8 (a). The se
ond term in the bra
kets takes 
are of the 
ase when s1 ∈ (r, s2).At least one of the subtrees atta
hed to s1 (ex
luding the rooted one) has to have atleast one vertex of degree i+ 1. See Figure 3.8 (b).Lemma 3.3.9

[ζN ] {Li+1(ζ) − Li(ζ)} ≤ wi+1N

i
[ζN ]

{
ζLi+1(ζ)

i
}
. (3.73)Proof Use the Lagrange inversion theorem to obtain

[ζN ] {Li+1(ζ) − Li(ζ)} =
1

N
[zN−1]

{
ℓi+1(z)

N − ℓi(z)
N
}

=
1

N
[zN−1]

{

(ℓi+1(z) − ℓi(z))
∑

N1+N2=N−1

ℓi+1(z)
N1ℓi(z)

N2

}

≤ wi+1[z
N−i−1]

{
ℓi+1(z)

N−1
}Now use the Lagrange inversion theorem the opposite way to obtain the result.

�Lemma 3.3.10
EN ≤ 2N2

N−1∑

i=0

w2
i+1[ζ

N−1]
{
Yi+1(ζ)Li+1(ζ)

2i−1
}
. (3.74)
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 trees 61Proof First note that
j
∑

n=2

(
j

n

)

(Li+1(ζ) − Li(ζ))
n Li(ζ)

j−n

= Li+1(ζ)
j − Li(ζ)

j − j(Li+1(ζ) − Li(ζ)Li(ζ)
j−1

= (Li+1(ζ) − Li(ζ))




∑

j1+j2=j−1

Li+1(ζ)
j1Li(ζ)

j2 − jLi(ζ)
j−1





≤ j(Li+1(ζ) − Li(ζ))
(
Li+1(ζ)

j−1 − Li(ζ)
j−1
)

= j(Li+1(ζ) − Li(ζ))
2

∑

j1+j2=j−2

Li+1(ζ)
j1Li(ζ)

j2

≤ j(j − 1)(Li+1(ζ) − Li(ζ))
2Li+1(ζ)

j−2.It is also 
lear that the above inequality holds inside [ζN ] {·} bra
kets. Therefore thesum over j in (3.72) is estimated from above by
i−1∑

j=0

wj+1[ζ
N ]

{

Yi(ζ)

j
∑

n=2

(
j

n

)

(Li+1(ζ) − Li(ζ))
n Li(ζ)

j−n

}

≤ [ζN ]
{
Yi(ζ)(Li+1(ζ) − Li(ζ))

2ℓ′′i (Li+1(ζ))
}
.Now use Lemma 3.3.9 to get

[ζN ]
{
Yi(ζ)(Li+1(ζ) − Li(ζ))

2ℓ′′i (Li+1(ζ))
}

=
∑

N1+N2+N3=N

[ζN1 ] {Yi(ζ)ℓ
′′
i (Li+1(ζ))} [ζN2 ] {Li+1(ζ) − Li(ζ)} [ζN3 ] {Li+1(ζ) − Li(ζ)}

≤ w2
i+1

i2
N2

∑

N1+N2+N3=N

[ζN1 ] {Yi(ζ)ℓ
′′
i (Li+1(ζ))} [ζN2 ]

{
ζLi+1(ζ)

i
}

[ζN3 ]
{
ζLi+1(ζ)

i
}

=
w2

i+1

i2
N2[ζN ]

{
ζ2Yi(ζ)ℓ

′′
i (Li+1(ζ))Li+1(ζ)

2i
}
.Observe that

ζℓ′′i (Li+1(ζ))Li+1(ζ)

i2
≤ ζℓi+1(Li+1(ζ))

Li+1(ζ)
= 1 (3.75)where the last equality follows from (3.29). Combining the above results we get theestimate
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i−1∑

j=0

wj+1[ζ
N ]

{

Yi(ζ)

j
∑

n=2

(
j

n

)

(Li+1(ζ) − Li(ζ))
n Li(ζ)

j−n

}

≤ w2
i+1N

2[ζN−1]
{
Yi+1(ζ)Li+1(ζ)

2i−1
}
.We get pre
isely the same estimate for the term in the se
ond line in (3.72) (the
al
ulations are even simpler) ex
ept that it is of order N smaller and the resultfollows.

�The above lemma gives us the following resultLemma 3.3.11
NβζN

0 EN −→ 0 as N −→ ∞. (3.76)Proof By Lemma 3.3.10
NβζN

0 EN ≤ 2Nβ+2ζN
0

⌊N+1
2 ⌋−1
∑

i=0

w2
i+1[ζ

N−1]
{
Yi+1(ζ)Li+1(ζ)

2i−1
}
. (3.77)The sum on the right hand side has the same form as Z1,N with β repla
ed by 2β,
f. Equation (3.47). Equation (3.55), whi
h des
ribes the asymptoti
 behaviour of

Z1,N , 
an therefore be applied to show that the right hand side is o(N2−β). Sin
e
β > 2, this 
onverges to zero as N −→ ∞.

�Combining Lemmas 3.3.8 and 3.3.11 
ompletes the proof of Theorem 3.3.1.3.3.3 Generalization of ZNFor te
hni
al reasons whi
h are relevant in the next se
tion, we need to generalize thesequen
e ZN in the following way. In a tree τ , denote the unique nearest neighbourto the root r by s. De�ne
Z

(R)
N =

∑

τ∈ΓN

wσ(s)+R−1

∏

i∈V (τ)\{r,s}

wσ(i). (3.78)
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 trees 63In analogy with (3.9) and (3.10), de�ne the generating fun
tions
Z(ζ, R) =

∞∑

N=1

Z
(R)
N ζN (3.79)and

gR(z) =

∞∑

n=0

wn+Rz
n. (3.80)Clearly ZN = Z

(1)
N ,Z(ζ) = Z(ζ, 1) and g(z) = g1(z). With the same arguments asfor (3.11) we �nd the relation

Z(ζ, R) = ζgR(Z(ζ)). (3.81)Let Z0,R = Z(ζ0, R). The following lemma is a generalization of Theorem 3.3.1.Lemma 3.3.12 For the bran
hing weights (3.22) whi
h satisfy (3.23) it holds that
Z

(R)
N =

(

1 −m+
g′R(1)

g(1)

)

(1 −m)−βN−βζ1−N
0 (1 + o(1)) . (3.82)Proof We write

Z
(R)
N = Z

(R)
1,N + E

(R)
N (3.83)in analogy with (3.26). One 
an show with the same methods as in the previoussubse
tion that limN→∞E

(R)
N /ZN = 0. Therefore we fo
us on the term Z

(R)
1,N , the
ontribution from trees for whi
h there is exa
tly one vertex of maximum degree. Wesplit this term into the 
ase when the maximum degree vertex is the next neighbourof the root and when it is not. We 
an then write

Z
(R)
1,N =

N−1∑

i=0

wi+R[ζN ]
{
ζLi(ζ)

i
}

+

N−2∑

i=0

wi+1[ζ
N ]
{
ζℓ′i,R(Li(ζ))Yi(ζ)Li(ζ)

i
}(3.84)where we de�ned

ℓi,R(z) =

i−1∑

n=0

wn+Rz
n. (3.85)Let

h(z) =
zi+1

ℓi(z)
(3.86)
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al a
tionand
k(z) =

ℓ′i,R(z)zi+2

ℓi(z) (ℓi(z) − zℓ′i(z))
. (3.87)Using the Lagrange inversion formula for the fun
tions h and k we �nd that

[ζN ]
{
ζLi(ζ)

i
}

=
1

N
[zN−i−1]

{(
i+ 1

ℓi(z)
− zℓ′i(z)

ℓi(z)2

)

ℓi(z)
N

} (3.88)and
[ζN ]

{
ζℓ′i,R(Li(ζ))Yi(ζ)Li(ζ)

i
}

=
1

N
[zN−i−2]

{(

(i+ 2)ℓ′i,R(z)

ℓi(z)(ℓi(z) − zℓ′i(z))

+ z
d

dz

(

ℓ′i,R(z)

ℓi(z)(ℓi(z) − zℓ′i(z))

))

ℓi(z)
N

}

.(3.89)We now use exa
tly the same arguments as in the proof of Lemma 3.3.8 to evaluatethe asymptoti
 behaviour of (3.84). One 
an show that the 
ontribution from these
ond term in the 
urly bra
kets in (3.88) and (3.89) is negligible. Then one 
anshow that for any ǫ > 0

lim inf
N→∞

NβζN−1
0 Z

(R)
1,N ≥ (1 − ǫ) (1 − (m− ǫ))

1−β

(

1 +
g′R(1)

g(1) − g′(1)

)and
lim sup
N→∞

NβζN−1
0 Z

(R)
1,N ≤ (1 + ǫ) (1 − (m+ ǫ))1−β

(

1 +
g′R(1)

g(1) − g′(1)

)

.Sin
e this holds for all ǫ > 0 the result follows.
�3.4 Properties of the �nite volume measuresIn this se
tion we study some properties of the measures νN for the three di�erents
enarios dis
ussed in Se
tion 3.2. We let m denote the mean o�spring probabilityde�ned in (3.17). The three 
ases are the generi
, 
riti
al 
ase (w1 < wc, m = 1),the nongeneri
, 
riti
al 
ase (w1 = wc, m = 1) and the nongeneri
, sub
riti
al 
ase(w1 > wc, m < 1).



3.4 Properties of the �nite volume measures 65All results stated for generi
 trees are already known [38℄ but are rederived herein a slightly di�erent way. In the generi
 
ase, Equation (3.11) 
an be solved for
Z(ζ) 
lose to the 
riti
al point ζ0 and one 
an then �nd the asymptoti
 behaviour of
ZN , the 
oe�
ients of Z(ζ), see [58, Theorem 3.1℄ 1. In the nongeneri
 
riti
al 
ase,the fun
tion Z(ζ) has the same 
riti
al behaviour as in the generi
 
ase as long as
g′′(1) <∞, see [50, Lemma A.2℄. With the same arguments as in [42,50℄ one gets thefollowing result for Z(R)

N .Lemma 3.4.1 Under the stated assumption on the bran
hing weights (3.6) and as-suming that m = 1 and g′′(Z0) <∞ it holds that
Z

(R)
N =

√

g(Z0)

2πg′′(Z0)
ζ0g

′
R(Z0)N

−3/2ζ−N
0 (1 + o(1)) . (3.90)In parti
ular [50,58℄

ZN =

√

g(Z0)

2πg′′(Z0)
N−3/2ζ−N

0 (1 + o(1)) . (3.91)An analogous result for the asymptoti
 behaviour of ZN , for a spe
ial 
hoi
e ofbran
hing weights 
orresponding to nongeneri
, 
riti
al trees with g′′(1) = ∞, isstated in [42, VI.18 and VI.19, page 407℄. A generalization to Z(R)
N is straightforwardand is given in the next lemma.Lemma 3.4.2 For the nongeneri
, 
riti
al bran
hing weights de�ned by (3.22), with

2 < β < 3 and w1 = wc the following holds
Z

(R)
N = Cζ0g

′
R(1)N− β

β−1 ζ−N
0 (1 + o(1)) (3.92)where C > 0 is a 
onstant.We now prove that the measures νN 
onverge for a 
ertain type of asymptoti
behaviour of Z(R)

N and 
hara
terize their limit.Theorem 3.4.3 If
Z

(R)
N = C (1 −m+ ζ0g

′
R(Z0))N

−δζ−N
0 (1 + o(1)) (3.93)1See also [42, Theorem VI.6, page 404 ℄.
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al a
tionwhere C is a positive 
onstant and δ > 1, then the measures νN 
onverge weakly, as
N −→ ∞, to a probability measure ν whi
h has the following properties:

• If m = 1, ν is 
on
entrated on the set of trees with exa
tly one in�nite spinehaving �nite, independent, 
riti
al Galton�Watson outgrowths de�ned by theo�spring probabilities in (3.15). The numbers i and j of left and right outgrowthsfrom a vertex on the spine are independently distributed by
φ(i, j) =

1

m
ζ0wi+j+2Zi+j

0 . (3.94)
• If m < 1, ν is 
on
entrated on the set of trees with exa
tly one vertex of in�nitedegree whi
h we denote by t. The length ℓ of the path (r, t) is distributed by

ψ(ℓ) = (1 −m)mℓ−1. (3.95)The outgrowths from the path (r, t) are �nite, independent, sub
riti
al Galton�Watson trees de�ned by the o�spring probabilities in (3.15). The numbers i and
j of left and right outgrowths from a vertex v ∈ (r, t), v 6= t are independentlydistributed by (3.94).Proof First we prove existen
e of ν. Sin
e the metri
 spa
e (Γ, d) has the propertiesstated in Propositions (3.1.2�3.1.3) it is enough, as was explained in Se
tion 1.3.2, toshow that for any k ∈ N and τ ′ ∈ Γ′ the probabilities

νN

(

B 1
k

(τ ′)
) (3.96)
onverge as N −→ ∞. The ball in (3.96) 
an be written as

B 1
k

(τ ′) = {τ ∈ Γ | LR(τ) = τ0} (3.97)for some R where τ0 = LR(τ ′). Denote the number of verti
es in τ0 of degree R by
S and the number of verti
es in τ0 at distan
e R from the root by T . It is 
lear that
S + T ≥ 0.We 
an now write

νN ({τ ∈ Γ | LR(τ) = τ0}) =

Z−1
N W0

∑

N1+...+NS+T =N−|τ0|+T+S

S∏

i=1

Z
(R)
Ni

S+T∏

j=S+1

ZNj
(3.98)
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ZN3

ZN5

ZN4

Z
(R)
N2

τ0

Z
(R)
N1

Figure 3.9: An example of the set (3.97) where R = 4, S = 2 and T = 3. When 
onditioningon trees of size N one atta
hes the weights Z
(R)
Ni

, i = 1 . . . S and ZNj , j = S + 1 . . . S + T asindi
ated in the �gure.where
W0 =

∏

v∈V (τ0)\{r}
σ(v),|(r,v)|6=R

wσ(v) (3.99)is the weight of the tree τ0 (apart from the verti
es whi
h are expli
itly ex
luded), and
|(r, v)| denotes the length of the path (r, v), see Fig. 3.9. For one of the indi
es k inea
h term of the above sum it holds thatNk ≥ N−|τ0|+S+T

S+T . Consider the 
ontributionfrom terms for whi
h Nn > A for some other index n 6= k and A > 0. The indi
es nand k 
an belong to either one of the sets {1, . . . , S} or {S + 1, . . . , S + T }, in totalfour possibilities. First assume that S ≥ 2 and n, k ∈ {1, . . . , S}. Using (3.93), this
ontribution 
an be estimated from above by
C1ζ

N
0 ZNS

2
∑

N1+...+NS+T =N−|τ0|+T+S

N1≥
N−|τ0|+S+T

S+T
, N2>A

Z
(R)
N1

ζN1
0

S∏

i=2

Z
(R)
Ni

ζNi

0

S+T∏

j=S+1

ZNj
ζ

Nj

0

≤ C2

(
(S + T )N

N − |τ0| + T + S

)δ ∑

N3,...,NS+T≥1
N2>A

S∏

i=2

Z
(R)
Ni

ζNi

0

S+T∏

j=S+1

ZNj
ζ

Nj

0

≤ C3ZS−2
0,R ZT

0

∑

N2>A

N−δ
2 ≤ C4A

1−δwhere C1, C2, C3 and C4 are positive numbers independent of N and A. Exa
tly
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al a
tionthe same upper bound is obtained, up to a 
onstant, for the other possible values of
k and n. The last expression goes to zero as A −→ ∞ sin
e δ > 1. The remaining
ontribution to the probability (3.98) is then

S+T∑

k=1

Z−1
N W0

∑

N1+...+NS+T =N−|τ0|+T+S
Nn≤A, n6=k

S∏

i=1

Z
(R)
Ni

S+T∏

j=S+1

ZNj

−−−−→
N→∞

W0ζ
|τ0|−S−T
0

(

S(1 −m+ ζ0g
′
R(Z0))

(
A∑

n=1

Z(R)
n ζn

0

)S−1( A∑

n=1

Znζ
n
0

)T

+ T

(
A∑

n=1

Z(R)
n ζn

0

)S ( A∑

n=1

Znζ
n
0

)T−1)

−−−−→
A→∞

W0ζ
|τ0|−S−T
0

(

S(1 −m+ ζ0g
′
R(Z0))ZS−1

0,R ZT
0 + TZS

0,RZT−1
0

)

. (3.100)This 
ompletes the proof of the existen
e of ν. We now 
hara
terize ν separately forthe 
ases m = 1 and m < 1.
m = 1: Let AR be the set of all trees whi
h have a path (r, sR) of length R, exa
tlyone possibly in�nite tree atta
hed to sR and all other trees atta
hed to (r, sR) �nite,see Fig. 3.10. Using (3.100) one �nds that

ν(AR) = 1 (3.101)for all R and therefore by taking R to in�nity one �nds that ν is 
on
entrated on treeswith exa
tly one spine having �nite outgrowths. The distribution of the outgrowthsfollows from (3.100).
m < 1: Let AR,ℓ be the set of all trees whi
h have a path (r, t) of length ℓ where
σ(t) ≥ R. Furthermore, the trees atta
hed to t in the the R�th, R+1�st, . . . position
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Figure 3.10: An illustration of the set AR.
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Figure 3.11: An illustration of the set AR,ℓ.
lo
kwise from (r, t) are possibly in�nite but all other outgrowths from (r, t) are �nite,see Fig. 3.11. Using (3.100) one �nds that
ν(AR,ℓ) =

(

1 −m+
g′R(1)

g(1)

)

mℓ−1. (3.102)The sets AR,ℓ are de
reasing in R so taking R to in�nity in (3.102) one �nds, by themonotone 
onvergen
e theorem, that the probability of exa
tly one vertex having anin�nite degree and being at a distan
e ℓ from the root is (1−m)mℓ−1. Summing thisover ℓ gives 1 whi
h shows that the measure is 
on
entrated on trees with exa
tly onevertex of in�nite degree. The distribution of the outgrowths follows from (3.100).
�Theorem 3.4.4 Theorem 3.4.3 applies to the generi
, 
riti
al ensemble in Lemma3.4.1, the nongeneri
, 
riti
al ensemble in Lemma 3.4.2 and the nongeneri
, sub
rit-i
al ensembles de�ned by (3.22) and (3.23).Proof This follows from Lemmas 3.3.12, 3.4.1 and 3.4.2 sin
e (3.93) holds with

δ =







3/2 generi
, and nongeneri
 
riti
al with g′′(1) <∞
β/(β − 1) nongeneri
 
riti
al with 2 < β < 3

β nongeneri
 sub
riti
al. (3.103)
�The next result 
on
erns the size of the large vertex, in �nite trees, whi
h arisesin the nongeneri
, sub
riti
al phase.Theorem 3.4.5 Consider the nongeneri
 bran
hing weights de�ned by (3.22) and(3.23). Let CN,ǫ be the event that a tree in ΓN has exa
tly one vertex of maximum
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tiondegree σmax and (1 −m− ǫ)N ≤ σmax ≤ (1 −m+ ǫ)N . For any ǫ, δ > 0 there existsan N0 ∈ N su
h that
νN (CN,ǫ) > 1 − δ (3.104)for all N ≥ N0.Proof This follows dire
tly from the estimates (3.60), (3.62), (3.65�3.70) and (3.76).

