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AbstratIn this thesis we study two models of random trees. The �rst model is an equilibriumstatistial mehanial model of trees where the ation is given by a sum over theverties and depends only on their degrees. We onsider two lasses of suh trees:aterpillars whih are trees with the property that all verties of degree greater thanone form a simple path, and planar trees, whih are often referred to as branhedpolymers. The purpose of this study is to haraterize the phase struture of themodels with a speial emphasis on desribing a phase where a vertex of in�nite degreeemerges in the thermodynami limit. We show that both lasses of trees exhibit twophases, an elongated phase and a ondensed phase. We prove onvergene of the �nitevolume Gibbs measures to a measure on the set of in�nite trees. In the elongatedphase the measure is onentrated on the set of trees with exatly one path from agiven vertex to in�nity and in the ondensed phase it is onentrated on the set oftrees with exatly one vertex of in�nite degree. We onlude the disussion of eahlass by alulating the Hausdor� and spetral dimension in both phases.The seond model we onsider is a new model of growing random trees, referredto as the vertex splitting model. In eah time step, the trees are grown by seleting avertex and splitting it into two verties whih are joined by a new edge. The modelredues, in speial ases, to the preferential attahment model, Ford's alpha modelfor phylogeneti trees and its generalization the alpha�gamma model. We develop amean �eld theory for the vertex degree distribution, prove that the mean �eld theoryis exat in some speial ases and hek that it agrees with numerial simulations ingeneral. We onstrut ertain orrelation funtions whih enable us to alulate theHausdor� dimension of the trees. The Hausdor� dimension depends on the parametersof the model and an vary from one to in�nity. We study orrelations between degreesof neighbouring verties and ompare the result to graphs where no orrelations arepresent. We onlude by showing how the vertex splitting model is related to othermodels of random trees and provide new results on the alpha model.vii



Ágrip (in Ielandi)Við rannsökum tvö líkön af slembitrjám. Fyrra líkanið er safneðlisfræðilíkan trjáaþar sem orkan er ge�n með summu y�r hnúta og er einungis háð stigi þeirra. Viðskoðum tvö söfn trjáa: margfætlur, sem eru tré með þann eiginleika að allir hnútaraf stigi hærra en einn mynda einfaldan veg og sléttutré. Tilgangur rannsóknarinnarer að lýsa mismunandi fösum líkansins og sérstök áhersla er lögð á að lýsa fasa þarsem hnútur af óendanlegu stigi verður til þegar stærð trjánna stefnir á óendanlegt.Við sýnum að bæði söfnin hafa tvo fasa sem við köllum langan fasa og þéttan fasa.Við sönnum að Gibbs málin, á endanlegum mengjum trjáa, eru samleitin og stefnaá mál á mengi óendanlegra trjáa. Í langa fasanum hefur málið stoð á mengi trjáasem innihalda nákvæmlega einn veg frá gefnum hnútpunkti út í óendanlegt en í þéttafasanum hefur málið stoð á mengi trjá sem innihalda nákvæmlega einn hnútpunkt afóendanlegu stigi. Við ljúkum umræðunni um hvort safn fyrir sig með því að reiknaHausdor�- og litrófsvídd beggja fasa.Síðara líkanið sem við skoðum er nýtt líkan af vaxandi slembitrjám sem við nefnumhnútaskiptingalíkanið. Í hverju tímaskre�, vaxa tréin með þeim hætti að hnútpunkturer valinn af handahó� og honum skipt í tvo hnúta sem tengdir eru með nýjum legg.Líkanið inniheldur sem sértilfelli viðhengilíkanið, alfalíkan Fords af þróun tegunda ogalhæ�ngu þess alfa�gammalíkanið. Við reiknum hnútastigsdreifingu í stórum trjámmeð meðalsviðsfræði, sönnum réttmæti meðalsviðsfræðinnar í sértilfellum en styðjumalmenna tilvikið með tölvuhermunum. Við smíðum ákveðin fylgniföll sem gera okkurkleift að reikna Hausdor�vídd trjánna. Hausdor�víddin er háð stikum líkansins oggetur tekið öll gildi á bilinu einn upp í óendanlegt. Við reiknum fylgni milli hnútastigsnæstu nágranna og berum saman við net þar sem engin fylgni er til staðar. Viðljúkum ritgerðinni með því að bera hnútaskiptingalíkanið saman við önnur líkön afslembitrjám og sönnum m.a. nýjar niðurstöður um alphalíkan Fords.
viii
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1Introdution
1.1 BakgroundRandom graphs are used in many branhes of siene to desribe relationships be-tween various entities and to model physial objets. The former ase inludes soialnetworks [2℄, phylogeneti trees [5,43,45℄, the world-wide web [3℄ and muh more. Thelatter ase inludes disrete objets suh as maromoleules [33℄ and branhed poly-mers [2℄. The graphs an also serve as a mathematial tool to approximate ontinuousobjets, an example of this being triangulations of manifolds in quantum gravity, seee.g. [8℄.Random trees are random graphs whih have, for example, been used to modelfamily trees and evolving populations [46℄, phylogeneti trees [5, 43, 45℄, fragmenta-tion and oagulation proesses [16℄ and more. Trees are also of theoretial impor-tane in the researh of more general random graphs. Planar trees, for instane,enode information on folded RNA moleules through their onnetion with planararh strutures [33℄ and labelled trees are important in the study of the statistis ofplanar maps and their saling limits [56,57℄ via Shae�er's bijetion [61℄. Planar mapsare a prominent tool in one approah to quantum gravity. A simple speial ase ofShae�er's bijetion is given in [39℄ between generi trees and 2D ausal dynamialtriangulations [11℄.In this thesis we study two types of models of random trees. In Part I we onsideran equilibrium statistial mehanial model of two di�erent lasses of trees where theation is given by a sum over the verties of a tree and depends only on their degrees.1