�3.5 The spe
tral dimension of sub
riti
al treesIt is 
lear, as in the 
ase of sub
riti
al 
aterpillars, that the Hausdor� and spe
traldimensions of sub
riti
al trees are almost surely in�nite. However, it turns out thatthe annealed spe
tral dimension is �nite and in fa
t, it takes the same values as inthe 
ase of the sub
riti
al 
aterpillars. The main result of this se
tion is the followingtheorem.Theorem 3.5.1 For any β > 2 the annealed spe
tral dimension of the sub
riti
altrees de�ned by (3.22) and (3.23) is̄
ds = 2(β − 1). (3.105)We will prove separately a lower bound and an upper bound on d̄s. We �rstpresent Faà di Bruno's formula for the n�th derivative of a 
omposite fun
tion (seee.g. [12℄) whi
h will be used repeatedly.Lemma 3.5.2 (Faà di Bruno's formula) If f and g are n times di�erentiable fun
-tions then

dn

dxn
f(g(x)) =

∑

P

n
i=1 iqi=n

n!

q1!q2! · · · qn!
f (q1+...+qn)(g(x))

n∏

j=1

(
gj(x)

j!

)qj

. (3.106)The following lemma will be needed to obtain the lower bound on d̄s.Lemma 3.5.3 Let µ be a sub
riti
al Galton�Watson measure on Γ 
orresponding tothe o�spring probabilities (3.15). For any n < β − 1 and any nonnegative integers
θ1, . . . , θk, k ≤ n su
h that θk 6= 0 and ∑k

a=1 aθa ≤ n it holds that
〈

k∏

a=1

(

(−1)aP
(a)
T (x)

)θa

〉

µ

<∞ (3.107)
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al trees 71for all x ∈ [0, 1].Proof The result is obvious for x > 0 sin
e the 
oe�
ients of PT (x) are smaller thanone. First, take a �xed �nite tree T with root of degree one. Denote the degree ofthe nearest neighbour of the root by N and the �nite trees atta
hed to that vertexby T1, . . . , TN−1. Then from [38℄ we have the re
ursion
PT (x) =

1 − x

ST (x)
(3.108)where

ST (x) = N −
N−1∑

i=1

PTi
(x). (3.109)Note that ST (x) ≥ 1, sin
e PTi

(x) ≤ 1 for all i. By Faà di Bruno's formula (with
f(x) = 1/x, g(x) = ST (x)) and using ST (x) ≥ 1 we �nd that

(−1)bP
(b)
T (x)

b!
≤

∑

P

b
i=1 iqi=b

(
q1 + · · · + qb
q1, . . . , qb

) b∏

j=1

(

(−1)j+1S
(j)
T (x)

j!

)qj

+
∑

Pb−1
i=1 iqi=b−1

(
q1 + · · · + qb−1

q1, . . . , qb−1

) b−1∏

j=1

(

(−1)j+1S
(j)
T (x)

j!

)qj(3.110)where (q1+···+qb

q1,...,qb

) is the multinomial 
oe�
ient. Looking at the produ
t from the �rstsum we �nd that
b∏

j=1

(

(−1)j+1S
(j)
T (x)

j!

)qj

=

b∏

j=1

∑

p1+···+pN−1=qj

(
qj

p1, . . . , pN−1

)N−1∏

i=1

(

(−1)jP
(j)
Ti

(x)

j!

)pi

.(3.111)Expanding the above produ
ts and keeping tra
k of the fa
tors in ea
h term whi
hdepend on the same outgrowth Ti, i = 1, . . . , N − 1 we �nd that they are of the form
Ci

b∏

j=1

(

(−1)jP
(j)
Ti

(x)

j!

)αj (3.112)where∑b
j=1 jαj ≤ b and Ci is a number independent of Ti (the terms in the latter sumin (3.110) are of the same form, if b is repla
ed by b− 1). The equality∑b

j=1 jαj = bholds only when pi = αj = qj in whi
h 
ase pa = 0 if a 6= i and Ci = 1. The total
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ontribution from su
h terms in (3.111) is therefore
N−1∑

i=1

b∏

j=1

(

(−1)jP
(j)
Ti

(x)

j!

)qj

. (3.113)Now 
hoose numbers θ1, . . . , θk su
h that θk 6= 0 and ∑k
a=1 aθa ≤ n. De�ne

Θ =
∑k

a=1 aθa. The following produ
t of (3.110) over b has an upper bound
k∏

b=1

(

(−1)bP
(b)
T (x)

b!

)θb

≤
N−1∑

i=1

k∏

b=1

(

(−1)jP
(b)
Ti

(x)

b!

)θb

+C

Θ∑

M=1

∑

α(M)

∑

1≤i1<i2<···<iM≤N−1

M∏

p=1

k∏

b=1




(−1)bP

(b)
Tip

(x)

b!





αb,ip

+ Cwhere ∑α(M) is a sum over nonnegative integers αb,ip
whi
h satisfy either(i) k∑

b=1

bαb,ip
< Θ or (ii) k−1∑

b=1

bαb,ip
= Θ (3.114)and C is a number whi
h only depends on k and (θ1, . . . , θk). Taking the µ expe
tationvalue of the above inequality and using the fa
t that the subtrees Ti, i = 1, . . . , N − 1are identi
ally and independently distributed and distributed as T itself, yields

〈
k∏

b=1

(

(−1)bP
(b)
T (x)

b!

)θb
〉

µ

≤ m

〈
k∏

b=1

(

(−1)bP
(b)
T (x)

b!

)θb
〉

µ

+
C

g(1)

Θ∑

M=1

∑

α(M)

g(M)(1)

M !

M∏

p=1

〈
k∏

b=1




(−1)bP

(b)
Tip

(x)

b!





αb,p〉

µ

+ Cand thus
〈

k∏

b=1

(

(−1)bP
(b)
T (x)

b!

)θb
〉

µ

≤

C

(1 −m)g(1)

Θ∑

M=1

∑

α(M)

g(M)(1)

M !

M∏

p=1

〈
k∏

b=1




(−1)bP

(b)
Tip

(x)

b!





αb,p〉

µ

+
C

1 −m
.(3.115)
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Figure 3.12: A sequen
e (θ1, θ2, . . . , θk) is represented by a Young tableau where θi repre-sents the number of rows of size i. The size of a tableau is Θ and the number of elements inthe top row (grey boxes) is the value of k. The tableaux are �rst ordered by Θ and then by
k if possible. Tableaux with the same values of Θ and k are in
omparable.Note, thatM ≤ Θ ≤ n < β−1 and thus g(M)(1) <∞. Therefore, for x > 0, the righthand side of (3.115) is �nite. To show that the left hand side is �nite at x = 0 wepro
eed by indu
tion on the sequen
es (θ1, θ2, . . . , θk). We de�ne a partial orderingon the set of su
h sequen
es in the following way (see also Fig. 3.12). Sequen
es
(θ1, . . . , θk) and (θ′1, . . . , θ

′
ℓ) obey (θ′1, . . . , θ

′
ℓ) < (θ1, . . . , θk) if and only if(i) ℓ∑

i=1

iθ′i <

k∑

i=1

iθi or (ii) ℓ∑

i=1

iθ′i =

k∑

i=1

iθi and ℓ < k.For the smallest values, k = 1 and Θ = 1, we �nd with the same 
al
ulations as abovethat
〈−P ′

T (x)〉µ ≤ 1

1 −m
. (3.116)Next assume that (3.107) holds for for all sequen
es (θ′1, θ

′
2, . . . , θ

′
k′) whi
h are lessthan a given sequen
e (θ1, θ2, . . . , θk) with k,Θ ≤ n. Then, by (3.114), all the termson the right hand side of (3.115) are �nite and therefore the left hand side is �nitefor all x ∈ [0, 1]. This shows that (3.107) holds for the sequen
e (θ1, θ2, . . . , θk).

�3.5.1 A lower bound on d̄sTo �nd a lower bound on d̄s we study an upper bound on a suitable derivative of theaverage return probability generating fun
tion. Let Mℓ be a linear graph of length ℓ



74 Chapter 3 Planar trees with a lo
al a
tion
*s2

Tστ (s2)−2(s2)

T1(s2) T2(s2)

r t
s1

Tστ (s1)−2(s1)

T1(s1) T2(s1)

T (s1) T (s2)

ℓFigure 3.13: A tree from Bℓ,k.with the root at one end and a vertex of in�nite degree (trap) on the other end. Let
Bℓ,k be the set of trees with distan
e ℓ between root and trap and su
h that at leastone vertex on the spine has degree k and all the other verti
es have degree no greaterthan k, 
f. proof of Theorem 2.4.4 in Se
tion 2.4. We 
an write

〈Qτ (x)〉ν =

∞∑

ℓ=1

ψ(ℓ)

∞∑

k=2

c(k, ℓ)
∑

τ∈Bℓ,k

ν(τ | τ ∈ Bℓ,k)Qτ (x) (3.117)where
c(k, ℓ) =




∑

i+j≤k−2

φ(i, j)





ℓ−1

−




∑

i+j≤k−3

φ(i, j)





ℓ−1

. (3.118)In a tree in Bℓ,k, denote the root by r, the trap by t and the verti
es on the spine by
s1, s2, . . . , sℓ−1. Denote the outgrowths atta
hed to si by T (si), where i = 1, . . . , ℓ−1and denote the j-th outgrowth from si by Tj(si) where j = 1, . . . , στ (si) − 2, seeFig. 3.13. The �rst return probability generating fun
tion for T (si) (viewing si as theroot) 
an be written in terms of the �rst return probability generating fun
tions for
Tj(si) in the following way

PT (si)(x) =
1

στ (si) − 2

στ (si)−2
∑

j=1

PTj(si)(x). (3.119)
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al trees 75Now take a τ ∈ Bℓ,k. We 
an write
Qτ (x) =

∑

ω: r→ron Mℓ

Kτ (x, ω)WMℓ
(ω)(1 − x)|ω|/2 (3.120)where

Kτ (x, ω) =

|ω|−1
∏

t=1
ωt∈{s1,...,sℓ−1}

2

2 + (στ (ωt) − 2)(1 − PT (ωt)(x))
(3.121)and

WMℓ
(ω) =

|ω|−1
∏

t=0

(σMℓ
(ωt))

−1. (3.122)Choose n su
h that n+ 1 < β ≤ n+ 2. Di�erentiating n times we get
(−1)nQ

(n)
τ (x)

n!
=

∑

n1+n2=n

∑

ω: r→ron Mℓ

WMℓ
(ω)

(−1)n1K
(n1)
τ (x, ω)

n1!

(−1)n2

n2!

dn2

dxn2
(1 − x)|ω|/2.(3.123)Let ω be a random walk and denote the subwalk of ω whi
h only travels on theverti
es s1, . . . , sℓ−1 by ω′. Denote the number of verti
es in ω′ by |ω′| and the t�thvertex in ω′ by ω′

t. Then
(−1)mK

(m)
τ (x, ω)

m!
=

∑

n1+···+n|ω′|=m

|ω′|
∏

t=1

(−1)nt

nt!

dnt

dxnt

(
2

2 + (στ (ω′
t) − 2)(1 − PT (ω′

t)
(x))

)

.By Faà di Bruno's formula we get
(−1)p

p!

dp

dxp

(
2

2 + (στ (ω′
t) − 2)(1 − PT (ω′

t)
(x))

)

=

2

2 + (στ (ω′
t) − 2)(1 − PT (ω′

t)
(x))

∑

q1+2q2+···+pqp=p

(
q1 + · · · + qp
q1, . . . , qp

)

×
( 2(στ (ω′

t) − 2)

2 + (στ (ω′
t) − 2)(1 − PT (ω′

t)
(x))

︸ ︷︷ ︸

(∗)

)q1+···+qp
p
∏

a=1




(−1)aP

(a)
T (ω′

t)
(x)

a!





qa

.
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tionNow, PT (ω′
t)

(x) ≤ 1−x. Also note that (∗) is in
reasing in στ (si) and sin
e στ (si) ≤ kfor i = 1, . . . , ℓ− 1 we �nd that
(∗) ≤ 2(k − 2)

2 + (k − 2)x
. (3.124)Observe that 2(k − 2)

2 + (k − 2)x
≤ 1 for k = 2, 3 and that 2(k − 2)

2 + (k − 2)x
≥ 1 for k ≥ 4.Finally, note that (q1+···+qp

q1,...,qp

)
≤ pp. Combining these results and using (3.119) we getthe upper bound

(−1)mK
(m)
τ (x, ω)

m!
≤ mm

(
2(k − 2)

2 + (k − 2)x

)(1−δk,2)(1−δk,3)m

∑

n1+···+n|ω′|=m

|ω′|
∏

t=1

∑

q1+2q2+···+ntqnt=nt

nt∏

a=1

1

(στ (ω′
t) − 2)qa

×
∑

p1+···+pστ (ω′
t
)−2=qa

(
qa

p1, . . . , pστ (ω′
t)−2

) στ (ω′
t)−2
∏

j=1




(−1)aP

(a)
Tj(ω′

t)
(x)

a!





pj

.(3.125)Expanding the above produ
ts and keeping tra
k of the fa
tors in ea
h term whi
hdepend on the same outgrowth Tj(si), i = 1, . . . , ℓ− 1, j = 1, . . . , στ (sj) − 2, we �ndthat they are of the form
Cij

n∏

a=1

(

(−1)aP
(a)
Tj(si)

(x)
)θa (3.126)where∑n

a=1 aθa ≤ n and Cij is independent of Tj(si). By Lemma 3.5.3, the expe
tedvalue of (3.126) over the outgrowths Tj(si) is �nite, and sin
e the total number ofterms in (3.125) is a polynomial in |ω′| we �nd that
〈

(−1)mK(m)
τ (x, ω)

〉

ν,τ∈Bℓ,k

≤ H(|ω|)
(

2(k − 2)

2 + (k − 2)x

)(1−δk,2)(1−δk,3)m (3.127)where H(|ω|) is a polynomial with positive 
oe�
ients. From this inequality and the
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t that (−1)iQ
(i)
Mℓ

(0) is a polynomial in ℓ of degree 2i+ 1, it follows that
〈(−1)nQ(n)

τ (x)〉ν,τ∈Bℓ,k
≤

n∑

m=0

Sm(ℓ)

(
2(k − 2)

2 + (k − 2)x

)(1−δk,2)(1−δk,3)m (3.128)where Sm(ℓ), m = 0, . . . , n are polynomials with positive 
oe�
ients. From here wepro
eed as below Equation (2.97) and �nd that d̄s ≥ 2(β − 1).
�3.5.2 An upper bound on d̄sTo �nd an upper bound on d̄s we study a lower bound on a suitable derivative of theaverage return probability generating fun
tion. The aim is to 
ut o� the bran
hes ofthe �nite outgrowths from the spine so that only single leaves are left. We then usemonotoni
ity results from [51℄ to 
ompare return probability generating fun
tions. Asbefore we 
hoose n su
h that n+ 1 < β ≤ n+ 2. We begin by di�erentiating (3.129)

n times and throwing away every term in the sum over ℓ ex
ept the ℓ = 2 term
〈

(−1)nQ(n)
τ (x)

〉

ν
≥ (1 −m)m

∞∑

k=2

∑

i+j=k−2

φ(i, j)
〈

(−1)nQ(n)
τ (x)

〉

ν,τ∈B2,k

. (3.129)Let M2,k be the graph 
onstru
ted by atta
hing k − 2 leaves to the vertex s1 in M2,
f. proof of Theorem 2.4.4 in Se
tion 2.4 . Take a tree τ ∈ B2,k. Denote the nearestneighbours of s1, ex
luding r and t, by u1, . . . , uk−2. Denote the �nite tree atta
hedto ui by U(ui), i = 1, . . . , k − 2, and view ui as its root, see Fig. 3.14. We 
an write
*

U1

tr

u1 u2

s1

U2

uk−2

Uk−2Figure 3.14: A graph τ ∈ B2,k.
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Qτ (x) =

∑

ω: r→ron M2,k

Fτ (x, ω)WM2,k
(ω)(1 − x)|ω|/2 (3.130)where

Fτ (x, ω) =

|ω|−1
∏

t=1
ωt∈{u1,...,uk−2}

1

1 + (στ (ωt) − 1)(1 − PU(ωt)(x))
. (3.131)De�ne

H(x) =
∑

ω: r→ron M2,k

〈Fτ (x, ω)〉ν,τ∈B2,k
WMℓ

(ω)
dn−1

dxn
(1 − x)|ω|/2. (3.132)Di�erentiating on
e we easily �nd that

(−1)nH ′(x) ≤
〈

(−1)nQ(n)
τ (x)

〉

ν,τ∈B2,k

(3.133)and using the methods of [51℄ we �nd that there exists a sequen
e ξi 
onverging tozero as i −→ ∞ on whi
h
(−1)nQ

(n)
M2,k

(ξi) ≤ (−1)nH ′(ξi). (3.134)Note that from the relation
Qτ (x) =

1

1 − Pτ (x)
(3.135)one 
an show that (−1)nQτ (x) ≥ (−1)nPτ (x) for any τ . Thus, we �nally have

〈

(−1)nQ(n)
τ (ξi)

〉

ν
≥ (1 −m)m

∞∑

k=2

∑

i+j=k−2

φ(i, j)(−1)nP
(n)
M2,ℓ

(ξi) (3.136)on a sequen
e ξi 
onverging to zero. We now pro
eed as in Equation (2.91) and �ndthat d̄s ≤ 2(β − 1).
�



4Dis
ussionWe have studied an equilibrium statisti
al me
hani
al model of two 
lasses of trees:
aterpillars and bran
hed polymers. The two 
lasses have identi
al phase stru
ture,an elongated phase and a 
ondensed phase. We have proven 
onvergen
e of the Gibbsmeasures in both phases and on the 
riti
al line separating them. The main resultis a rigorous proof of the emergen
e of a vertex of in�nite degree in the 
ondensedphase. The phenomenon of 
ondensation seems to appear in more general models ofgraphs and it would be interesting to prove analogous results in those 
ases.In the 
aterpillar model, we 
al
ulated the Hausdor� and spe
tral dimensions inthe generi
 phase and on the 
riti
al line when g′′(1) < ∞ and found that they areequal to one. In the generi
 phase of the bran
hed polymer model, it holds that
d̄H = 2 and d̄s = 4/3, see [38℄. The proof of this result relies only on the fa
t that thein�nite volume measure is 
on
entrated on the set of trees with one in�nite spine with�nite 
riti
al Galton�Watson outgrowths and that g′′(1) < ∞. Therefore, it followsfrom Theorem 3.4.3 in the previous 
hapter that d̄H = 2 and d̄s = 4/3 on the 
riti
alline when g′′(1) < ∞. Note that the equality (1.23) holds in both 
ases dis
ussed inthis paragraph.We showed that on the 
riti
al line in the 
aterpillar model, when g′′(1) = ∞, theHausdor� and spe
tral dimensions are almost surely

dH =
1

β − 2
and ds =

2

β − 1
(4.1)with 2 < β ≤ 3 where β is the exponent de�ning the sub
riti
al bran
hing weights79



80 Chapter 4 Dis
ussion
wn ∼ n−β . The equality (1.23) holds in this 
ase. No analogous results have beenproved for the 
riti
al line in the bran
hed polymer model when g′′(1) = ∞. However,s
aling arguments suggest that

dH =
β − 1

β − 2
and ds =

2(β − 1)

2β − 3
(4.2)where 2 < β ≤ 3, see [26, 29℄, and one 
an 
he
k that the equality (1.23) holds. Notethat by Theorem 3.4.3, the in�nite volume measure is still 
on
entrated on the setof trees with one in�nite spine with 
riti
al Galton�Watson outgrowths. Therefore, apossible way to prove (4.2) is to follow the arguments in [38℄, but taking into a

ountthe di�erent behaviour of 
riti
al Galton�Watson pro
esses having g′′(1) = ∞. Someresults on su
h Galton�Watson pro
esses 
an be found in [63℄.We have 
al
ulated the annealed spe
tral dimension in the 
ondensed phase in boththe 
aterpillar and bran
hed polymer models, and it takes the values d̄s = 2(β − 1)where β > 2. This is di�erent from the value d̄s = 2 whi
h was obtained in [29℄ usings
aling arguments. Furthermore, we argued that the annealed Hausdor� dimension isin�nite and therefore the inequality (1.22) holds sin
e 2 < d̄s < ∞, and d̄s 
an takeany value in this range.
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5The vertex splitting modelIn this part of the thesis we 
onsider a new model of randomly growing trees, referredto as the vertex splitting model. We start by de�ning the model and then we examinesome properties of large trees. First, we study the distribution of the degrees ofverti
es and show that it has a well de�ned limit as the size of the tree goes toin�nity, whi
h is independent of the initial tree. Exa
t results are provided under
ertain 
onditions on the parameters of the model and the general 
ase is supportedby simulations.Se
ondly, we derive the Hausdor� dimension of the trees by studying the s
alingof 
ertain volume distribution fun
tions. We establish bounds on the Hausdor� di-mension and show that it 
an vary 
ontinuously with the splitting weights between 1and +∞. The results we obtain are supported by simulations.Next, we study the 
orrelations between the degrees of neighbouring verti
es. Thisamounts to studying the density of edges whi
h 
onne
t verti
es of given degrees. Weshow that there is a very good agreement between our analyti
al results and numeri
alsimulations. We 
on
lude by dis
ussing the amount of assortative mixing in the vertexsplitting model, i.e. whether verti
es of high degree prefer to be neigbours of verti
esof high degree or to be neighbours of verti
es of low degree.Finally, we dis
uss the relationship between our model and other models of randomtrees, in parti
ular the alpha model of phylogeneti
 trees. We prove 
onvergen
e of the�nite volume measures generated by the growth rules of the alpha model and 
al
ulatethe annealed Hausdor� dimension with respe
t to the in�nite volume measure.83



84 Chapter 5 The vertex splitting model5.1 De�nition of the modelLet Γ(D) be the 
olle
tion of all rooted planar trees for whi
h every vertex has �nitedegree at most D. Let Γ
(D)
N be those trees T ∈ Γ(D) with |T | = N . Denote thenumber of verti
es of degree i in T by ni(T ). Let

M =














0 w1,2 w1,3 · · · w1,D−1 w1,D

w2,1 w2,2 w2,3 · · · w2,D−1 w2,D

w3,1 w3,2 w3,3 · · · w3,D−1 0

w4,1 w4,2 w4,3 0 0... ... ... ... ... ...
wD,1 wD,2 0 · · · 0 0












be a symmetri
 matrix with nonnegative entries that we 
all partitioning weights. Wede�ne a 
olle
tion of nonnegative numbers 
alled splitting weights, w1, w2, . . . , wD, by

wi =
i

2

i+1∑

j=1

wj,i+2−j . (5.1)We now de�ne a growth rule for planar trees whi
h we 
all vertex splitting. Givena tree T ∈ Γ
(D)
N(i) Choose a vertex v of T with probability wi/W(T ) where i is the order of v and

W(T ) =

D∑

j=1

wjnj(T ). (5.2)(ii) Partition the edges in
ident with v into two disjoint sets V and V ′ of adja
entedges with probability
wk,i+2−k

wi
.The set V 
ontains k− 1 of the edges and V ′ 
ontains i− (k− 1) of these edges,

k = 1, . . . , i. For a given k, all su
h partitionings are taken to be equally likely.(iii) Move all edges in V ′ from v to a new vertex v′ and 
reate an edge joining v to
v′. If v is the root, then the new vertex of order one is taken to be the root.This vertex splitting operation is illustrated in Figure 5.1 (the root vertex is 
ir
led).After the splitting operation, the degree of vertex v is k and the degree of vertex v′ is
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v v

V

V’ V’
V

v’

Figure 5.1: Illustration of the splitting pro
ess for i = 6 and k = 5.
i+2−k. Sin
e the maximum allowed vertex degree is D we de�ne wD+1,1 = w1,D+1 =

0, i.e. we do not allow splittings of verti
es of degree D that produ
e verti
es of degree
D + 1. If the partitioning weights are 
hosen su
h that wi,j = 0 for i 6= 1 or j 6= 1,then the vertex splitting model is equivalent to the preferential atta
hment modeldis
ussed in [31℄.We will often think of the number of edges as time and denote it by ℓ assumingwe start with the single vertex tree at time ℓ = 0. In Chapters 7 and 8 we will �ndit 
onvenient to label the verti
es a

ording to their time of 
reation. In this 
ase weappend the following to our rules:(iv) The single root vertex (whi
h is the only tree in Γ

(D)
0 ) is given the label 0. Let

a be the label of the vertex v 
hosen in (i) at time ℓ. If v is further away fromthe root than v′ in step (iii) then we let v keep the label a and give v′ the label
ℓ+ 1. Otherwise label v with ℓ+ 1 and label v′ with a.This book-keeping devi
e has no e�e
t on the dynami
s of the model.If the partitioning weights are 
hosen su
h that the splitting weights are linear,

wi = ai+ b (5.3)for some a and b, then the model is easier to analyse sin
e the weight of a tree T ∈ Γ(D)depends only on the size of the tree
W(T ) = (2a+ b)|T | + b. (5.4)This is easily seen from the two 
onstraints on the vertex degrees,

D∑

i=1

ni(T ) = |T | + 1 and D∑

i=1

ini(T ) = 2|T |. (5.5)



86 Chapter 5 The vertex splitting modelBy abuse of notation, in this 
ase we will write W(|T |) = W(T ). We will alsosometimes restri
t to uniform partitioning weights, i.e.
wi,k+2−i =







wk/
(
k+1
2

) for i = 1, . . . , k + 1, if k < D,

wk/
(
k
2

) for i = 2, . . . , k, if k = D.

(5.6)



6Vertex degree distribution
6.1 The 
ase of linear splitting weightsStart from a �nite tree T0 at time ℓ0 = |T0| and perform vertex splitting a

ording tothe rules des
ribed in the previous 
hapter ℓ1 times. We then obtain a tree in Γ

(D)
ℓ0+ℓ1

.Let ℓ = ℓ0 + ℓ1. The vertex splitting operation indu
es a probability measure νℓ on
Γ

(D)
ℓ , whi
h of 
ourse depends on the initial tree T0. In this se
tion we will drop T0from fun
tion arguments with the understanding that it is implied, unless otherwisestated.Let Pℓ(m1, . . . ,mD) be the probability that T ∈ Γ

(D)
ℓ has (n1(T ), . . . , nD(T )) =

(m1, . . . ,mD) a

ording to the measure νℓ. We wish to study the mean value of nk(T )with respe
t to the measure νℓ. Denote this value by nℓ,k. We de�ne the vertex degreedensities ρℓ,k ≡ nℓ,k/(ℓ+ 1) and with some 
onditions on the partitioning weights wewill prove the existen
e of the limit
lim

ℓ→∞
ρℓ,k ≡ ρkand show that the ρk satisfy a system of linear equations.Let x = (x1, . . . , xD) ∈ RD and de�ne the probability generating fun
tion

Hℓ(x) =
∑

n1+···+nD=ℓ+1

Pℓ(n1, . . . , nD)xn1
1 · · ·xnD

D (6.1)
87



88 Chapter 6 Vertex degree distributionProposition 6.1.1 The probability generating fun
tion Hℓ(x) satis�es there
urren
e
Hℓ+1(x) =

∑

n1+···+nD=ℓ+1

Pℓ(n1, . . . , nD)
∑D

i=1 niwi

c(x) · ∇(xn1
1 · · ·xnD

D ) (6.2)for all ℓ ≥ ℓ0, where
c(x) = (c1(x), c2(x), . . . , cD(x)) (6.3)with
ci(x) =

i

2

i+1∑

j=1

wj,i+2−jxjxi+2−j (6.4)and ∇ =
(

∂/∂x1, . . . , ∂/∂xD

) is the standard gradient operator.Proof Any tree 
ontributing to Hℓ+1 
an be obtained by splitting a vertex in a treewith ℓ edges. This pro
ess 
an be divided into three steps:(i) Choose a tree T ∈ Γ
(D)
ℓ with vertex degree distribution (n1, . . . , nD) with prob-ability Pℓ(n1, . . . , nD).(ii) Sele
t a vertex in T of degree i with probability niwi/

∑

j njwj .(iii) Partition the edges in
ident to the 
hosen vertex into two sets V and V ′ ofadja
ent edges with j − 1 and i+ 1 − j elements, respe
tively, with probability
iwj,i+2−j/wi if j 6= i+ 2− j and with probability i

2wj,i+2−j/wi if j = i+ 2− j.In the latter 
ase there is a symmetry between V and V ′ whi
h a

ounts for thefa
tor 1/2.Multiplying together the probabilities in (i)�(iii) gives the probability of removing avertex of degree i and 
reating two new verti
es of degree j and i+2−j. In terms of thegenerating fun
tion this amounts to repla
ing xn1

1 · · ·xnD

D by x−1
i xjxi+2−jx

n1

1 · · ·xnD

D .The probability is
Pℓ(n1, . . . , nD)
∑

j njwj
ni ×







iwj,i+2−j if j 6= i+ 2 − j,
i
2wj,i+2−j otherwise.The partial derivative ∂/∂xi in ∇ takes 
are of removing a vertex of degree i andprovides the fa
tor ni. In ci(x), the fa
tors xjxi+2−j add two verti
es of degree j
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ase of linear splitting weights 89and i + 2 − j respe
tively and the appropriate weights are given. Now sum over allpossible partitionings in (iii), the dot produ
t of c(x) and ∇ a

ounts for the sumover all vertex degrees, and �nally sum over all vertex degree 
on�gurations in theinitial tree to obtain (6.2).
�For linear weights (5.3), Equation (6.2) redu
es to a mu
h simpler re
ursion

Hℓ+1(x) =
1

W(ℓ)
c(x) · ∇Hℓ(x) (6.5)by (5.4), where W(ℓ) = (2a+b)ℓ+b. The remainder of this subse
tion 
on
erns linearweights only. We have

nℓ,k =
∑

n1+...+nD=ℓ+1

Pℓ(n1, ..., nD)nk = ∂kHℓ(x)|x=1, (6.6)where 1 = (1, 1, . . . , 1). To get a re
ursion equation for nℓ,k, di�erentiate both sidesof (6.5) with respe
t to xk and set x = 1 to �nd
nℓ+1,k =

1

W(ℓ)

(
D∑

i=k−1

iwk,i+2−knℓ,i +

D∑

i=1

wi∂i∂kHℓ(x)|x=1

)

. (6.7)Sin
e the weights are linear we 
an use the 
onstraints in (5.5) to rewrite the lastterm in (6.7) as
D∑

i=1

wi∂i∂kHℓ(x)|x=1 = (−wk + W(ℓ))nℓ,k. (6.8)Inserting this into (6.7) we see that the equations 
lose
nℓ+1,k =

1

W(ℓ)

(

−wknℓ,k +
D∑

i=k−1

iwk,i+2−knℓ,i

)

+ nℓ,k. (6.9)We 
an also write the re
ursion in terms of ρℓ,k and �nd
(ℓ+ 2)ρℓ+1,k =

ℓ+ 1

W(ℓ)

(

−wkρℓ,k +

D∑

i=k−1

iwk,i+2−kρℓ,i

)

+ (ℓ+ 1)ρℓ,k (6.10)



90 Chapter 6 Vertex degree distributionThe above equation 
an be put in the matrix form
ρℓ+1 = Aℓ ρℓ (6.11)where

ρℓ = (ρℓ,1, ρℓ,2, . . . , ρℓ,D)
T
, Aℓ =

ℓ+ 1

ℓ+ 2

(

I +
1

W(ℓ)
B

)

, (6.12)
B =













w1,2 2w1,3 · · · (D − 2)w1,D−1 (D − 1)w1,D 0

w2,1 2w2,2 · · · (D − 2)w2,D−2 (D − 1)w2,D−1 Dw2,D

0 2w3,1 · · · (D − 2)w3,D−3 (D − 1)w3,D−2 Dw3,D−1... . . . . . . ... ... ...... . . . (D − 2)wD−1,1 (D − 1)wD−1,2 DwD−1,3

0 · · · 0 0 (D − 1)wD,1 DwD,2













− diag(wi)1≤i≤D(6.13)and I is the identity matrix.If we denote the vertex degree densities of the initial tree T0 by ρℓ0 we 
an writethe densities for trees on ℓ edges whi
h grow from the initial tree as
ρℓ =

(
ℓ−1∏

i=ℓ0

Ai

)

ρℓ0 =
ℓ0 + 1

ℓ+ 1

(
ℓ−1∏

i=ℓ0

(

I +
1

W(i)
B

))

ρℓ0 . (6.14)We will establish 
onvergen
e of the right hand side by imposing some te
hni
alrestri
tions on B. It turns out that the limiting distribution is independent of theinitial distribution ρℓ0 . We begin with some ne
essary lemmas.Lemma 6.1.2 If λ is an eigenvalue of B with 
orresponding eigenve
tor
eλ = (eλ1, . . . , eλD), i.e.

Beλ = λeλ, (6.15)then the following holds:
λ

D∑

i=1

eλi =

D∑

i=1

wieλi and (6.16)
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λ

D∑

i=1

ieλi = 2

D∑

i=1

wieλi. (6.17)Proof We prove the se
ond identity. The �rst identity is established by a similar
al
ulation. Multiply the i-th 
omponent of the eigenvalue equation (6.15) by i andsum over i to get
λ

D∑

i=1

ieλi = −
D∑

i=1

iwieλi +

D∑

i=1

i

D∑

k=i−1

kwi,k+2−ieλk

= −
D∑

i=1

iwieλi +
D∑

k=1

k

(
k+1∑

i=1

iwi,k+2−i

)

eλk. (6.18)Using wi,j = wj,i we �nd that
k+1∑

i=1

iwi,k+2−i =
k + 2

2

k+1∑

i=1

wi,k+2−i (6.19)and this together with the de�nition of the splitting weights (5.1) proves the identity.
�Lemma 6.1.3 If1. wk,1 = w1,k > 0 for k = 1, . . . , D (i.e. it is possible to produ
e verti
es of degree

D) and2. wi,D+2−i > 0 for at least one i with 2 ≤ i ≤ D − 1,then w2 is a positive, simple eigenvalue of B. All other eigenvalues of B have asmaller real part. The 
orresponding eigenve
tor ew2 
an be taken to have all entriespositive.Proof We begin by 
hoosing a number γ > max1≤k≤D {wk − kwk,2} and de�ne P =

B + γI. The matrix P has only nonnegative entries and the 
onditions (1) and (2)on B guarantee that it is primitive, i.e. there is a number k su
h that all entriesof the matrix P
k are positive. Therefore, by the Perron�Frobenius theorem [62℄,

P has a simple positive eigenvalue r and all other eigenvalues of P have a smallermodulus. The 
orresponding eigenve
tor er 
an be taken to have all entries positive.