2 Chapter 1 IntrodutionThe �rst lass of trees we onsider are so�alled aterpillars whih are trees with theproperty that all verties of degree greater than one form a simple path. The seondlass we onsider ontains all planar trees, whih are often referred to as branhedpolymers. The purpose of this study is to give a omplete haraterization of thephase struture of the models with a speial emphasis on desribing a phase whereverties of in�nite degree emerge in the thermodynami limit. The main motivationis to solve the model of branhed polymers and the model of aterpillars is a steptowards that solution. Both models have been analysed extensively before; althoughthe aterpillar model has usually been studied in a di�erent ontext.The equilibrium statistial mehanial model of branhed polymers was introduedby Meir and Moon in 1978 [58℄ under the name simply generated trees. They derivedthe asymptoti behaviour of the �nite volume partition funtion under ertain as-sumptions on the parameters of the model. The model, as onsidered in the presentontext, was �rst studied by Ambjørn et al. in the late 1980's in the papers [6, 7℄.In 1996, Bialas and Burda alulated the ritial exponents in the model and de-sribed its phase struture [18℄. They argued that the model exhibits two phases inthe thermodynami limit: a �uid (elongated, generi) phase where the trees are of alarge diameter and have verties of �nite degree and a ondensed (rumpled) phasewhere the trees are short and bushy with exatly one vertex of in�nite degree. In2007, Durhuus, Jonsson and Wheater gave a omplete haraterization of the �uidphase, referred to as generi trees, by showing that the Gibbs measures onverge to ameasure onentrated on the set of trees with exatly one path to in�nity with �niteritial Galton�Watson outgrowths [38℄. They furthermore proved that the treeshave a Hausdor� dimension dH = 2 and a spetral dimension ds = 4/3 with respetto the in�nite volume measure. The main goal of Part I in this thesis is to establishanalogous results for the ondensed phase. Preliminary results in this diretion wereobtained by the author in [64℄.One of the motivations for the study of the branhed polymer model is that asimilar phase struture is seen for more general lasses of graphs in models of simpliialgravity [1,9℄. In these models the elongated phase is e�etively desribed by trees [10℄and it has been established by numerial methods that in the ondensed phase a singlelarge simplex appears whose size inreases linearly with the graph volume [27,48℄. Alosely related phenomenon of ondensation also appears in dynamial systems suhas the zero range proess [40℄.In 1997, Bialas et al. proposed [23℄ that the same mehanism is behind the phasetransition in the di�erent models and the so�alled onstrained mean �eld model was



1.1 Bakground 3introdued in order to apture this feature. The authors followed up on the idea ina series of papers [17, 19�22℄ where the model was studied under the name balls inboxes or bakgammon model. The model onsists of plaing N balls intoM boxes andassigning a weight to eah box depending only on the number of balls it ontains. Thismodel is losely related to the equilibrium statistial mehanial model of aterpillars.In [20℄ the ritial exponents of the balls in boxes model were alulated and the twophases haraterized. The distribution of the box oupany number was derived andit was argued that in the ondensed phase exatly one box ontains a large numberof balls whih inreases linearly with the system size.The model of aterpillars was studied by the author, in ollaboration with ÞórðurJónsson, in a reent paper [52℄. Our original motivation for studying the model wasthat, despite its simpliity, it was predited to have the same phase struture as themore ompliated model of branhed polymers. The aterpillar model was solved byproving onvergene of the Gibbs measures to a measure on in�nite graphs and aomplete haraterization of the limiting measure was provided in both phases. Webelieve this to be the �rst rigorous treatment of the ondensed phase in models of theabove type and it guided us towards a solution of the ondensed phase in the modelof branhed polymers. A model of random ombs, equivalent to the aterpillar modelwas studied in [36℄ where analogous results were obtained for the limiting measure.In Part II we onsider a new model of randomly growing planar trees referred to asthe vertex splitting model. This work is based on and extends the paper [32℄ whih isa joint work of the author with François David, Mark Dukes and Þórður Jónsson. Wewill desribe the model informally here, a preise de�nition will be given in Part II.The parameters of the model are nonnegative weights wi,j and a probability measureis generated on the set of �nite trees by the following growth rule. Start from aninitial tree T0. Selet a vertex in T0 of degree k with a probability weight
wk =