92 Chapter 6 Vertex degree distributionWe normalize the eigenve
tor su
h that
D∑

i=1

eri = 1. (6.20)Shifting ba
k to the matrix B we �nd that w ≡ r − γ is a simple real eigenvalueof B with the largest real part and the 
orresponding eigenve
tor is ew = er. We seeright away from (6.16) and with the 
hosen normalization that
w =

D∑

i=1

wiewi. (6.21)Sin
e the weights are linear, Lemma 6.1.2 shows that w = w2.
�Note that the �rst 
ondition on the weights in the above lemma is natural sin
e wehave �xed a maximal degree D and therefore we want to be able to produ
e verti
esof degree D. The se
ond 
ondition, however, does not seem to be ne
essary for theresults to hold but we still require it in order to use the Perron�Frobenius theorem forprimitive matri
es. This 
ondition is not very restri
tive in the 
ase of linear weightssin
e it holds for all a and b ex
ept when aD + b = 0.Lemma 6.1.4 Let λ ∈ C. Then

ℓ0 + 1

ℓ+ 1

ℓ−1∏

i=ℓ0

(

1 +
1

W(i)
λ

)

−→







(ℓ0+1)w2

ℓ0w2+b if λ = w2,
0 if Re(λ) < w2

(6.22)as ℓ −→ ∞.Proof The result follows from the identity
ℓ0 + 1

ℓ+ 1

ℓ−1∏

i=ℓ0

(

1 +
1

W(i)
λ

)

=
ℓ0 + 1

ℓ+ 1

Γ
(

ℓ+ b+λ
w2

)

Γ
(

ℓ0 + b
w2

)

Γ
(

ℓ+ b
w2

)

Γ
(

ℓ0 + b+λ
w2

) . (6.23)
�



6.2 Expli
it solutions 93Theorem 6.1.5 With the assumptions on B in Lemma 6.1.3 and the additional as-sumption that B is diagonalizable, the limit as ℓ −→ ∞ of the right hand side ofEquation (6.14) exists and is given by the eigenve
tor ew2 of B normalized su
h that
D∑

i=1

ew2i = 1. (6.24)Proof We use the normalization in (6.24) and expand ρℓ0 in the basis of eigenve
torsof B. Using the results of Lemmas 6.1.2 and 6.1.3 and that T0 satis�es the equationsin (5.5) we see that the expansion is of the form
ρℓ0 =

w2ℓ0 + b

w2(ℓ0 + 1)
ew2 +

D−1∑

i=1

aieλi
(6.25)where λi, i = 1, . . . , D − 1 are the eigenvalues of B with real part less than w2. Theresult now follows from Lemma 6.1.4.

�Theorem (6.1.5) shows that with the above 
onditions on B the limit of the vertexdegree densities exists, is independent of the initial tree and is given by
ρ ≡ lim

ℓ→∞
ρℓ = ew2 . (6.26)The limiting densities are therefore the unique positive solution to Equation (6.15),i.e.

ρk = −wk

w2
ρk +

D∑

i=k−1

i
wk,i+2−k

w2
ρi. (6.27)6.2 Expli
it solutionsWe dis
uss three simple spe
ial 
ases.1) When D = 3 we �nd that

B =







0 2w1,3 0

w2,1 w2,2 − 2w3,1 3w3,2

0 2w3,1 0






. (6.28)If the weights satisfy the 
onditions in Lemma 6.1.3 it is easy to see that B is diag-



94 Chapter 6 Vertex degree distributiononalizable. For linear splitting weights wi = ai+ b and uniform partitioning weightsthe positive solution of (6.27) is
ρ1 = ρ3 =

2

7
and ρ2 =

3

7
(6.29)for all values of a and b as 
an easily be seen from the simple stru
ture of B in this
ase.2) When D = 4, the splitting weights linear and the partitioning weights uniformone 
an 
he
k that

B =










0 2
3 (2a+ b) 1

2 (3a+ b) 0

a+ b − 1
3 (2a+ b) 1

2 (3a+ b) 2
3 (4a+ b)

0 2
3 (2a+ b) − 1

2 (3a+ b) 2
3 (4a+ b)

0 0 1
2 (3a+ b) − 1

3 (4a+ b)










. (6.30)When 4a+ b > 0 the weights satisfy the 
onditions in Lemma 6.1.3. The eigenvaluesof B are − 1
12 (33a + 13b ±

√
a2 − 78ab− 15b2), w2 and 0. This shows that B isdiagonalizable ex
ept when a/b = 39± 16

√
6. One 
an analyse these 
ases separatelyusing a basis of generalized eigenve
tors and show that the right hand side of Equation(6.14) still 
onverges to ew2 .3) Fix a maximal degree D. Choose partitioning weights

w1,i = wi,1 = (i− 1)−1, i = 2, . . . , D,

w2,D = wD,2 = D−1and all other weights equal to zero. The splitting weights are then wi = 1 for i =

1, . . . , D. These weights satisfy the 
onditions in Lemma 6.1.3. Note that if we takethe limit D −→ ∞ we get a spe
ial 
ase of the preferential atta
hment model. Thenonzero matrix elements of B are
Bi+1,i = B1,i = −Bi,i = B2,1 = B2,D = 1, 1 < i < D. (6.31)The 
hara
teristi
 polynomial of B is

pD(λ) = (−1)D (1 − λ)
(

1 − (1 + λ)
D−1

) (6.32)



6.3 Generality of results 95whi
h 
an easily be proved by indu
tion. The roots of the 
hara
teristi
 polynomialare λ = 1 and λ = exp ( 2πik
D−1 ) − 1, k = 1, . . . , D − 1 and they are all distin
t whi
hshows that B is diagonalizable. The solution to (6.27) is

ρk =
2D−k+δkD−1 − δk1

2D−1 − 1
, k = 1, . . . , D. (6.33)6.3 Generality of resultsIt is not obvious how restri
tive the 
ondition that B must be diagonalizable is re-garding the 
olle
tion of weights one 
an 
onsider. In the previous subse
tion we sawthat for D = 3 and D = 4 the 
ondition was not very restri
tive. Also we saw that forevery D there is at least one 
hoi
e of weights whi
h satis�es the 
onditions in Lemma6.1.3 and yields a diagonalizable matrix B. We will now show that this guaranteesthat almost all weights give a diagonalizable B.Fix a maximal degree D. Let BD be the set of matri
es B whi
h 
orrespond topartitioning weights that give linear splitting weights and satisfy the 
onditions inLemma 6.1.3. It is 
lear that if B,B′ ∈ BD then

tB + (1 − t)B′ ∈ BD for all t ∈ [0, 1] and so BD is 
onvex. Let
B′

D = {B ∈ BD | B is diagonalizable} .From the previous subse
tion we know that B′
D 6= ∅. Sin
e BD is 
onvex and B′

D 6= ∅then by [47, Corollary 1℄, B′
D is dense in BD in the standard topology.We believe that it is possible to extend the result of 
onvergen
e of the righthand side of (6.14) to all partitioning weights giving linear splitting weights, relaxingboth the 
ondition of diagonalizability of B and 
ondition (2) in Lemma 6.1.3. Wealso believe, in view of simulations, that Equation (6.27) even des
ribes 
orre
tly thevertex degree distribution for non�linear splitting weights and for the 
ase D = ∞.We will look at this more 
losely in the next two subse
tions.6.4 Mean �eld equation for general weightsTo generalize Equation (6.27) beyond the 
ase of linear splitting weights we noti
ethat Lemmas 6.1.2 and 6.1.3 do not rely on the linearity of the weights ex
ept in the
on
lusion of Lemma 6.1.3 where we show that w = w2. We therefore 
onje
ture thatin general the limiting vertex degree densities are the unique positive solution to
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ρk = −wk

w
ρk +

D∑

i=k−1

i
wk,i+2−k

w
ρi, (6.34)subje
t to the 
onstraints

ρ1 + . . .+ ρD = 1 (6.35)
w1ρ1 + . . .+ wDρD = w. (6.36)Re
all that w is the unique simple positive eigenvalue of B de�ned in (6.13) with thelargest real part of all the eigenvalues and ρk, k = 1, . . . , D are the 
omponents of theasso
iated eigenve
tor with the proper normalization.The existen
e and uniqueness of a positive solution to (6.34) satisfying (6.35) and(6.36) follows from the Perron�Frobenius argument in the proof of Lemma 2.2. Inorder to distinguish (6.34) from (6.27) we refer to it as the mean �eld equation forvertex degree densities. One 
an also arrive dire
tly at this equation by assumingthat for large t an equilibrium with small enough �u
tuations is established, and thenperforming the splitting pro
edure on this equilibrium.The solution to the mean �eld equation for the D = 3 model and uniform parti-tioning weights is

ρ3 =
7α−

√

α (α+ 24 β + 24)

6(2α− β − 1)
(6.37)where α =

w2

w1
and β =

w3

w1
. Note that from the 
onstraints we have ρ1 = ρ3 and

ρ2 = 1 − 2ρ3. This solution (and solutions in general) only depends on the ratio ofthe weights. In Figure 6.1 we 
ompare the above solution to simulations.
6.5 The D = ∞ model with linear weightsIn this subse
tion we drop the assumption that there is an upper bound on the vertexdegrees but we still assume that all vertex degrees are �nite. If we assume thatEquation (6.27) holds for D = ∞, then it is possible to �nd an exa
t solution inthe 
ase of linear splitting weights, wi = ai + b, and uniform partitioning weights.
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Figure 6.1: The value of ρ3 as given in (6.37) 
ompared to results from simulations. Ea
hpoint is 
al
ulated from 20 trees with 10000 verti
es.
Equation (6.27) be
omes

ρk = −wk

w2
ρk +

∞∑

i=k−1

2

i+ 1

wi

w2
ρi. (6.38)Subtra
ting from this the same equation for ρk+1 we �nd

ρk

(

1 +
wk

w2

)

− ρk+1

(

1 +
wk+1

w2

)

=
2

k

wk−1

w2
ρk−1. (6.39)Let x = b/a. The re
ursion (6.39) has the solution

ρk(x) =







2

C(−1)
if x = −1 and k = 1

1

C(x)

2k−1Γ (k + x)

Γ (k) Γ (k + 3 + 2x)
(k + 1 + 2x) otherwise, (6.40)where

C(x) =
e
√
π 2−

3
2−xI 1

2+x(1)

2 + x
(6.41)is a normalization 
onstant su
h that∑i ρi = 1. Here, Iν is the modi�ed Bessel fun
-tion of the �rst kind. The variable x 
an take values from −1 to ∞. The asymptoti
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ρk(x) =

1

C(x)

1

k!
2k−1k−1−x

(

1 +O

(
1

k

))

. (6.42)The spe
ial 
ase x = ∞ 
orresponds to 
onstant weights for whi
h the solution is
ρk(∞) =

1

e

1

(k − 1)!
. (6.43)In Figure 6.2 we 
ompare the above solutions to simulations for �ve di�erent valuesof x. The solid lines are y = k + 1 + 2x plotted against k for �ve di�erent values of

x. The data points on the graph are 
al
ulated from simulations of 100 trees with
106 verti
es. For a given k and x they are 
al
ulated from the degree densities of thesimulated trees ρk,sim.(x) by

y = C(x)
Γ (k) Γ (k + 3 + 2x)

2k−1Γ (k + x)
ρk,sim.(x) (6.44)with an obvious modi�
ation if x = −1.
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Figure 6.2: A 
omparison of Equation (6.40) to simulations.



7Subtree stru
ture probabilitiesand the Hausdor� dimensionIn this 
hapter we 
onsider the model in whi
h verti
es are labelled with their timeof 
reation as explained in the de�nition of the splitting pro
ess (item (iv)). For
onvenien
e we will start from the single vertex tree at time 0. We 
onsider onlylinear splitting weights wi = ai+b but 
omment on generalizations in the last se
tion.We derive exa
t expressions for probabilities of parti
ular subtree stru
tures asseen from the vertex 
reated at a given time. By averaging over these probabilities andassuming the existen
e of a s
aling limit, we shall show how to extra
t the Hausdor�dimension of the trees, as de�ned in (1.25), and derive bounds on this dimension. Inspe
ial 
ases we give an exa
t expression for the Hausdor� dimension.7.1 Volume distribution fun
tionsConsider a tree of ℓ edges generated with the splitting pro
edure starting from thesingle vertex tree at time 0. To simplify the notation we de�ne
W (ℓ) ≡ W(T ) − w1 = (2a+ b)ℓ− a (7.1)where the last equality follows from the linearity of the weights. This is the totalweight of splitting a vertex in a tree T , ex
luding the root vertex (or any other leafin fa
t). Let pR(ℓ; s) be the probability that the vertex 
reated at time s is the root.99



100 Chapter 7 Subtree stru
ture probabilities and the Hausdor� dimensionIf s < ℓ we �nd that
pR(ℓ; s) =

1

W (ℓ− 1) + w1
W (ℓ− 1)pR(ℓ− 1; s), (7.2)sin
e we 
an split any vertex ex
ept the root in order to get from a tree at time ℓ− 1to a tree at time ℓ. This 
ontributes the fa
tor pR(ℓ− 1; s) to pR(ℓ; s). Similarly,

pR(ℓ; ℓ) =
1

W (ℓ− 1) + w1

ℓ−1∑

s=0

w1pR(ℓ− 1; s), (7.3)sin
e if we 
reate a new root vertex at time ℓ the previous root vertex, labelled s in(7.3) 
ould have been 
reated at any time before ℓ. We depi
t these pro
esses in Fig.7.1.
`� 1s s= W (`� 1)W (`� 1) + w1`

= 1W (`� 1) + w1 `�1Xs=0 w1` ` s `� 1Figure 7.1: Diagrams representing equations (7.2) and (7.3).If v is a vertex of order k in a tree T , then there is a unique edge e1 in
ident on
v leading towards the root (unless v is the root). Let e2, . . . , ek be the other edgesin
ident on v. The largest subtree of T whi
h 
ontains the root and e1 but none ofthe links ei with i ≥ 2 will be 
alled the left subtree (with respe
t to v). The maximalsubtrees whi
h 
ontain one ej with j 6= 1 and no other link ei will be 
alled the rightsubtrees (with respe
t to v). If k = 1 then there are of 
ourse no right subtrees and if
v is the root then we view the left subtree as being empty. Let pk(ℓ1, . . . , ℓk; s) denotethe probability that the vertex 
reated at time s has a left subtree of ℓ1 edges andright subtrees of ℓ2, . . . , ℓk edges, where ℓ1+. . .+ℓk = ℓ. By the nature of the splittingoperation and be
ause of the initial 
onditions, pk(ℓ1, ℓ2, . . . , ℓk; s) is symmetri
 underpermutations of (ℓ2, . . . , ℓk). We will sometimes refer to the vertex 
reated at time sas the s-vertex.
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tions 101By the de�nition of the relabelling when we split we have
p1(ℓ; ℓ) = 0, (7.4)be
ause the vertex 
loser to the root gets a new label and therefore no leaf ex
ept theroot 
an have the maximal label. In the 
ase s < ℓ we �nd the re
ursion

p1(ℓ; s) =
1

W (ℓ− 1) + w1

[

W (ℓ− 1)p1(ℓ− 1; s)

+
D−1∑

i=1

iwi+1,1

∑

ℓ′1+...+ℓ′i=ℓ−1

pi(ℓ
′
1, . . . , ℓ

′
i; s) + δℓ1w1

]

. (7.5)The �rst term in the square bra
ket 
orresponds to the 
ase when we do not split thevertex with label s. The se
ond term 
orresponds to splitting the s-vertex whi
h 
anhave any order up to D − 1. Finally the last term 
orresponds to the spe
ial 
asewhen we have ℓ = 1 so the s-vertex is the root of the trivial tree, see Fig. 7.2.
+

D−1∑

i=1

iwi+1,1

∑

ℓ′1+...+ℓ′i=ℓ−1

=
1

W (ℓ − 1) + w1

(

W (ℓ − 1) ℓ − 1

s

ℓ′1

s

ℓ′2

ℓ′i

s
+ δℓ1w1

s

ℓ

)

Figure 7.2: A diagram representing Equation (7.5).For a general k ≥ 2 and s < ℓ the re
ursion 
an be written
pk(ℓ1, . . . , ℓk; s) =

1

W (ℓ− 1) + w1
×

[

δk2δℓ11w1pR(ℓ− 1; s) +

k∑

i=1

W (ℓi − 1)pk(ℓ1, . . . , ℓi − 1, . . . , ℓk; s)



102 Chapter 7 Subtree stru
ture probabilities and the Hausdor� dimension
+

D∑

i=k

(i+ 1 − k)wk,i−k+2

∑

ℓ′1+...+ℓ′
i+1−k

=ℓ1−1

pi(ℓ
′
1, . . . , ℓ

′
i+1−k, ℓ2, . . . , ℓk; s)

]

,(7.6)see Fig. 7.3. The �rst term 
orresponds to the 
ase when the s-vertex is the root

+

k∑

i=1

W (ℓi − 1)

+

D∑

i=k

(i + 1 − k)wk,i−k+2

∑

ℓ′1+...+ℓ′
i−k+1=ℓ1−1

=
1

W (ℓ − 1) + w1

(

δk2δℓ11w1

s

s

s

ℓ − 1

)