k

2

k+1∑

n=1

wn,k+2−nand �split� the vertex into two new verties of degree i and j with a probabilityweight wi,j , see Fig. 1.1. The numbers wk are referred to as splitting weights andthe numbers wi,j are referred to as partitioning weights. This proess is repeatedinde�nitely. In most ases we will put an upper bound, D, on the degrees of vertiesby hoosing wD+1,1 = w1,D+1 = 0 suh that verties of degree D+1 are not produedby the proess. The model originates from a slightly di�erent model of growing planar



4 Chapter 1 Introdution
k i jFigure 1.1: The splitting operation.trees, introdued in 2008 by David, Hagendorf and Wiese in onnetion with RNAfolding [33℄. We will desribe this relationship in a few words but refer to [33℄ for amore detailed explanation.A ompletely folded (planar) RNA moleule is represented by a system of noninterseting arhes whih onnet sites 1, . . . , n on a line in suh a way that no moresites an be onneted without rossing arhes. The sites represent the bases in themoleule and the arhes represent the pairing of bases. These strutures are in oneto one orrespondene with planar trees having verties of two types: a grey vertexand a white vertex deorated with an arrow. The faes of the arhes orrespond tothe verties of the tree and the arhes orrespond to the edges of the tree. If a fae isadjaent to an unpaired base the olour of the orresponding vertex is white and anarrow points from the vertex to the unpaired base, otherwise the vertex is grey, seeFig. 1.2.The model of the RNA folding proess in [33℄ is de�ned by starting with a strand of

n unpaired sites and depositing arhes uniformly at random to the sites suh that noarhes ross. This is repeated until no more arhes an be added. The arh depositionmodel an equivalently be desribed by the following growth proess. Start with anempty strand at time zero and in eah time step add a site to the strand, its loationhosen uniformly at random, and pair the new site if it is possible without rossing
1       2       3      4       5      6       7       8       9     10     11  Figure 1.2: The onnetion between arh strutures and deorated trees.



1.2 Outline 5arhes. By viewing the evolution of the orresponding tree one �nds that it hangesin one of two ways: a grey vertex turns white and is deorated with an arrow (thenew site is not paired) or an additional arrow is plaed on a white vertex whih isthen split into two grey verties onneted by a new edge whih is orthogonal to thetwo arrows (the new site is paired), see Fig. 1.3. The splitting of the white verties inthe above growth proess is essentially the same operation as in the vertex splittingmodel. In the RNA model the splitting weights are �xed by the dynamis of the arhdeposition proess.The vertex splitting model has very general growth rules and inludes other pre-viously studied random tree models. It beomes a speial ase of the preferentialattahment growth model, also referred to as random reursive trees, (see e.g. [2,31℄)when we take wj,k = 0 unless j or k is equal to 1. It also has, as a limiting ase,Ford's alpha model of phylogeneti trees [43℄ and its generalization, the alpha�gammamodel [28℄.Our main motivation is to develop general tools to study the properties of modelsof random tree growth. In partiular we are motivated by the issues of uni�ationand of universality: Is there a general tree growth proess whih an enompass thedi�erent models whih are known at the moment? How many di�erent universalitylasses, i.e. ontinuous tree models with di�erent saling properties (exponents andorrelation funtions), exist in this framework? The results presented here are a �rststep in this diretion.1.2 OutlineChapter 2 of Part I is based on the paper [52℄, written in ollaboration with ÞórðurJónsson. We solve the equilibrium statistial mehanial model of aterpillars byproving onvergene of the Gibbs measures to a measure on in�nite graphs and givea omplete haraterization of the limiting measure. We show that in the �uid phase
Figure 1.3: A step in the RNA growth proess.



6 Chapter 1 Introdutionthe measure is onentrated on the set of aterpillars having in�nite length and thatin the ondensed phase it is onentrated on the set of aterpillars whih are of �nitelength and have preisely one vertex of in�nite degree. We onlude Chapter 2 byalulating the Hausdor� dimension and spetral dimension of the aterpillars in bothphases and at the phase transition.In Chapter 3 of Part I we study the equilibrium statistial mehanial model ofbranhed polymers. This work is based on the paper [53℄ (in preparation) writtenin ollaboration with Þórður Jónsson. We generalize the de�nition of planar treesin [35℄ to allow for verties of in�nite degree and de�ne a new metri on this setof planar trees. This new metri spae is ompat and the subset of �nite trees isdense. We use similar tehniques as for the aterpillar model to prove onvergeneof the Gibbs measures in both phases with respet to this metri. We prove that inthe ondensed phase the limiting measure is onentrated on the set of trees of �nitediameter with preisely one vertex of in�nite degree and that the rest of the tree isdistributed as a subritial Galton�Watson proess with mean o�spring probability
m < 1. Furthermore, we prove that in �nite trees the degree of the large vertex growslinearly with the system size, N , as (1 − m)N with probability arbitrarily lose toone, on�rming the result stated in [26℄ . We onlude by alulating the spetraldimension of the in�nite measure in the ondensed phase. In [29℄ it was laimed,on the basis of saling arguments, that the spetral dimension is ds = 2. We prove,however, that if the spetral dimension exists it depends ontinuously on a parameterof the model and an take any value greater than two. In fat, it takes the samevalues as the spetral dimension of the ondensed phase in the aterpillar model.Part II is based on and extends the paper [32℄, written in ollaboration withFrançois David, Mark Dukes and Þórður Jónsson. We �rst give the preise de�nitionof the vertex splitting model. We then study the speial ase where the splittingprobability weights are linear with the initial vertex degree i and fous on the vertexdegree distribution. In Chapter 6 we write exat reurrene equations for the generalloal vertex degree probability distributions. Using the Perron-Frobenius theorem [62℄we show that the single vertex degree probability distribution ρ = {ρk} (ρk is thedensity of verties with a given degree k) has a well de�ned limit as the size of thetree goes to in�nity whih is independent of the initial tree. We furthermore showthat ρ = {ρk} is given by an eigensystem equation of the form Bρ = λρ, where B isa matrix depending on the weights of the model. The proof depends on the matrix
B being diagonalizable. Similar tehniques have been used to �nd the asymptotidegree distribution in random reursive trees [49℄.



1.2 Outline 7In Setion 6.4 we relax the ondition of linearity on the splitting weights wi. Weargue that mean �eld theory is still valid and that the degree probability distribution
ρ is still given by the same linear eigensystem equation as in the linear ase. We givegood numerial evidene of the validity of these mean �eld equations for D = 3 trees.For in�nite D and linear and uniform splitting probabilities we an still alulate thevertex degree distribution in losed form using mean �eld theory. This is done insetion 6.5, where we show that it agrees with numerial simulations. The vertexdegree distribution is found to fall o� fatorially in this ase.In Chapter 7 we study probabilities assoiated to the loal subtree struture of thetree, as seen from any vertex, and as a funtion of its reation time s. More preisely,we are able to write reursion relations for the probability pk(ℓ1, · · · , ℓk; s) that thevertex reated at time s is of degree k, with the k subtrees with �xed respetive sizes
ℓ1, · · · , ℓk. These subtree struture probabilities are related to the radius of the treeand their saling properties allow us to extrat the Hausdor� dimension of the trees.Using a natural saling hypothesis, we show that the Hausdor� dimension dH is givenby the solution of an eigensystem equation of the form Cω = w2/dH ω, where C is amatrix whih is a funtion of the weights of the model. We use a Perron-Frobeniusargument to prove that this eigensystem equation has a unique physial solution. Weestablish bounds on the Hausdor� dimension and show that it an vary ontinuouslywith the splitting weights between 1 and +∞.In Chapter 8 we study the orrelations between the degrees of neighbouring ver-ties. This amounts to studying the density ρij of links with verties of degrees iand j. We write general equations for these orrelations in the linear splitting weightase. In the simple ase of D = 3 trees these orrelations are alulated expliitly, andompared with numerial simulations. In Setion 8.3 we extend our results for thease of non�linear splitting weights, assuming mean �eld theory. We show that thereis a very good agreement between our analytial results and numerial simulations.We onlude by disussing the amount of assortative mixing in the vertex splittingmodel i.e. whether verties of high degree prefer to be neigbours of verties of highdegree or to be neighbours of verties of low degree. For reent researh on assortativemixing in networks we refer to [54, 59, 67℄.In the �nal hapter we disuss in more detail the relationship between our modeland other models of random trees, in partiular the alpha model of phylogeneti trees.We prove onvergene of the �nite volume measures generated by the growth rules ofthe alpha model and alulate the annealed Hausdor� dimension. This work is basedon and extends the paper [65℄ by the author.



8 Chapter 1 Introdution1.3 De�nitionsIn this setion we ollet together the basi de�nitions and notation whih are usedin the following hapters.1.3.1 GraphsA graph G is omposed of a vertex set V (G) and an edge set E(G) whih onsists ofunordered pairs {v, w} where v, w ∈ V and v 6= w 1. In the following we will alwayssingle out a vertex in V alled the root of the graph and denote it by r. The numberof elements in a set A is denoted by |A|. We de�ne |G| ≡ |E| and all it the volume ofthe graph G. Two verties v, w ∈ V are alled neighbours if {v, w} ∈ E. The numberof neighbours of a vertex v ∈ V is alled the degree or order of v and is denoted by
σG(v) or simply σ(v) if it is lear to whih graph the vertex belongs. A ommononstraint on graphs is that all verties have �nite degree in whih ase the graph issaid to be loally �nite. However, here we sometimes allow the possibility that graphshave verties of in�nite degree.A �nite path γ in a graph G is a �nite sequene