ℓ1

s

ℓ2

ℓk

ℓ2

ℓi − 1

ℓk

ℓ1

ℓ′i+1−k

ℓ′1

ℓ1 − 1

ℓ2

ℓkFigure 7.3: A diagram representing Equation (7.6).before the splitting in whi
h 
ase we have ℓ1 = 1 and k = 2. The se
ond term
orresponds to the 
ase when we split a vertex di�erent from the s-vertex and thelast term arises when we split the s-vertex in the step from time ℓ− 1 to time ℓ.
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tions 103Finally we have
pk(ℓ1, . . . , ℓk; ℓ) =

1

W (ℓ− 1) + w1
× (7.7)

ℓ−1∑

s=0

k∑

j=2

D−1∑

i=k−1

∑

ℓ′
1
+...+ℓ′

i+1−k
=ℓj−1

wk,i−k+2pi(ℓ1, . . . , ℓj−1, ℓ
′
1, . . . , ℓ

′
i+1−k, ℓj+1, . . . , ℓk; s),where ℓ1 + . . .+ ℓk = ℓ, see Fig.7.4. Here s is the label of the vertex that is split in

=
1

W (ℓ − 1) + w1

ℓ−1∑

s=0

k∑

j=2

D−1∑

i=k−1

wk,i−k+2

∑

ℓ′1+...+ℓ′
i+1−k

=ℓj−1

ℓ1

ℓk

ℓ

ℓ2

×

ℓj − 1
ℓj−1

s
ℓ′i+1−k

ℓ′1

ℓj+1ℓk

ℓ1

Figure 7.4: A diagram representing Equation (7.7).the step from time ℓ−1 to time ℓ and we sum over all possible degrees of the s-vertexand all ways of splitting it.We de�ne the following mean probabilities by averaging over the vertex labels in(7.2�7.7)
pR(ℓ) =

1

ℓ+ 1

ℓ∑

s=0

pR(ℓ; s) (7.8)
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ture probabilities and the Hausdor� dimensionand
pk(ℓ1, . . . , ℓk) =

1

ℓ+ 1

ℓ∑

s=0

pk(ℓ1, . . . , ℓk; s), (7.9)where ℓ1 + . . .+ ℓk = ℓ. We refer to these fun
tions as volume distribution fun
tions.From (7.8) we get a re
ursion for the volume distribution fun
tions, going from time
ℓ to ℓ+ 1

pR(ℓ+ 1) =
ℓ+ 1

ℓ+ 2
pR(ℓ). (7.10)For k = 1 we obtain from (7.4), (7.5) and (7.9)

p1(ℓ+ 1) (7.11)
=

ℓ+ 1

ℓ+ 2

1

W (ℓ) + w1

[

W (ℓ)p1(ℓ) +

D−1∑

i=1

iwi+1,1

∑

ℓ′1+...+ℓ′
i

=ℓ

pi(ℓ
′
1, ..., ℓ

′
i) + 2δℓ0w1

]

.Finally, the general 
ase for k ≥ 2 is
pk(ℓ1, . . . , ℓk)

=
ℓ+ 1

ℓ+ 2

1

W (ℓ) + w1

[

δk2δℓ11w1pR(ℓ) +
k∑

i=1

W (ℓi − 1)pk(ℓ1, . . . , ℓi − 1, . . . , ℓk)

+

D∑

i=k

(i− k + 1)wk,i−k+2

∑

ℓ′
1
+...+ℓ′

i+1−k
=ℓ1−1

pi(ℓ
′
1, . . . , ℓ

′
i+1−k, ℓ2, . . . , ℓk) (7.12)

+

k∑

j=2

D∑

i=k−1

wk,i−k+2

∑

ℓ′
1
+...+ℓ′

i+1−k
=ℓj−1

pi(ℓ1, . . . , ℓj−1, ℓ
′
1, . . . , ℓ

′
i+1−k, ℓj+1, . . . , ℓk)

]where ℓ1 + . . .+ ℓk = ℓ+ 1 and we have made use of (7.6), (7.7) and (7.9).7.2 Geodesi
 distan
es and two point fun
tionsOne 
an redu
e the above re
ursion formulas for the volume distribution fun
tionsto simpler re
ursion formulas whi
h su�
e for the determination of the Hausdor�dimension. De�ne the two-point fun
tions
qki(ℓ1, ℓ2) =

∑

ℓ′1+...+ℓ′
k−i

=ℓ1

∑

ℓ′′1 +...+ℓ′′i =ℓ2

pk(ℓ′1, . . . , ℓ
′
k−i, ℓ

′′
1 , . . . , ℓ

′′
i ), (7.13)
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 distan
es and two point fun
tions 105where k = 2, . . . , D and i = 1, . . . , k − 1. In total there are D(D − 1)/2 of thesefun
tions. If we de�ne
q1,0(ℓ1, ℓ2) = δℓ20δℓ1ℓp1(ℓ1 + ℓ2)then qki(ℓ1, ℓ2) is the probability that i right trees of total volume ℓ2 are atta
hed toa vertex of degree k in a tree of total volume ℓ1 + ℓ2. By summing over the equationsin the previous se
tion we get

qki(ℓ1, ℓ2) =
ℓ+ 1

ℓ+ 2

1

W (ℓ) + w1

[

D∑

j=k−1

wk,j+2−k

(

(j − i)qji(ℓ1 − 1, ℓ2) + iqj,j−(k−i)(ℓ1, ℓ2 − 1)
)

+
(

W (ℓ1 − 1) + (k − i− 1)(w2 − w3)
)

qki(ℓ1 − 1, ℓ2)

+
(

W (ℓ2 − 1) + (i− 1)(w2 − w3)
)

qki(ℓ1, ℓ2 − 1)

+δk2δℓ11w1pR(ℓ2) + δi1δℓ21wk,1

∑

ℓ′1+...+ℓ′
k−1=ℓ1

pk−1(ℓ
′
1, . . . , ℓ

′
k−1)

](7.14)with ℓ1 + ℓ2 = ℓ+ 1. We see that the two-point fun
tions satisfy an essentially 
losedsystem of equations. The last two terms in (7.14) do not 
ontribute to the s
alinglimit whi
h will be dis
ussed in the next se
tion.The radius RT de�ned in (1.24) 
an be extra
ted from these two point fun
tions.Let T be a tree of ℓ edges and 
hose a v ∈ V (T ) and an e ∈ E(T ). If we 
ut theedge e at the vertex further away from v then the tree is split into two 
onne
ted
omponents, a tree T1 whi
h 
ontains v and a tree T2 that does not 
ontain v (seeFigure 7.5). Let ℓ2(v; e) be the number of edges of T2. We have the simple resultLemma 7.2.1
∑

w∈V (T )

dT (v, w)σT (w) =
∑

e∈E(T )

(2ℓ2(v; e) + 1). (7.15)Proof For the tree T with ℓ edges, we may assign two labels to every edge in thefollowing way. Starting from v, we walk around the tree while always keeping the treeto the left. Drop the labels 1 to 2ℓ on the sides of edges as we pass them.An example of su
h a walk and labelling is shown in Figure 7.6. Let us mention
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v e T2

T1

ℓ1

ℓ2Figure 7.5: Cutting a tree along the edge e.
v

7
6

5

4
32

12 11

101
9

8ww

v Figure 7.6: A tree and its labels.
that the initial dire
tion from v is unimportant. In what follows we will denote thesenew labels by Greek letters.Given 1 ≤ α < β ≤ 2ℓ, de�ne φv(α, β) to be 1 if α and β are labels of thesame edge, and zero otherwise. In the above example we have φv(6, 9) = 1 whereas
φv(6, 12) = 0. For any vertex w ∈ T , let us de�ne ω(w) to be the smallest label ofthe edges adja
ent to w. In the example above ω(w) = 6 and ω(v) = 1. We now havefor any w ∈ T

dT (v, w) =
∑

α,β: α≤ω(w)<β

φv(α, β) (7.16)and it follows that
∑

w∈V (T )

dT (v, w)σT (w) =
∑

α,β,γ:α≤γ<β

φv(α, β) =
∑

α,β:α<β

φv(α, β)(β − α).(7.17)



7.3 S
aling and the Hausdor� dimension 107If φ(α, β) = 1, i.e. if α and β 
orrespond to the two fa
es of the edge e, then
β − α = 2 ℓ2(v; e) + 1 (7.18)and Equation (7.15) follows.

�We now apply (7.15) by 
hoosing for v the root r of the tree and averaging over alltrees obtained by the splitting pro
ess. We noti
e that the average number of linksgiving the volume ℓ2(r; e) is simply the number of verti
es, ℓ+1, times the proportionof verti
es whi
h have a left tree (
ontaining the root r) of ℓ1 = ℓ− ℓ2 edges and anarbitrary number of right trees (with a total number of ℓ2 edges). This proportion ispre
isely given by
D∑

k=1

qk,k−1(ℓ− ℓ2, ℓ2). (7.19)Note that max{ℓ2(r; e) : e ∈ T } = ℓ− 1. We therefore obtain
〈RT 〉νℓ

=
ℓ+ 1

2ℓ

ℓ−1∑

ℓ2=0

(2ℓ2 + 1)

D∑

k=1

qk,k−1(ℓ− ℓ2, ℓ2). (7.20)Thus, if we know how the two point fun
tions qki(ℓ1, ℓ2) s
ale for large ℓ, we knowhow the radius of the tree s
ales with ℓ and we 
an 
ompute the Hausdor� dimension
dH .7.3 S
aling and the Hausdor� dimensionWe assume that the following s
aling holds for the two-point fun
tions qki with ℓ large

qki(ℓ1, ℓ2) = ℓ−ρ
(
ωki(x) + γki(x)ℓ

−1 +O(ℓ−2)
) (7.21)where ℓ1 + ℓ2 = ℓ, x = ℓ1/ℓ ∈]0, 1[ and where ωki, γki are some fun
tions. It musthold that ωki > 0 and we assume that the s
aling exponent ρ satis�es

1 < ρ ≤ 2. (7.22)Note that for ℓ �nite, the probabilities qki(ℓ1, ℓ2) are of order ℓ−1 when ℓ1 is of order1 and are of order 1 when ℓ2 is of order 1. This implies that the s
aling fun
tions
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ωki(x) should s
ale when x −→ 0 or x −→ 1, respe
tively, as

ωki(x) ∼ x1−ρ and ωki(x) ∼ (1 − x)−ρ. (7.23)Using this ansatz and (7.20) the mean radius s
ales as
〈RT (r)〉 ≃ ℓ2−ρC, C =

∫ 1

0

dx (1 − x)ω(x), ω(x) =
∑

k

ωk,k−1(x). (7.24)Equations (7.23) and (7.22) ensure that the integral C is 
onvergent when ρ < 2.Equation (1.25) then implies that the Hausdor� dimension of the tree is given by
2 − ρ =

1

dH
. (7.25)For ρ = 2 we see that C is logarithmi
ally divergent and this 
orresponds to an in�niteHausdor� dimension. Inserting (7.21) into the re
ursion Equation (7.14) for the twopoint fun
tions and expanding in ℓ−1 gives

ωki − ρωkiℓ
−1 − xℓ−1ω′

ki + γkiℓ
−1 +O(ℓ−2)

=
1

w2
ℓ−1
(

1 − w1 + 2w2 − w3

w2
ℓ−1 +O(ℓ−2)

)

×
[ D∑

j=k−1

wk,j+2−k

(

(j − i)ωji + iωj,j−(k−i) +O(ℓ−1)
)

+ℓ
(

w2x+ (−w3 + (k − i− 1)(w2 − w3))ℓ
−1
)(

ωki − ℓ−1ω′
ki + γkiℓ

−1 +O(ℓ−2)
)

+ℓ
(

w2(1 − x) + i(w2 − w3)ℓ
−1
)(

ωki + γkiℓ
−1 +O(ℓ−2)

)]

. (7.26)where the ′ denotes di�erentiation with respe
t to x and we have dropped the fun
tionargument x in an obvious way. The equation is trivially satis�ed in zeroth order of
ℓ−1. When we go to the next order we see that the following must hold

(2 − ρ)ωki =
1

w2

D∑

j=k−1

wk,j+2−k

(

(j − i)ωji + iωj,j−(k−i)

)

− wk

w2
ωki. (7.27)This eigenvalue equation may be rewritten as

Cω = w2(2 − ρ)ω (7.28)
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D

2

´

×
`

D

2

´ matrix indexed by a pair of two indi
es ki with k > i, k =

2, . . . , D and ω is a ve
tor with two su
h indi
es. The matrix elements of C are
Cki,jn = wk,j+2−k

(
(j − i) δin + iδn,j−(k−i)

)
− wkδkjδin. (7.29)We use the 
onvention that wi,j = 0 if i or j is less than 1 or greater than D. Thus,

w2(2 − ρ) is an eigenvalue of the matrix C and the asso
iated eigenve
tor must have
omponents ≥ 0. We now show that there is in general a unique solution to thiseigenvalue problem.Sin
e the only possibly negative elements of C are on the diagonal we 
an makethe matrix nonnegative by adding a positive multiple γ of the identity to both sidesof (7.28) and 
hoosing γ large enough.If enough of the weights wi,j are nonzero (w1,i > 0 for 2 ≤ i ≤ D and wj,3 > 0 for
2 ≤ j ≤ D− 1 is for example su�
ient) then one 
an 
he
k that the matrix C + γI isprimitive. Then, by the Perron�Frobenius theorem, it has a simple positive eigenvalueof largest modulus and its 
orresponding eigenve
tor 
an be taken to have all entriespositive 
f. Lemma 6.1.3. Therefore this largest positive eigenvalue gives the ρ we areafter.7.3.1 An upper bound on the Hausdor� dimensionWe 
an get an upper bound on ρ by a straightforward estimate from (7.27). Theo�-diagonal terms in the sum are all nonnegative so we disregard them and get theinequality

ρ ≤ 2 −
(

k
wk,2

w2
− wk

w2

)

, k = 2, . . . , D. (7.30)Sin
e 1 < ρ ≤ 2 and for k ≥ 3

wk = kwk,2 +
k

2

k+1∑

i=1
i6=2, i6=k

wi,k+2−i > kwk,2 (7.31)the best we 
an get from this upper bound is when k = 2 whi
h yields
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ρ ≤ 2 − w2,2 − 2w1,3

w2,2 + 2w1,3
. (7.32)Now, 2 − ρ = 1

dH
and therefore, if w2,2 > 2w1,3, we obtain the upper bound

dH ≤ w2,2 + 2w1,3

w2,2 − 2w1,3
. (7.33)If w2,2 ≤ 2w1,3 the upper bound in (7.32) gives no information about the Hausdor�dimension. The 
ondition w2,2 > 2w1,3 means that splittings of verti
es of degree 2whi
h lengthen the tree are more frequent than the splittings of verti
es of degree 2whi
h in
rease the bran
hing of the tree. It is interesting to note that this 
onditionbetween �stret
hing� and bran
hing of verti
es of degree 2 is enough to provide a �niteHausdor� dimension.It is easy to verify that (7.33) is an equality if we 
hoose the weights su
h that

wi,j = 0 if i 6= 1 or j 6= 1 with the ex
eption that w2,2 > 0. This 
ondition means thatwe only allow verti
es to evolve by link atta
hment, ex
ept that we 
an split verti
esof degree 2. With this 
hoi
e the matrix C is lower triangular and we 
an simplyread the eigenvalues from the diagonal. Note that C is not primitive in this 
ase andtherefore we 
annot use the Perron�Frobenius theorem to determine whi
h eigenvaluegives the s
aling exponent. However, with these simple weights one 
an show expli
-itly that there is pre
isely one eigenve
tor with stri
tly positive 
omponents and the
orresponding eigenvalue is the one that saturates the inequality in (7.33). Also notethat with this 
hoi
e we have set wD = 0 and sin
e the weights are linear, wi = ai+b,we have �xed a and b so that wi = 1− i
D . Therefore there is only one free parameterwhi
h we 
an 
hoose to be w2,2. Then we 
an write the Hausdor� dimension as

dH =
1 − 2/D

2w2,2 − (1 − 2/D)
(7.34)with

1

2
(1 − 2/D) < w2,2 < 1 − 2/D. (7.35)We see that for any D the Hausdor� dimension 
an vary 
ontinuously from 1 toin�nity.
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it solutions and numeri
al results for D = 3When the maximal degree is D = 3, the splitting weights are taken to be linear
wi = ai+ b and the partitioning weights uniform, it is easy to solve Equation (7.27)for the Hausdor� dimension . Sin
e the solution only depends on the ratio of theweights there is only one independent variable and we 
hoose it to be y := w3/w2where 0 ≤ y ≤ 2. The solution is

dH =
3(1 +

√
1 + 16y)

8y
(7.36)In Figure 7.7 we 
ompare this equation to results from simulations. The agreementof the simulations with the formula is good in the tested range 0.5 ≤ y ≤ 2. For smallervalues of y the Hausdor� dimension in
reases fast and one would have to simulatevery large trees to see the s
aling.