γ = (v0, v1, v2, . . . , vn) (1.1)where v0, . . . , vn ∈ V and vi−1 and vi are neighbours for all i = 1, . . . , n. We all nthe length of the path γ and de�ne |γ| = n. The verties v0 and vn are alled theendpoints of γ. If v0 = vn then the path is alled a yle. We say that a graph Gis onneted if for every two verties v, w ∈ V , there exists a path between v and w.The graph distane dG between any two verties v, w ∈ V in a onneted graph G isde�ned by
dG(v, w) = min{|γ| : γ a path with endpoints v and w} (1.2)and dG(v, v) = 0 for all v ∈ V .A graph is alled a tree if it ontains no yles. In this thesis we restrit ourattention to onneted trees, whih are the objets of the models presented. Wewill put the additional ondition of planarity on the trees under onsideration, whihmeans in words that the edges inident on a given vertex are ordered. This statementis ambiguous if the vertex has an in�nite degree and therefore we give a proper1Some authors refer to these graphs as �simple graphs� and allow general graphs to have �selflinks� and �multi links�.



1.3 De�nitions 9de�nition in Chapter 3. The ondition of planarity is not essential in the models weonsider, but is rather a onvention, and in some ases it is motivated by the natureof the model. By onvention we assume, unless otherwise stated, that the trees havea root of degree one. We denote the set of all onneted, rooted planar trees, �niteor in�nite, by Γ and the set of all �nite, onneted, rooted planar trees by Γ′. Theset of onneted, rooted planar trees with N edges will be denoted by ΓN . In trees,we denote the unique shortest path between verties v and w by (v, w).1.3.2 Random graphsLet GN be some subset of the set of graphs with N edges and let G be the set of all�nite and in�nite graphs of the same type. We will not be preise for the momentabout how G is onstruted. A random graph is de�ned by a probability distribution
νN on GN . Usually the distribution νN is either (a) onstruted expliitly for a given
N or (b) de�ned in a reursive way from νN−1, ommonly by a growth proess.The models in Part I are of type (a). They are de�ned by a set of nonnegativenumbers w1, w2, . . ., alled branhing weights, and a probability is assigned to a graph
G ∈ GN by

νN (G) =
1

ZN

∏

v∈V (G)

wσG
(v) (1.3)where

ZN =
∑

G′∈GN

∏

v∈V (G′)

wσG′ (v) (1.4)is a normalization fator whih is alled the �nite volume partition funtion. Thesemodels are referred to as equilibrium statistial mehanial models and νN is alledthe Gibbs measure. We say that the model has a loal ation, sine the energy ofa given graph is the sum over the independent energies of individual verties in thegraph.The models in Part II are of type (b). They are de�ned by a growth rule, and theprobability of a graph G ∈ GN is given by
νN (G) =

∑

G′∈GN−1

νN−1(G
′)P(G′ → G) (1.5)where P(G′ → G) is the probability of growing the graph G from G′ aording to thegrowth rule.In both the above ases we study properties of the graphs when N −→ ∞. In



10 Chapter 1 Introdutionsome ases it is possible to show that the measures νN , viewed as measures on G,onverge in a weak sense, to a measure ν whih is onentrated on the set of in�nitegraphs. This is referred to as taking the in�nite volume limit. In other ases onean only study onvergene of some observables (or their expetation values), suhas the vertex degrees, the graph diameter et. In order to de�ne the notion of weakonvergene we assign a metri d to the set G. The statement
νN −→ ν (1.6)in a weak sense as N −→ ∞ means that

∫

G

fdνN −→
∫

G

fdν (1.7)as N −→ ∞ for all bounded funtions f whih are ontinuous in the metri d. Theproblem of taking the in�nite volume limit involves, among other things, de�ning theset G properly and de�ning a suitable metri on G.We will use repeatedly the following result about weak onvergene of probabilitymeasures whih is stated in [35℄ and derived e.g. in [24℄. If νN is a sequene ofprobability measures on a metri spae (G, d) and U is a family of both open andlosed subsets of G suh that(i) any �nite intersetion of sets in U are in U ,(ii) any open subset of G may be written as a �nite or a ountable union of setsfrom U and(iii) the sequene νN (A), onverges as N −→ ∞ for all sets A ∈ U ,then the sequene νN onverges weakly provided it is tight, i.e. for any ǫ > 0 thereexists a ompat subset C of G suh that
νN (G \ C) < ǫ for all N. (1.8)The last ondition of tightness is automatially ful�lled if the metri spae is ompat,whih is the ase in all appliations in this thesis.



1.3 De�nitions 111.3.3 Random walks on graphs and the spetral dimensionA simple random walk on a graph G is a path ω together with a probability weight
|ω|−1
∏

t=0

(σG(ωt))
−1 (1.9)where ωt denotes the (t + 1)-st vertex of ω. We think about the random walk as aproess where at time t a walker, loated at ωt, moves to one of its neighbours withprobabilities (σG(ωt))

−1.We begin by de�ning the spetral dimension of a graph whih is loosely speaking,the dimension experiened by a random walker travelling on the graph. Let pG(t) bethe probability that a simple random walk whih begins at the root in G, is loatedat the root at time t. The spetral dimension of the graph G is de�ned as ds providedthat
pG(t) ≍ t−ds/2 (1.10)where we write f(t) ≍ t−γ if

lim
t→∞

log (f(t))

log(t)
= −γ. (1.11)If pG(t) falls o� faster than any power of t then we say that ds = ∞. This de�nitiononly makes sense on in�nite graphs sine on �nite graphs, the return probability isasymptotially a positive onstant. It is straightforward to verify that the spetraldimension of a onneted, loally �nite graph is independent of the hoie of a root.The spetral dimension of the d�dimensional hyper�ubi lattie Zd is ds = d in whihase it agrees with our usual notion of dimension. For general graphs the spetraldimension need not be an integer and furthermore it might not exist. The spetraldimension an also be de�ned on a ontinuous manifold in whih ase it is the rate ofdeay of the heat kernel at oiniding points.For an in�nite random graph (G, ν), where ν is a probability distribution on somelass of graphs G, one an de�ne the spetral dimension in di�erent ways. First of allthe graphs an have, ν almost surely, a spetral dimension ds de�ned as above. Thestatement that an event E happens ν almost surely means that ν(E) = 1. Seondlywe de�ne the annealed spetral dimension as d̄s provided that

〈pG(t)〉ν ≍ t−d̄s/2. (1.12)



12 Chapter 1 Introdutionwhere 〈·〉ν denotes expetation value with respet to ν. These de�nitions need notagree and in this thesis we enounter examples where d̄s exists and is �nite, whereas
ds is almost surely in�nite.

The return probabilities are most onveniently analysed through their generatingfuntions. In the following disussion, assume that the graph G is a tree. De�ne
QG(x) =

∞∑

t=0

pG(t)(1 − x)t/2. (1.13)The generating funtion variable x is de�ned in this way for notational onvenienein later alulations. Note that sine the graph G is a tree only integer exponentsappear on 1 − x. Let p1
G(t) be the probability that a random walk whih leaves theroot at time zero and walks t steps, returns to the root for the �rst time. De�ne thegenerating funtion

PG(x) =

∞∑

t=0

p1
G(t)(1 − x)t/2. (1.14)By deomposing a walk whih returns to the root into the �rst return walk, the seondreturn walk et. we �nd the relation

QG(x) =
∞∑

n=0

(PG(x))n =
1

1 − PG(x)
. (1.15)Let n be the smallest nonnegative integer for whih Q(n)

τ (x), the n�th derivative of
Q(x), diverges as x −→ 0. If

(−1)nQ(n)
τ (x) ≍ x−α (1.16)for some α ∈ [0, 1) then learly

ds = 2(1 − α+ n), (1.17)if ds exists. For random graphs, the same relation holds between the singular be-haviour of 〈Q(n)
τ (x)〉ν as x −→ 0 and the annealed spetral dimension. All statementsabout the spetral dimension of graphs in the following hapters are made under theassumption that it exists.



1.3 De�nitions 131.3.4 Hausdor� dimensionAnother notion of dimension for graphs is the Hausdor� dimension whih is de�nedin terms of how the volume of a ball sales with its radius. For a graph G = (V,E),denote by BR(G) the subgraph of G whih has a vertex set
VR(G) = {v ∈ V | dG(v, r) ≤ R} (1.18)and an edge set

{{v, w} ∈ E | v, w ∈ VR(G), v 6= w}. (1.19)We all BR(G) the ball of radius R entered on the root r. The Hausdor� dimensionof the graph G is de�ned as dH provided that
|BR(G)| ≍ RdH . (1.20)As for the spetral dimension, this de�nition only makes sense on an in�nite graph.On a onneted, loally �nite graph, dH is independent of the hoie of a root. Onthe hyper�ubi lattie Zd it holds that dH = d but in general dH is not an integer.The Hausdor� dimension an also be de�ned in di�erent ways for random graphs.First of all the graphs might have, ν almost surely, a Hausdor� dimension dH as de-�ned above and seondly we de�ne the annealed Hausdor� dimension as d̄H providedthat

〈|BR(G)|〉ν ≍ Rd̄H . (1.21)The Hausdor� dimension and the spetral dimension do not neessarily agree, butunder ertain onditions the inequality
2dH

1 + dH
≤ ds ≤ dH (1.22)holds [30℄. For trees whih satisfy ertain regularity onditions, the left inequality issaturated [13℄, i.e.