 1

 1.5
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 2.5

 3

 3.5

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

d H

yFigure 7.7: Equation (7.36) 
ompared to simulations. The Hausdor� dimension, dH , isplotted against y = w3/w2. The leftmost data point is 
al
ulated from 50 trees with 50000verti
es and the others are 
al
ulated from 50 trees with 10000 verti
es.7.3.3 General mean �eld argumentOur argument to 
ompute the Hausdor� dimension relies on the re
ursion relationsfor the substru
ture probabilities, studied in Se
tion 7.2, whi
h are valid only whenthe splitting weights wi are linear fun
tions of the vertex degree i (wi = ai + b). Inthis 
ase the total probability weight W(T ) for a given tree T depends only on itssize ℓ (number of edges) and mean �eld arguments 
an be made exa
t.
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ture probabilities and the Hausdor� dimensionIn the general 
ase where the wi,j are arbitrary and the wi are not linear with i,these re
ursion relations are no longer exa
t. We 
an use a mean �eld argument andassume that they are still valid for large �typi
al� trees, provided that we repla
e inthese re
ursion relations the exa
t weights W (ℓ) + w1 = W(T ) by their mean �eldvalue for large trees
W (ℓ) + w1 −→ W(ℓ) =

∑

j

wjnℓ+1,j (7.37)where nℓ+1,j is the average number of i-verti
es in a tree with ℓ edges, studied inSe
tion 6.1. From the mean �eld analysis of Se
tion 6.4, we expe
t that these nℓ+1,js
ale with ℓ as
nℓ+1,j ≃ ℓρj (7.38)with the vertex densities ρj given by the mean �eld equations (6.34, 6.35, 6.36) as the
omponents of the eigenve
tor ρ asso
iated to the largest eigenvalue w of the matrix

B. Thus the mean �eld approximation amounts to repla
ing
W (ℓ) + w1 −→ W(ℓ) = w ℓ+ · · · (7.39)in the re
ursion relations of the previous se
tions, in parti
ular in the re
ursion relation(7.14) for the two point fun
tion qki.With this assumption, we 
an repeat the s
aling argument of Se
tion 7.3, and weend up with Equation (7.27), with the normalisation fa
tor 1

w2
in the r.h.s. repla
edby the mean �eld normalisation fa
tor 1

w

(2 − ρ)ωki =
1

w

D∑

j=k−1

wk,j+2−k

(

(j − i)ωji + iωj,j−(k−i)

)

− wk

w
ωki . (7.40)This equation is still an eigenvalue equation of the form

Cω = w(2 − ρ)ω (7.41)where C is the (D2)× (D2) matrix with 
oe�
ients given in (7.29).If we denote by χ the largest eigenvalue of this matrix C and if w is the largesteigenvalue of B then the Perron�Frobenius argument 
an be applied to show that χis nonnegative and that the eigenve
tor ω has nonnegative 
omponents, whi
h is a
onsisten
y requirement for the argument, sin
e the ωki are res
aled probabilities. We
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tion for the Hausdor� dimension of the simple form
dH =

1

2 − ρ
=
w

χ
. (7.42)General solution for D = 3In the D = 3 
ase, the B and C matri
es are

B =






0 2w3,1 0

w2,1 w2,2 − 2w3,1 3w3,2

0 2w3,1 0




 , C =






w2,2 − 2w3,1 2w3,2 w3,2

w3,1 0 0

2w3,1 0 0




 (7.43)and we �nd

dH =
(w2,2 − 2w3,1) +

√
(w2,2 − 2w3,1)2 + 8w3,1(w2,1 + 3w3,2)

(w2,2 − 2w3,1) +
√

(w2,2 − 2w3,1)2 + 16w3,1w3,2

. (7.44)We have tested this formula when the partitioning weights wi,j are uniform. In this
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β = 100
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Figure 7.8: Equation (7.45) 
ompared to simulations. Ea
h data point is 
al
ulated from50 trees with 10000 verti
es.
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ase
dH =

α−
√

α (α+ 24 + 24 β)

α−
√

α (α+ 16 β)
(7.45)where α =

w2

w1
and β =

w3

w1
. In Figure 7.8 we 
ompare this equation to results fromsimulations. There is a good agreement for small values of α and β, but the pre
isionof the numeri
s be
omes poor for large values of α and β. This is expe
ted sin
e inthis 
ase, the trees will have a large Hausdor� dimension and one must go to verylarge trees to see the s
aling.



8Correlation between degreesof neigbouring verti
esConsider a tree of ℓ edges generated by the splitting pro
edure starting from thesingle vertex tree at time 0. We are interested in determining the density of edgeswhi
h have endpoints of degrees j and k in the limit when ℓ −→ ∞. We de�ne thisdensity in the following way. Distribute arrows uniformly at random to ea
h edge ofa tree and let ρ̄jk denote the average density of edges whi
h have an arrow pointingfrom a vertex of degree j to a vertex of degree k. A knowledge of the ρ̄jk allowsus to determine whether verti
es of high degree prefer to be neighbours of verti
esof high degree, in whi
h 
ase the tree is said to show assortative mixing, or whetherthey prefer to be neighbours of verti
es of low degree, in whi
h 
ase the tree is saidto show disassortative mixing. For instan
e, so
ial networks often show assortativemixing whereas biologi
al and te
hni
al networks tend to be disassortative [59℄.First note that the degree distribution of an endpoint of a randomly 
hosen edgein a graph is proportional to kρk rather than ρk. We therefore de�ne the densities
ρ̄k =

kρk
∑

i iρi
(8.1)for general graphs, and in the 
ase of trees ∑i iρi = 2. The amount of assortativemixing in a general graph is quanti�ed by a 
orrelation 
oe�
ient r whi
h 
omparesthe densities ρ̄jk to densities in graphs where no 
orrelations are present, i.e. when115
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ρ̄jk = ρ̄j ρ̄k. The 
orrelation 
oe�
ient is de�ned as

r =

∑D
j,k=1(j − 1)(k − 1)(ρ̄jk − ρ̄j ρ̄k)

∑D
j=1(k − 1)2ρ̄k −

(
∑D

k=1(k − 1)ρ̄k

)2 (8.2)where the denominator is 
hosen su
h that r ∈ [−1, 1] [59℄. When r is negative thegraphs are disassortative and when r is positive they are assortative. Note that r = 0for graphs for whi
h ρ̄jk = ρ̄j ρ̄k and su
h graphs are in general not 
onne
ted sin
e
ρ̄1,1 6= 0 if ρ̄1 6= 0. However, this does not hold in the other dire
tion; for instan
e,the preferential atta
hment model with linear atta
hment weights and D = ∞ has
r = 0 [59℄.For 
onvenien
e we �rst 
al
ulate the density of edges whi
h have endpoints ofdegrees j and k su
h that the vertex of degree j is the one 
loser to the root. Thisdensity will be denoted by ρjk. It holds that ρ1k = 0 for all k, in general ρjk 6= ρkjand

ρ̄jk =
ρjk + ρkj

2
. (8.3)In the following se
tions we 
al
ulate ρjk using a s
aling argument and 
omparethe results in the 
ase D = 3 to results from simulations. We 
on
lude the 
hapter bydis
ussing the amount of assortative mixing in the vertex splitting model. The modelis disassortative for the range of parameters we 
onsider ex
ept in the spe
ial 
ase ofthe preferential atta
hment model with linear splitting weights for whi
h r = 0.8.1 Cal
ulation of ρjkTo arrive at the densities ρjk, we use the same labelling te
hniques as in Chapter 7.To begin with, let us assume that the splitting weights are linear. De�ne

pjk(ℓ′1, . . . , ℓ
′
j−1; ℓ

′′
1 , . . . , ℓ

′′
k−1; s)as the probability that a vertex 
reated at time s is of degree k and has ℓ′′1 , . . . , ℓ′′k−1right trees and that the vertex to its left is of degree j with an ℓ′1 left tree and

ℓ′2, . . . , ℓ
′
j−1 right trees (ex
luding the right tree whi
h 
ontains s). Note that it issymmetri
 under permutations of both (ℓ′2, . . . , ℓ

′
j−1) and (ℓ′′1 , . . . , ℓ

′′
k−1) and

ℓ′1 + . . .+ ℓ′j−1 + ℓ′′1 + . . .+ ℓ′′k−1 = ℓ− 1.
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ursion equations for pjk(ℓ′1, . . . , ℓ
′
j−1; ℓ

′′
1 , . . . , ℓ

′′
k−1; s) and all nontriv-ial equations are explained in Figures 8.1�8.5. To make the notation more 
ompa
twe will write for i ≤ j

ℓi,j = ℓi, . . . , ℓj, and |ℓi,j | = ℓi + . . .+ ℓj .We 
an write the following re
ursions for going from time ℓ− 1 to time ℓ. Note that
s < ℓ in (8.4), (8.6) and (8.8).

p1k(ℓ′′1,k−1; s) =

1

W (ℓ− 1) + w1

“

k−1
X

i=1

W (ℓ′′i − 1)p1k(ℓ′′1,i−1, ℓ
′′
i − 1, ℓ′′i+1,k−1; s)

+ δk2w1pR(ℓ − 1; s) + δℓ1δk1w1

”

. (8.4)
p1k(ℓ′′1,k−1; ℓ) =

1

W (ℓ− 1) + w1

ℓ−1
X

s=0

D
X

i=k−1

(k − 1)wk,i+2−k

X

|ℓ̃1,i+1−k|=ℓ′′1 −1

p1i(ℓ̃1,i+1−k, ℓ′′1,k−1; s).(8.5)
pj1(ℓ

′
1,j−1; s) =

1

W (ℓ − 1) + w1

“

j−1
X

i=1

W (ℓ′i − 1)pj1(ℓ
′
1,i−1, ℓ

′
i − 1, ℓ′i+1,j−1; s)

+ (j − 1)wj,1pj−1(ℓ
′
1,j−1; s)

+

D
X

i=j−1

2wj,i+2−j

i − 1

j−2
X

p=1

j−1
X

n=p+1

X

|ℓ̃1,i+1−j |=ℓ′n−1

pi1(ℓ
′
1,n−1, ℓ̃1,i+1−j , ℓ

′
n+1,j−1; s),

+ (j − 1)

D
X

i=j

(i − j + 1)wj,i+2−j

i − 1

X

|ℓ̃1,i+1−j |=ℓ′1−1

pi1(ℓ̃1,i+1−j , ℓ
′
2,j−1; s)

”

, (8.6)
pj1(ℓ

′
1,j−1; ℓ) = 0. (8.7)

pjk(ℓ′1,j−1; ℓ
′′
1,k−1; s) =

1

W (ℓ − 1) + w1

“

j−1
X

i=1

W (ℓ′i − 1)pjk(ℓ′1,i−1, ℓ
′
i − 1, ℓ′i+1,j−1; ℓ

′′
1,k−1; s)
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+

k−1
X

i=1

W (ℓ′′i − 1)pjk(ℓ′1,j−1; ℓ
′′
1,i−1, ℓ

′′
i − 1, ℓ′′i+1,k−1; s)

+ (j − 1)wj,kpj+k−2(ℓ
′
1,j−1, ℓ

′′
1,k−1; s)

+
D

X

i=j−1

2wj,i+2−j

i − 1

j−2
X

p=1

j−1
X

n=p+1

X

|ℓ̃1,i+1−j |=ℓ′n−1

pik(ℓ′1,n−1, ℓ̃1,i+1−j , ℓ
′
n+1,j−1; ℓ

′′
1,k−1; s)

+ (j − 1)
D

X

i=j

i − j + 1

i − 1
wj,i+2−j

X

|ℓ̃1,i+1−j |=ℓ′1−1

pik(ℓ̃1,i+1−j , ℓ
′
2,j−1; ℓ

′′
1,k−1; s)

”

, (8.8)
= 1W (`� 1) + w1� k�1Xi=1 W (`00i � 1)

+ Æk2w1 + Æ`1Æk1w1
s s `00k�1 `00i � 1`001

s `� 1 s �`00k�1
`001

Figure 8.1: Illustration of Equation (8.4).
=

1

W (ℓ − 1) + w1

ℓ−1∑

s=0

D∑

i=k−1

(k − 1)wk,i+2−k

∑

ℓ̃1+...+ℓ̃i+1−k=ℓ′′1−1

s

ℓ′′1 − 1

ℓ̃1 ℓ̃i+1−k

ℓ′′2

ℓ′′k−1

ℓ

ℓ′′1

ℓ′′k−1

Figure 8.2: Illustration of Equation (8.5).
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pjk(ℓ′1,j−1; ℓ

′′
1,k−1; ℓ) =

1

W (ℓ − 1) + w1

ℓ−1
X

s=0

k−1
X

n=1

D
X

i=k−1

wk,i+2−k

×
X

|ℓ̃1,i+1−k|=ℓ′′n−1

pji(ℓ
′
1,j−1; ℓ

′′
1,n−1, ℓ̃1,i+1−k, ℓ′′n+1,k−1; s). (8.9)

+
D∑

i=j−1

2wj,i+2−j

i − 1

j−2
∑

p=1

j−1
∑

n=p+1

∑

ℓ̃1+...+ℓ̃i+1−j=ℓ′n−1

=
1

W (ℓ − 1) + w1

( j−1
∑

i=1

W (ℓ′i − 1)

+ (j − 1)wj,1

+ (j − 1)
D∑

i=j

i − j + 1

i − 1
wj,i+2−j

∑

ℓ̃1+...+ℓ̃i+1−j=ℓ′1−1

s

ℓ′j−1

ℓ′1

s

ℓ′j−1

ℓ′1
s

ℓ′i − 1 ℓ′j−1

ℓ′1

)

sℓ̃i+1−j

ℓ′1 − 1

ℓ̃1

ℓ′2

ℓ′j−1

s

p

ℓ′n−1 ℓ̃1

ℓ′n − 1

ℓ̃i+1−jℓ′1

ℓj−1 ℓn+1

Figure 8.3: Illustration of Equation (8.6).
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ℓ′1

ℓ′j−1

s

ℓ′′1

ℓ′′k−1

s

ℓ′′1

ℓ′′k−1

ℓ′1

ℓ′j−1

ℓ′i − 1

ℓ′1

ℓ′j−1 ℓ′′1

ℓ′′k−1
s

ℓ′1

ℓ′n−1

ℓj−1

ℓn+1

ℓ̃i+1−j

ℓ̃1

ℓ′′k−1

s

ℓ′′1

p

ℓ′n − 1

+

D∑

i=j−1

2

i − 1
wj,i+2−j

j−2
∑

p=1

j−1
∑

n=p+1

∑

ℓ̃1+...+ℓ̃i+1−j=ℓ′n−1

ℓ̃1

ℓ̃i+1−j

ℓ′2

ℓ′j−1

ℓ′1 − 1
ℓ′′1

ℓ′′k−1

s

ℓ′1

ℓ′j−1

s
ℓ′′i − 1

ℓ′′1

ℓ′′k−1

)

=
1

W (ℓ − 1) + w1

( j−1
∑

i=1

W (ℓ′i − 1)

+ (j − 1)wj,k

+ (j − 1)
D∑

i=j

i − j + 1

i − 1
wj,i+2−j

∑

ℓ̃1+...+ℓ̃i+1−j=ℓ′1−1

+
k−1∑

i=1

W (ℓ′′i − 1)

Figure 8.4: Illustration of Equation (8.8).
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ℓ
′
1

ℓ′j−1 ℓ′′1

ℓ′′k−1
ℓ

=
1

W (ℓ − 1) + w1

ℓ−1∑

s=0

k−1∑

n=1

D∑

i=k−1

wk,i+2−k

∑

ℓ̃1+...+ℓ̃i+1−k=ℓ′′n−1

ℓ′n−1

s

ℓ′′1 ℓ′′n−1

ℓ′1

ℓ′′k−1

ℓ
′′
n+1

ℓ̃i+1−k

ℓ̃1

ℓ′′n − 1

Figure 8.5: Illustration of Equation (8.9).In deriving Equations (8.6) and (8.8) and the 
orresponding �gures, note that theindex p is introdu
ed in the se
ond last diagram in ea
h �gure. The reason for this isthe following: even though pj1(ℓ
′
1, . . . , ℓ

′
j−1; s) and pjk(ℓ′1, . . . , ℓ

′
j−1; ℓ

′′
1 , . . . , ℓ

′′
k−1; s) aresymmetri
 under permutations of (ℓ′2, . . . , ℓ

′
j−1) it does matter where the edge goingfrom s towards the root, is lo
ated. Therefore, we group together the balloons 
ounter-
lo
kwise from s towards the rooted balloon and we group together the balloons
lo
kwise from s towards the rooted balloon, one of the groups is possibly empty. Ifthe total number of balloons in the groups is i− 2 then there are i− 1 su
h possible
on�gurations. In the equations we therefore divide by i − 1 and sum over all the
on�gurations whi
h 
ontribute to the 
on�guration on the left of the equality sign.The index p in the sum is the lo
ation of s 
lo
kwise from the rooted balloon. Notethat p 
an be no larger than j − 2 sin
e if it were larger, there would be no spa
e forthe balloons inside the dotted 
ir
le. Note that the balloons inside the dotted 
ir
leare always drawn 
lo
kwise from the vertex s. To 
ount the possibility that they are
ounter-
lo
kwise from s we multiply by 2.Now average over the label s as before and get the following re
ursion, going fromtime ℓ to ℓ+ 1
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p1k(ℓ′′1,k−1) =

ℓ + 1

ℓ + 2

1

W (ℓ) + w1

“

k−1
X

i=1

W (ℓ′′i − 1)p1k(ℓ′′1,i−1, ℓ
′′
i − 1, ℓ′′i+1,k−1) + δk2w1pR(ℓ)

+ δℓ,0δk1w1 + (k − 1)

D
X

i=k−1

wk,i+2−k

X

|ℓ̃1,i+1−k|=ℓ′′1 −1

p1i(ℓ̃1,i+1−k, ℓ′′1,k−1)
”

.

pj1(ℓ
′
1,j−1) =

ℓ + 1

ℓ + 2

1

W (ℓ) + w1

“

j−1
X

i=1

W (ℓ′i − 1)pj1(ℓ
′
1,i−1, ℓ

′
i − 1, ℓ′i+1,j−1)

+ (j − 1)wj,1pj−1(ℓ
′
1,j−1)

+

D
X

i=j−1

2wj,i+2−j

i − 1

j−2
X

p=1

j−1
X

n=p+1

X

|ℓ̃1,i+1−j |=ℓ′n−1

pi1(ℓ
′
1,n−1, ℓ̃1,i+1−j , ℓ

′
n+1,j−1)

+ (j − 1)
D

X

i=j

i − j + 1

i − 1
wj,i+2−j

X

|ℓ̃1,i+1−j |=ℓ′1−1

pi1(ℓ̃1,i+1−j , ℓ
′
2,j−1)

”

.

pjk(ℓ′1,j−1; ℓ
′′
1,k−1) =

ℓ + 1

ℓ + 2

1

W (ℓ) + w1

“

j−1
X

i=1

W (ℓ′i − 1)pjk(ℓ′1,i−1, ℓ
′
i − 1, ℓ′i+1,j−1; ℓ

′′
1,k−1)

+

k−1
X

i=1

W (ℓ′′i − 1)pjk(ℓ′1,j−1; ℓ
′′
1,i−1, ℓ

′′
i − 1, ℓ′′i+1,k−1)

+ (j − 1)wj,kpj+k−2(ℓ
′
1,j−1, ℓ

′′
1,k−1)

+

D
X

i=j−1

2wj,i+2−j

i − 1

j−2
X

p=1

j−1
X

n=p+1

X

|ℓ̃1,i+1−j |=ℓ′n−1

pik(ℓ′1,n−1, ℓ̃1,i+1−j , ℓ
′
n+1,j−1; ℓ

′′
1,k−1)

+ (j − 1)

D
X

i=j

i − j + 1

i − 1
wj,i+2−j

X

|ℓ̃1,i+1−j |=ℓ′1−1

pik(ℓ̃1,i+1−j , ℓ
′
2,j−1; ℓ

′′
1,k−1)

+
k−1
X

n=1

D
X

i=k−1

wk,i+2−k

X

|ℓ̃1,i+1−k|=ℓ′′n−1

pji(ℓ
′
1,j−1; ℓ

′′
1,n−1, ℓ̃1,i+1−k, ℓ′′n+1,k−1)

”

.