ds =
2dH

1 + dH
. (1.23)Examples of random trees whih satisfy (1.23) are the uniform spanning tree on Z

2(dH = 8/5 and ds = 16/13) [14℄ and generi trees (dH = 2 and ds = 4/3) [38℄.Examples of random trees whih satisfy (1.22) but not neessarily (1.23) are therandom ombs studied in [37℄.It is beyond the sope of this thesis to disuss the relations (1.22) and (1.23) in



14 Chapter 1 Introdutiondetail. However, we will see that most of the random tree models we study haveHausdor� and spetral dimensions whih satisfy (1.23). An exeption to this is theondensed phase of the equilibrium statistial mehanial models.There is another de�nition of the Hausdor� dimension whih applies when oneonsiders �nite, randomly growing graphs. Let νN , N = 1, 2, . . . be probability dis-tributions on a set of graphs G, onentrated on graphs of volume N , and de�nedfrom νN−1 by a growth rule. The Hausdor� dimension is usually de�ned in terms ofhow the average value of some typial distane in the graph (the maximum distanebetween verties, the mean distane of verties from the root, et.) sales in relationto the volume of the graph as it grows. More preisely, we de�ne the radius of thegraph G by
RG =

1

2|G|
∑

v

dG(r, v)σ(v). (1.24)Then we de�ne the Hausdor� dimension as dH if
〈RG〉νN ,G∈G ∼ N1/dH (1.25)as N −→ ∞. By f(x) ∼ g(x) as x −→ ∞ we mean that the limit of the ratio of

f(x) and g(x) is a positive onstant. This de�nition of dH should be independent ofthe hoie of a root r. If the measures νN onverge to a measure ν onentrated onin�nite graphs, the de�nition is expeted to oinide with the previous one in (1.21)provided that ν is onentrated on su�iently regular graphs. We will see examplesof random tree models where this is the ase.



Part ICondensation in tree models





2Caterpillars with a loalationIn this hapter we onsider an equilibrium statistial mehanial model of a ertainlass of trees whih are referred to as aterpillars. We start by de�ning the set ofaterpillars of a �nite volume and introdue a Gibbs measure on this set, whih isonstruted from a loal ation. We analyse the model by the use of generatingfuntions and show that there exist two phases, an elongated phase and a ondensedphase. The asymptoti behaviour of the �nite volume partition funtion is establishedin both phases and at the ritial line separating the phases. We prove onvergeneof the �nite volume measures to a measure on the set of in�nite aterpillars andharaterize it. The Hausdor� and spetral dimensions are then alulated, withrespet to the in�nite volume measure, in both phases and on the ritial line. Weonlude by brie�y disussing a model whih generalizes the aterpillar model andbrings us one step loser to the model of branhed polymers whih is the subjet ofthe next hapter.2.1 CaterpillarsA �nite aterpillar is a �nite graph whih onsists of a linear graph, whih we all thespine, to whih leaves (i.e. individual links) are attahed. We mark the end vertiesof the linear graph by r1 and r2 and all r1 the root of the aterpillar. Both these17



18 Chapter 2 Caterpillars with a loal ation
r1

s1 s2 s3 s4 r2Figure 2.1: An example of a �nite aterpillar graph.verties have order one by de�nition. Furthermore, we will view the aterpillars asplanar graphs so we distinguish between left leaves and right leaves, see Fig. 2.1. Theassumption of planarity is not essential. We denote the set of all aterpillars with Nedges by CN . For a aterpillar τ ∈ CN , denote the graph distane between r1 and r2by ℓ(τ) and all it the length of the aterpillar. For a aterpillar of length ℓ we denotethe verties on the spine between r1 and r2 by s1, . . . , sℓ−1.Let wn, n = 1, 2, . . ., be a sequene of nonnegative numbers whih will be alledweight fators or branhing weights. The weight of a aterpillar τ ∈ CN is de�ned as
w(τ) =

∏

i∈V (τ)\{r1,r2}

wσ(i). (2.1)We de�ne the �nite volume partition funtion by
ZN =

∑

τ∈CN

w(τ) (2.2)and a probability distribution on CN by
νN (τ) =

w(τ)

ZN
. (2.3)The weight fators wn, or alternatively the measures νN , de�ne what we all a ater-pillar ensemble. The objet of this hapter is to study the aterpillar ensemble fordi�erent lasses of weights wn and give a omplete and rigorous ategorization ofdi�erent phases of the model.Sine the probability of a given aterpillar only depends on the order of its verties,an equivalent way of de�ning this ensemble is the following. If τ ∈ CN onsider the�nite sequene c(τ) = (σ(s1), σ(s2), . . . , σ(sℓ−1)) and assign to it the probability

ν̃N (c(τ)) = νN (τ)

ℓ(τ)−1
∏

i=1

(σ(si) − 1). (2.4)