Finally we de�ne the densities ρjk(ℓ) by averaging out the volume dependen
e of
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ulation of ρjk 123the average probabilities
ρjk(ℓ) =

∑

ℓ′1+...ℓ′j−1+ℓ′′1 +...+ℓ′′
k−1=ℓ−1

pjk(ℓ′1, . . . , ℓ
′
j−1; ℓ

′′
1 , . . . , ℓ

′′
k−1)and similarly we denote the vertex degree density by

ρj(ℓ) ≡ ρℓ,j =
∑

ℓ1+...+ℓj=ℓ

pj(ℓ1, . . . , ℓj),
f. Se
tion 6.1. We have the following re
ursion for the densities
ρjk(ℓ+ 1) =

ℓ+ 1

ℓ+ 2

1

W (ℓ) + w1

{

(ℓw2 − wj − wk + 2w1 − w2)ρjk(ℓ) + (j − 1)wj,kρj+k−2(ℓ)

+ (j − 1)

D∑

i=j−1

wj,i+2−jρik(ℓ) + (k − 1)

D∑

i=k−1

wk,i+2−kρji(ℓ)

+ δj1δℓ′′1 ,ℓ−1w1pR(ℓ) + δj1δℓ0w1

}for i, j ≥ 1. Now assume that ρjk(ℓ) = ρjk + rjkℓ
−1 + O(ℓ−2) and that a similarexpansion holds for ρj(ℓ). Expanding the above re
ursion in ℓ−1 gives

ρjk + rjkℓ
−1 +O(ℓ−2) =

(

1 − w1 + 2w2 − w3

w2
ℓ−1 +O(ℓ−2)

)

×
{(

1 +
−wj − wk + 2w1 − w2

w2
ℓ−1

)
(
ρjk + rjkℓ

−1 +O(ℓ−2)
)

+
ℓ−1

w2

[

(j − 1)wj,k

(
ρj+k−2 +O(ℓ−1)

)
+ (j − 1)

D∑

i=j−1

wj,i+2−j

(
ρik +O(ℓ−1)

)

+ (k − 1)

D∑

i=k−1

wk,i+2−k

(
ρji +O(ℓ−1)

)
]}

.This equation is trivially satis�ed in zeroth order of ℓ−1. When we go to the nextorder we get the following equation for the limits of the densities
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ρjk = −wj + wk

w2
ρjk + (j − 1)

wj,k

w2
ρj+k−2 + (j − 1)

D∑

i=j−1

wj,i+2−j

w2
ρik

+(k − 1)

D∑

i=k−1

wk,i+2−k

w2
ρji. (8.10)We 
an also arrive dire
tly at this equation by assuming that for large ℓ an equi-librium with small enough �u
tuations is established, and then perform the splittingpro
edure on this equilibrium. With the same methods, it is possible to derive anequation like (8.10) for the density ρj1,j2,...,jR

of linear paths of length R− 1 dire
tedtowards the root 
ontaining verti
es of degrees j1, . . . , jR. This would allow us toinvestigate how the 
orrelations fall of with distan
e R.Existen
e of solutions to Equation (8.10) 
an be established by the Perron�Frobeniusargument as in the previous se
tions. In the following subse
tions we will �nd an ex-pli
it solution for linear weights and dis
uss generalizations for non�linear weights.In both 
ases we 
ompare the results with simulations.
8.2 Solution in the simplest 
aseWhen D = 3, the splitting weights are linear and the partitioning weights uniform,we know that ρ1 = ρ3 = 2/7 and ρ2 = 3/7, see Chapter 6. Let y = w3/w2. Then thesolutions to Equation (8.10) are

ρ21 =
4(3 − y)

7(11 − 2y)
, ρ31 =

10

7(11 − 2y)
,

ρ22 =
4y2 − 12y + 105

7(2y + 7)(11 − 2y)
, ρ32 =

2(−8y2 + 18y + 63)

7(2y + 7)(11 − 2y)
,

ρ23 =
2(−4y2 + 20y + 21)

7(2y + 7)(11 − 2y)
, ρ33 =

8(3y − 14)

7(2y + 7)(2y − 11)
.

(8.11)



8.3 Results for non�linear weights 125Note that the following sum rules hold for the solutions
ρ21 + ρ31 = ρ1 = 2/7

ρ22 + ρ32 = ρ2 = 3/7

ρ23 + ρ33 = ρ3 = 2/7,

ρ21 + ρ22 + ρ23 = ρ2 = 3/7

ρ31 + ρ32 + ρ33 = 2ρ3 = 4/7.

(8.12)These relations show that there are only two independent link densities. We plot ρ21and ρ22 in Figure 8.6 and 
ompare to simulations.
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Figure 8.6: Two independent solutions given in (8.11) plotted against y = w3/w2 and
ompared to simulations. The two leftmost data points on ea
h line 
ome from simulationsof 50 trees with 50000 verti
es. The other data points 
ome from simulations of 50 treeswith 10000 verti
es.8.3 Results for non�linear weightsWe 
an generalize Equation (8.10) to a mean �eld equation, valid for arbitrary weights,by repla
ingw2, where it appears in a denominator, with w as we did with the equationfor vertex degree densities in Chapter 6. For D = 3 and uniform partitioning weightsthe two independent densities ρ21 and ρ22 are given by
ρ21 =

1

3

(3 + β) (7α− γ)

(2α− β − 1) (3α+ 2 β + γ + 6)
(8.13)
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Figure 8.7: A solution for the density ρ21 plotted as a fun
tion of β for a few values of α.Ea
h datapoint is 
al
ulated from simulations of 100 trees with 10000 verti
es.
ρ22 =

16

3

“

284 α2β
4
γ − 177 α5βγ + 3564 α3 + 18 α6γ + 161α β5γ − 873 γ + 11979 α2β3

−2259 α5 − 39 α6β − 207 α5γ + 6516 α2β4 − 5205 α5β − 1419 α4βγ + 996 αβ5

−5994 α4 − 892 α4β2γ + 1543 α2β5 − 18 α7 − 668 α3β4 + 324 α2γ + 909 αβ3γ

−2600 α5β2 − 975 α3β3 + 222 αβ6 − 1533 α3β2γ + 10206 α2β2 − 11799 α4β

−5300 α4β3 − 1521 α3βγ + 1899 α2β2γ + 1059α2 β3γ + 1269 α3β2 + 3240α2 β

+756 αβ
3

+ 4860 α
3
β + 6 β

6
γ − 11703 α

4
β

2
+ 1728α

2
βγ − 162 α

3
γ + 486α β

2
γ

+18 β
4
γ + 1530 αβ

4
+ 624α β

4
γ − 772 α

3
β

3
γ − 9 α

6
+ 24 β

5
γ

”.“

(3 α + 2 β + γ + 6)

×
“

11 α2 + 25 αβ + 5 αγ + 3 βγ + 12 α + 4 β2
”

(−α + γ) (1 − 2 α + β) (7 α + 2 β + γ)2
”where α =

w2

w1
, β =

w3

w1
and γ =

√

α (α+ 24 β + 24). These solutions are 
omparedto simulations in Figures 8.7 and 8.8. The other densities are obtained by using thesum rules (8.12).8.4 The 
orrelation 
oe�
ientWe have 
al
ulated the 
orrelation 
oe�
ient r in the 
ase of linear splitting weightsand D = 3. There are two independent parameters whi
h we take to be
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Figure 8.8: A solution for the density ρ22 plotted as a fun
tion of β for a few values of α.Ea
h data point is 
al
ulated from simulations of 100 trees with 10000 verti
es.
y = w3/w2 ∈ [0, 2] and z = w2,2/w2 ∈ [0, 1]. We �nd that

r = −18 z3 − 42 z2y − 27 z2 − 4 zy2 + 132 zy− 96 y + 4 y2

(3 z − 5) (3 z + 2 y − 12) (6 z − 2 y − 9)
(8.14)and we plot r in Fig. 8.9 as a fun
tion of y and z.The trees show disassortative mixing ex
ept when y = z = 0 in whi
h 
ase r = 0.
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0Figure 8.9: The 
orrelation 
oe�
ient r plotted as a fun
tion of y = w3/w2 and z = w2,2/w2in the 
ase of D = 3 and linear splitting weights.
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esThis 
orresponds to the spe
ial 
ase of the preferential atta
hment model. We have
he
ked that for D = 4, the preferential atta
hment model again has r = 0. It wouldbe interesting to 
he
k whether this holds for all values of D. In pra
tise, the questionof assortative mixing is more relevant for large D and it would be desirable to obtainsu
h general results.



9Relation to other models ofrandom treesIn this 
hapter we dis
uss how the vertex splitting model is related to other modelsof random trees. It has already been noted that the preferential atta
hment model isa spe
ial 
ase whi
h 
orresponds to 
hoosing the only nonzero weights to be wk,1 =

w1,k, 2 ≤ k ≤ D. In the following se
tions we introdu
e the alpha model and itsgeneralization, the alpha�gamma model. We demonstrate how they arise as a 
ertainlimiting 
ase of the vertex splitting model and dis
uss how they are 
onne
ted to thetree models from Part I. We analyse some properties of these models and provideresults whi
h support some of the s
aling assumptions from the previous 
hapters.9.1 The alpha modelThe alpha model is a one parameter model of growing, rooted, binary trees whi
hwas introdu
ed by D. Ford in [43℄ as a model of phylogeneti
 trees. Below, we willstate the growth rules of the alpha model and explain how it is related to both thevertex splitting model and the generi
 phases of the models from Part I. We provethat the �nite volume measures generated by the growth rules 
onverge to a measureon in�nite graphs, and we 
al
ulate the annealed Hausdor� dimension with respe
tto the in�nite volume measure as de�ned in Equation (1.21). It turns out that theannealed Hausdor� dimension agrees with the values obtained by Equation (7.44).129



130 Chapter 9 Relation to other models of random treesThe root and verti
es of degree 3 will be referred to as internal verti
es and verti
esof degree 1 (besides the root) will be referred to as leaves. Denote the set of rooted,planar trees on n leaves by Tn and in a tree τ denote the number of leaves by l(τ).The model is de�ned by probability distributions πα,n on Tn, for n ≥ 1 and 0 ≤ α ≤ 1,
onstru
ted in the following re
ursive way by a growth rule.
• Assign probability one to the unique trees in T1 and T2.
• Given πα,n for some n ≥ 2, πα,n+1 is generated by �rst sele
ting a tree τ ∈ Tna

ording to πα,n.
• Next an individual edge (a, b) is sele
ted from τ with probability α/(n − α) if
a and b are internal verti
es and with probability (1 − α)/(n − α) if one is aninternal vertex and the other a leaf.

• The edge (a, b) is removed from τ and two new verti
es c and d are introdu
edalong with the edges (a, c), (c, b) and (c, d). Equal probability is assigned to leftand right bran
hing of the new edge (c, d).One 
an think about this pro
edure as grafting a new edge to an existing edge in τ ,see Fig. 9.1.The alpha model is equivalent to a slightly modi�ed version of the vertex splittingmodel with the following 
hoi
e of weights. Consider the 
ase D = 3 and 
hoose
w1 = 1 − 3α

2
, w3,2 =

α

2
and w3,1 = ∞. (9.1)

dc

b

a
α

1 − α

d
c

a

b

Figure 9.1: The grafting pro
ess. Left: The edge (a, b) is sele
ted with probability weight
1 − α. Right: The edge (a, b) is sele
ted with probability weight α. The sele
ted edge isremoved, two new verti
es c and d and three new edges are added as shown in the �gure.The root is indi
ated by 
ir
led vertex.



9.1 The alpha model 131We modify the model by assigning a weight α
2 (instead of w1) to splitting the root.As the tree grows large it be
omes very improbable to split the root and thereforewe expe
t this to play no role in the 
al
ulation of asymptoti
 properties su
h as thevertex degree distribution and the Hausdor� dimension. The relation between thegrafting pro
ess of the alpha model and the above splitting operations is des
ribed inFig. 9.2. Note from Equation (9.1) that for 2/3 < α ≤ 1, w1 be
omes negative whi
hmeans that the vertex splitting des
ription breaks down. However, even though w1is a negative weight, the total probability of the pro
ess whi
h involves w1 splittings(see Fig. 9.2, top) is still nonnegative sin
e w2,1 + w3,2 > 0.The alpha model is also related to the models of generi
 
aterpillars and generi
trees, whi
h were dis
ussed in Part I. The 
ase α = 1 
orresponds to the generi

aterpillars obtained by 
hoosing the bran
hing weights w1 = w3 = 1 and w2 = 0.In the 
ase α = 1/2 the growth pro
ess does not distinguish between leaves andinternal edges and therefore it generates the uniform measure on binary trees. This
orresponds to generi
 trees de�ned by the bran
hing weights w1 = w3 = 1 and

w2 = 0. We know from Part I that in the generi
 phase of both of these models, the�nite volume measures 
onverge to measures 
on
entrated on the set of trees withpre
isely one in�nite spine having �nite outgrowths. It is therefore reasonable to
onje
ture that the same applies in the alpha model, at least for 1/2 ≤ α ≤ 1. In thenext se
tion we will prove that this is indeed true, and holds for 0 < α ≤ 1.
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3,1w2,32w

Attaching to an internal edge

Attaching to a leaf

w3,12,1  3,2
w    + w

1 − α

αFigure 9.2: The relation between the alpha model and the vertex splitting model explained.Sin
e w1,3 = ∞ a vertex of degree 2 splits immediately, with probability one, to a vertex ofdegree 1 and a vertex of degree 3 and the intermediate state is not realized.
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τ0

τ2τ1

Figure 9.3: An example of a tree τ0 whi
h has a root indi
ated by a 
ir
led vertex. Thetree τ0 bran
hes at the nearest neighbour of the root to two subtrees, τ1 to the left and τ2to the right as is indi
ated by the dotted lines.9.1.1 Convergen
e of the �nite volume measuresThe alpha model has a property 
alledMarkovian self-similarity [43℄ whi
h is essentialin the indu
tive proof of the theorem in this se
tion. Markovian self-similarity meansthat there exists a fun
tion qα(·, ·), whi
h is 
alled the �rst split distribution, su
hthat for every �nite tree τ0 whi
h bran
hes at the nearest neighbour of the root to aleft tree τ1 and a right tree τ2 (see Fig. 9.3) the following holds
πα,l(τ0)(τ0) = qα(l(τ1), l(τ2))πα,l(τ1)(τ1)πα,l(τ2)(τ2). (9.2)In words, this says that qα(n1, n2) is the probability of a tree bran
hing to subtreesof sizes n1 and n2. Furthermore, given that the subtrees are of these sizes they aredistributed independently by πα,n1 and πα,n2 . The fun
tion qα is expli
itly known [43℄and is given by

qα(n1, n2) =
n!Γα(n1)Γα(n2)

n1!n2!Γα(n)

(
α

2
+

(1 − 2α)n1n2

n(n− 1)

) (9.3)where n = n1 + n2,
Γα(n) = (n− 1 − α)(n− 2 − α) · · · (2 − α)(1 − α), and Γα(1) = 1. (9.4)Using this property we 
an prove the following theorem.Theorem 9.1.1 Let 0 < α ≤ 1. The measures πα,n, viewed as probability measureson Γ, 
onverge weakly, as n −→ ∞, with respe
t to the metri
 d de�ned in (3.4)1, toa probability measure πα on the set of in�nite trees. The measure πα is 
on
entrated1Sin
e the degree of verti
es is ≤ 3 it is equivalent to work with the standard metri
 used in [65℄.It is de�ned as in (3.4), repla
ing LR with BR.



9.1 The alpha model 133on the set of trees with exa
tly one in�nite rooted spine having �nite outgrowths whi
hare independently distributed by
µα(τ) =

αΓα(l(τ))

l(τ)!
πα,l(τ)(τ). (9.5)The probabilities of right and left bran
hing of outgrowths are equal.Proof Let T (R) be the set of rooted, binary trees of height R. To prove the existen
eof πα, it is su�
ient to show that for any R ≥ 1 and any τ0 ∈ T (R) the sequen
e

πα,n({τ |BR(τ) = τ0}) ≡ π(R)
α,n(τ0) (9.6)
onverges to a limit π(R)

α (τ0) as n −→ ∞, 
.f. Se
tion 1.3.2. We show this by indu
tionon R. For R = 1 this is trivial sin
e B1(τ) ∈ T (1) for all τ . Now assume that for some
R and all τ ∈ T (R), π(R)

α,n(τ) 
onverges as n −→ ∞. Choose a tree τ0 ∈ T (R+1) andwithout loss of generality, assume it bran
hes at the nearest neighbour of the root toa left tree τ1 ∈ T (R) and a right tree τ2 ∈ T (S) (see Fig. 9.3) where S ≤ R. Then, byEquation (9.3),
π(R+1)

α,n (τ0) =
∑

n1+n2=n

qα(n1, n2)π
(R)
α,n1

(τ1)π
(R)
α,n2

(τ2)

=
n!

Γα(n)

(α

2

∑

n1+n2=n

Γα(n1)Γα(n2)

n1!n2!
π(R)

α,n1
(τ1)π

(R)
α,n2

(τ2)

+
1 − 2α

n(n− 1)

∑

n1+n2=n

Γα(n1)Γα(n2)

(n1 − 1)!(n2 − 1)!
π(R)

α,n1
(τ1)π

(R)
α,n2

(τ2)
)

.(9.7)If S < R then π
(R)
α,n2(τ2) = 0 when n2 > l(τ2) and it is obvious from the indu
tionhypothesis that π(R+1)
α,n (τ0) 
onverges. Therefore assume that S = R.Note that in (9.7) it always holds that either n1 ≤ n− 1 and n2 ≤ n or n2 ≤ n− 1and n1 ≤ n. Therefore we have the upper bound
π(R+1)

α,n (τ0) ≤
n!

Γα(n)

∑

n1+n2=n

Γα(n1)Γα(n2)

n1!n2!
.Terms in the sums in (9.7) for whi
h n1 ≥ n

2 and n2 > A or n2 ≥ n
2 and n1 > Awhere A > 1 is some 
onstant are therefore bounded from above by
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2n!

Γα(n)

∑

n1+n2=n
n1≥n/2,n2>A

Γα(n1)Γα(n2)

n1!n2!
≤ 2n!Γα([n/2])

Γα(n)[n/2]!

∞∑

n2=A

Γα(n2)

n2!

≤ C

∞∑

n2=A

Γα(n2)

n2!
−−−−→
A→∞

0 (9.8)where C is a 
onstant. The remaining 
ontribution to (9.7) is from terms where
n1 ≥ n

2 and n2 < A or n2 ≥ n
2 and n1 < A. Noti
e that the se
ond term in that
ontribution to (9.7) will be of one order lower in n than the �rst term. Thereforeit is enough to show that the �rst term 
onverges as n −→ ∞ sin
e then the se
ondterm 
learly 
onverges to zero. The 
ontribution to the �rst term is

n!

Γα(n)

α

2

2∑

i=1

∑

n1+n2=n
nj≤A,j 6=i

Γα(n1)Γα(n2)

n1!n2!
π(R)

α,n1
(τ1)π

(R)
α,n2

(τ2)

−−−−→
n→∞

1

2

2∑

i=1
j 6=i

π(R)
α (τi)

A∑

m=1

αΓα(m)

m!
π(R)

α,m(τj)

−−−−→
A→∞

1

2

2∑

i=1
j 6=i

π(R)
α (τi)

∞∑

m=1

αΓα(m)

m!
π(R)

α,m(τj). (9.9)In the �rst step we used the indu
tion hypothesis. This is the limit of π(R+1)
α,n (τ0) as

n −→ ∞. The fa
t that the sum in (9.8) 
onverges to zero as A −→ ∞ proves thatthe measure is 
on
entrated on the set of trees with exa
tly one in�nite spine. Thelast sum in (9.9) shows that the distribution of the �nite outgrowths is given by µα.
�9.1.2 The annealed Hausdor� dimensionIn [43℄, Ford proves that for 0 < α ≤ 1, the expe
ted distan
e of a random leaf ina tree 
hosen from the alpha model with n leaves is O(nα). This means that theHausdor� dimension, as de�ned in (1.25), of the alpha model is dH = 1/α. Indeed,by plugging the weights (9.1) into Equation (7.44) we �nd that

dH =
w2,1 + 3w3,2

2w3,2
= 1/α (9.10)
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h supports the validity of the formula (7.44). In this se
tion we use the resultsof Theorem 9.1.1 to prove that the annealed Hausdor� dimension with respe
t to themeasure πα equals 1/α whi
h demonstrates that the two de�nitions of the Hausdor�dimension, (1.21) and (1.25), agree for the alpha model.Theorem 9.1.2 For 0 < α ≤ 1, the annealed Hausdor� dimension with respe
t to
πα is

d̄H = 1/α. (9.11)Proof We need to analyse the large R behaviour of 〈|BR|〉πα
. Let τ be a �niteoutgrowth from the spine and take the unique vertex 
ommon to τ and the spine tobe the root of τ . It is 
learly su�
ient to show that

〈|BR(τ)|〉µα
∼ R1/α−1 (9.12)as R −→ ∞ sin
e the outgrowths from the spine are i.i.d. De�ne the probabilitygenerating fun
tion

fR(z) =

2R−1
∑

i=1

µα({τ | |BR(τ)| = 2i− 1})z2i−1. (9.13)Consider the 
ontribution to (9.13) from trees on n leaves and de�ne
An,R(z) =

2R−1
∑

i=1

α
Γα(n)

n!
πα,n(τ | |BR| = 2i− 1)z2i−1 (9.14)and the 
orresponding generating fun
tion

GR(z, ζ) =

∞∑

n=1

An,R(z)ζn. (9.15)It then follows that
〈|BR|〉µα

= ∂zfR(z)|z=1 = ∂zGR(z, 1)|z=1. (9.16)Using the Markovian self�similarity property of the alpha model we 
an derive thefollowing re
ursion
A1,R(z) = αz (9.17)
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An,R(z) = δR,1zα
Γα(n)

n!
+ z

2R−1
∑

i=2

α
Γα(n)

n!

∑

n1+n2=n

qα(n1, n2)

×
∑

j+k=i

1≤j,k≤2R−2

πα,n1(|BR−1| = 2j − 1)πα,n2(|BR−1| = 2k − 1)z2j−1z2k−1

= δR,1zα
Γα(n)

n!
+ z
(1

2

∑

n1+n2=n

An1,R−1(z)An2,R−1(z)

+
1 − 2α

α

1

n(n− 1)

∑

n1+n2=n

n1An1,R−1n2An2,R−1

)

.Writing the above re
ursion in terms of the generating fun
tion GR one �nds
G1(z, ζ) = z

∞∑

n=1

α
Γα(n)

n!
ζn = z (1 − (1 − ζ)

α
) (9.18)and for R > 1

GR(z, ζ) = z

(

αζ +
1

2
(GR−1(z, ζ))

2
+

1 − 2α

α

∫ ζ

0

∫ ζ′

0

(∂ζ′′GR−1(z, ζ
′′))

2
dζ′′dζ′

)

.(9.19)It is straightforward to verify that for all R
GR(1, ζ) = 1 − (1 − ζ)α. (9.20)De�ne VR(ζ) = ∂zGR(z, ζ)|z=1. Di�erentiating the re
ursion (9.19) with respe
t to zand putting z = 1 one then gets
V1(ζ) = 1 − (1 − ζ)α (9.21)and for R > 1

VR(ζ) = (1−(1−ζ)α) (1 + VR−1(ζ))+2(1−2α)

∫ ζ

0

∫ ζ′

0

(1−ζ′′)α−1∂ζ′′VR−1(ζ
′′)dζ′′dζ′.(9.22)Di�erentiating (9.22) twi
e one �nds that

V ′′
R+1 = α(1−α)(1− ζ)α−2(1+VR)+2(1−α)(1− ζ)α−1V ′

R +(1− (1− ζ)α)V ′′
R (9.23)



9.1 The alpha model 137and the initial 
onditions
VR(0) = 0 and V ′

R(0) = α for all R (9.24)follow from (9.21) and (9.22). De�ne the generating fun
tion
Qx(ζ) =

∞∑

R=1

VR(ζ)xR. (9.25)From (9.23) we get the di�erential equation
((

1

x
− 1

)

(1 − ζ)−α + 1

)

(1− ζ)2Q′′
x − 2(1−α)(1 − ζ)Q′

x −α(1− α)Qx =
α(1 − α)

1 − x(9.26)with initial 
onditions
Qx(0) = 0 and Q′

x(0) =
αx

1 − x
. (9.27)Let y(ζ) = −(1− ζ)α( 1

x −1)−1 and de�ne Px(y(ζ)) = Qx(ζ). Then Px(y) satis�es thedi�erential equation
α

1 − α
y(y − 1)P ′′

x + (y + 1)P ′
x − Px =

1

1 − x
(9.28)with initial 
onditions

Px

(
x

x− 1

)

= 0 and P ′
x

(
x

x− 1

)

= 1 (9.29)whi
h is equivalent to (9.26) and (9.27). Equation (9.28) is an inhomogeneous, hy-pergeometri
 di�erential equation whi
h has the general solution
Px(y) = C1(x) (y + 1) + C2(x)y

1/αF

(
2 − α

α
,
1 − α

α
,
α+ 1

α
; y

)

− 1

1 − x
, (9.30)where F is a hypergeometri
 fun
tion and C1(x), C2(x) are fun
tions independent of

y, see e.g. [25, Chapter 9, �10℄. Thus
Qx(1) = Px(0) = C1(x) −

1

1 − x
. (9.31)
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onditions on Px to �nd C1(x) and get
C1(x) =

1

(αx − 2x + 1)F
`

2−α
α

, 2, 1+α
α

; 1 − x
´

+ (2 − α)x(2x − 1)F
`

2
α

, 2, 1+α
α

; 1 − x
´

×
(

2Γ
(

1
α

)2

Γ
(

2−α
α

)x
2α−1

α (1 − x)−1/α + (αx + 1)F

(
2 − α

α
, 2,

1 + α

α
; 1 − x

)

−(2 − α)xF

(
2

α
, 2,

1 + α

α
; 1 − x

))

=
2Γ
(

1
α

)2

Γ
(

2−α
α

) (1 − x)−1/α
(

1 +O((1 − x)1/α)
)

.This shows that
〈|BR|〉µα

= ∂zGR(z, 1)|z=1 = VR(1) ∼ R1/α−1 (9.32)and thus
d̄H = 1/α. (9.33)

�9.2 The alpha�gamma modelA generalization of the alpha model to a two parameter model of trees was introdu
edin [28℄ in the so 
alled alpha�gamma model. A new step was added to the growthpro
ess, allowing links to be atta
hed to verti
es and thereby in
reasing their degrees.The parameters of the models are positive numbers α and γ obeying 0 ≤ γ ≤ α ≤ 1and the growth rules are the following. Graft a new edge to either side of an internaledge with probability weight γ, to either side of a leaf with probability weight 1 − αand anywhere to a vertex of degree k ≥ 3 with probability weight (k − 2)α − γ.This growth pro
ess generates a probability measure on trees with n leaves whi
h wewill denote by πα,γ,n. When α = γ we re
over the alpha model i.e. πα,α,n = πα,n.The alpha�gamma model is Markovian self�similar [28℄ and we denote the �rst splitdistribution by qα,γ,n.The above growth rules 
an be obtained from the rules of the vertex splittingmodel as in the 
ase of the alpha model. The nonzero weights are then
w1 = 1 − 3α

2
, w3,1 = ∞, (9.34)
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wk,2 =

α

2
and wk+1,1 =

2((k − 2)α− γ)

k
for k ≥ 3. (9.35)In [28℄ it is remarked that for γ = 1−α the 
ontinuum limit of the alpha�gammamodel is equivalent to the stable tree of Duquesne and Le Gall [34℄ with parameter

1/α. The stable trees with parameter 1/α 
an be viewed as the 
ontinuum limit ofa size 
onditioned 
riti
al Galton�Watson pro
ess with o�spring probabilities de�nedby (3.22) with β = 1 + 1/α and w1 = wc.The alpha�gamma model also provides a 
onne
tion between the vertex splittingmodel and the 
riti
al line in the equilibrium statisti
al me
hani
al model of 
ater-pillars from Part I. As noted in [28℄, the 
hoi
e α = 1 and 0 < γ ≤ 1 yields a modelof growing 
aterpillars with a �rst split distribution
q1,γ(n1, . . . , nk) =







γΓγ(k − 1)/(k − 1)! if 2 ≤ k ≤ n− 1 and ni = n− k + 1,
nj = 1, i 6= j, for some i,

γΓγ(n− 1)/(n− 2)! if k = n and (n1, . . . , nk) = (1, . . . , 1),
0 otherwise. (9.36)It is straightforward to prove that π1,γ,n 
onverges weakly as n −→ ∞ to a measure

π1,γ whi
h is 
on
entrated on the set of in�nitely long 
aterpillars and that the degrees
k on the spine are independently distributed by

γΓγ(k − 2)/(k − 2)!. (9.37)The measure π1,γ is the same measure as is obtained for the equilibrium statisti
alme
hani
al model of 
aterpillars with the bran
hing weights (2.41), and β = γ + 2.Theorems 2.4.2 and 2.4.3 therefore apply and we �nd that the Hausdor� dimension ofthe alpha-gamma model with α = 1 is π1,γ�almost surely dH = 1/γ and the spe
traldimension is π1,γ�almost surely ds = 2/(1 + γ).We 
on
lude this 
hapter by summarizing in a diagram the relation between themodels presented in the thesis.
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Figure 9.4: Relation between the models presented in the thesis. The vertex splittingmodel is represented by a 
ube. The left side of the 
ube 
ontains the preferential atta
hmentmodel. The front side of the 
ube is the limiting 
ase of the alpha�gamma model, and thespe
ial 
ase of the alpha-model is represented by a thi
k line on the front�right edge. Themodels of Part I interse
t the front�right edge in various pla
es as indi
ated. ESM standsfor equilibrium statisti
al me
hani
s and �
uto� models� refers to the models dis
ussed inSe
tion 2.5 where K is the maximum vertex degree in the outgrowths .



10Con
lusionIn the se
ond part of the thesis we introdu
ed a new model of growing random trees,referred to as the vertex splitting model. We analyzed some properties of large treessu
h as the vertex degree distribution, 
orrelations between neighbouring verti
es andthe Hausdor� dimension. Rigorous results were presented in the 
ase of linear splittingweights wi = ai+ b and the 
ase of more general weights was studied by a mean �eldassumption whi
h was supported by simulations. It would be desirable to extend therigorous 
al
ulations for linear weights to the more general 
ase and thereby 
on�rmthe observed mean �eld behaviour.The study of the degree distribution involved proving 
onvergen
e of the expe
-tation value of the relative number of verti
es of a given degree. It is possible tostrengthen the notion of 
onvergen
e by showing that the vertex degree densities
onverge almost surely to their limits. This 
an presumably be done using resultson generalized Pólya urn models as is done in the 
ase of random re
ursive trees(preferential atta
hment) in [49℄.It is an interesting problem to establish weak 
onvergen
e of the �nite volumemeasures νℓ, generated by the vertex splitting pro
edure, to a measure on in�nitetrees. This was done in Se
tion 9.1 for the spe
ial 
ase of the alpha model. It wasshown that the in�nite volume measure is 
on
entrated on the set of trees 
onsistingof exa
tly one in�nite spine with outgrowths whi
h are �nite and i.i.d. Similar resultsare expe
ted to hold in the alpha�gamma model and a natural next step would be toexamine this in detail. The proof of Theorem 9.1.1 relied heavily on the Markovianself�similarity property of the alpha model, whi
h does not seem to be present in141
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lusiongeneral in the vertex splitting model. Therefore, a di�erent approa
h is required inthe vertex splitting model.If the 
onvergen
e of the measures is established, one 
an study properties of thein�nite volume measure, su
h as the Hausdor� dimension and the spe
tral dimension.In Theorem 9.1.2, the annealed Hausdor� dimension of the alpha model was shown tobe d̄H = 1/α. In the 
ase of the alpha�gamma model with α = 1 it was shown, usinga 
onne
tion to the 
aterpillar model from Part I, that dH = 1/γ and ds = 2/(1 + γ)almost surely. In this 
ase, Equation (1.23) relating dH and ds holds and it wouldbe interesting to examine whether the relation holds in general in the vertex splittingmodel. A �rst approa
h is to use Equation (7.28), for the Hausdor� dimension, and
ompare it to numeri
al 
al
ulations of the spe
tral dimension.Another notion of 
onvergen
e of graphs is the so�
alled 
ontinuum limit or s
alinglimit, obtained by shrinking the edges of a graph while in
reasing their number. Morepre
isely, a graph GN of volume N is viewed as a metri
 spa
e with the graph metri

dGN

. Then, for a suitable 
onstant γ, an almost sure 
onvergen
e of (GN , N
−γdGN

)to a metri
 spa
e (G, d) is established in the Gromov�Hausdor� sense [44℄. The studyof 
onvergen
e in this approa
h and properties of the limiting obje
ts has been ana
tive area of resear
h in the past two de
ades, boosted by Aldous' de�nition of the
ontinuum random tree in 1991 [4℄. Sin
e then, mu
h work has been done on treesand planar maps. More details may be found in [55℄ and the referen
es therein.In the spe
ial 
ase of the alpha model and the alpha�gamma model, the 
ontinuumlimit has been 
onstru
ted ( [28,45℄ respe
tively) in the 
ontext of fragmentation pro-
esses [16℄. It is shown that growth rules of the trees are in one-to-one 
orresponden
ewith dislo
ation measures of homogeneous fragmentation pro
esses. An interestingquestion is whether the same applies in the vertex splitting model. A promising toolto answer this question is the volume distribution fun
tion pk(n1, . . . , nk). A posi-tive answer would determine whether the vertex splitting model falls into the alreadyknown 
ategories of dislo
ation measures for self-similar growing trees or if new 
lasseswould be dis
overed. The latter result would indi
ate a ri
her universality 
lass stru
-ture of the vertex splitting model whi
h in
ludes other previously studied models asspe
ial 
ases.
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