2.1 Caterpillars 19The produt fator in (2.4) aounts for the number of di�erent aterpillars whihorrespond to the same sequene c(τ). De�ne the set C̃N = {c(τ) | τ ∈ CN}. It islear that (CN , νN ) is equivalent to (C̃N , ν̃N ) in the sense that νN (τ) only dependson c(τ). This allows us to extend the notion of �nite aterpillars to in�nite ones:
C̃ =

{(
bi
)k−2

i=1

∣
∣
∣ k, bi ∈ {2, 3, . . .} ∪ {∞}

} (2.5)where k = 2 orresponds to the unique aterpillar of length ℓ = 1. Note that anelement in C̃ whih has in�nite terms and/or in�nite length has no ounterpart in
CN for any N . We denote the subset of �nite aterpillars in C̃ by C̃′.In the following setions we study the limit of the measures ν̃N as N −→ ∞. Inorder to deal properly with onvergene questions we need to de�ne a topology on C̃.For a aterpillar a = (a1, a2, . . .) ∈ C̃ we de�ne the sequene

B̃R(a) = (min{a1, R},min{a2, R}, . . . ,min{amin{ℓ(a)−1,R}, R}). (2.6)We then de�ne a metri d̃ on C̃ by
d̃(a, b) = inf

{

1

R

∣
∣
∣
∣
∣
B̃R(a) = B̃R(b)

} (2.7)for any a, b ∈ C̃. It is straightforward to show that this de�nition satis�es the axiomsfor a metri. We now state and prove a few properties of the metri spae (C̃, d̃).Proposition 2.1.1 The metri spae (C̃, d̃) is ompat.Proof Take a sequene (cn)n∈N in C̃. Note that for every R the set {B̃R(b) | b ∈ C̃}is �nite. Therefore there exists a subsequene (cni
)i∈N suh that B̃R(cni

) is onstantin i and it an be hosen suh that B̃i(cnj
) = B̃i(cni

) for all i ≤ j. Thus, there is aunique aterpillar c ∈ C̃ suh that B̃i(c) = B̃i(cni
) for all i and cni

−→ c as i −→ ∞.
�Denote the open ball in C̃ entered on c0 and with radius r by

Br(c0) = {c ∈ C̃ | d̃(c0, c) < r}. (2.8)Proposition 2.1.2 For r > 0 and c0 ∈ C̃, the ball Br(c0) is both open and losed.Moreover, if c1 ∈ Br(c0) then Br(c1) = Br(c0).



20 Chapter 2 Caterpillars with a loal ationProof It is easy to see that open balls are losed sine the positive values of d̃ form adisrete set but the parameter r is ontinuous. To prove the seond statement hoosea c1 ∈ Br(c0) and a c2 ∈ Br(c1). Clearly, B̃R(c1) = B̃R(c0) and B̃R(c1) = B̃R(c2) forall R < 1/r so B̃R(c0) = B̃R(c2) for all R < 1/r. Therefore
d̃(c2, c0) ≤ inf

{

1

R

∣
∣
∣
∣
∣
B̃R(c2) = B̃R(c0), R < 1/r + 1

}

< r (2.9)and thus c2 ∈ Br(c0) whih shows that Br(c1) ⊆ Br(c0). With the same argumentone shows that Br(c0) ⊆ Br(c1) and therefore the equality is established.
�Proposition 2.1.3 The set C̃′ of �nite aterpillars is a ountable dense subset of C̃.Proof The set C̃′ is learly ountable sine it is a ountable union of �nite sets. Toprove that it is dense in C̃ take a c ∈ C̃. The sequene (B̃n(c)

)

n∈N

is in C̃′ andonverges to c.
�2.2 Critial point and the di�erent phasesDe�ne the �nite volume partition funtion with �xed distane ℓ between r1 and r2 as

ZN,ℓ =
∑

τ∈CN ,ℓ(τ)=ℓ

w(τ). (2.10)It is useful to work with the generating funtions
Z(ζ) =

∞∑

N=1

ZNζ
N (2.11)and

g(z) =
∞∑

n=0

wn+1z
n (2.12)with radii of onvergene ζ0 and ρ, respetively, both of whih we assume to benonzero. De�ne also

Zℓ(ζ) =

∞∑

N=1

ZN,ℓζ
N . (2.13)
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= ℓ− 1

i− 1

Zℓ(ζ)
∑∞

i=1 iζ
iwi−1

1 wi+1Zℓ−1(ζ)

ℓFigure 2.2: An illustration of the reursion (2.15).Then it is lear that
Z(ζ) =

∞∑

ℓ=1

Zℓ(ζ). (2.14)We have the reursion relation
Zℓ(ζ) = ζg′(w1ζ)Zℓ−1(ζ), (2.15)for any ℓ ≥ 2, see Fig. 2.2. Using the above equation and Z1(ζ) = ζ gives
Zℓ(ζ) = ζ

(

ζg′(w1ζ)
)ℓ−1 (2.16)and by (2.14)

Z(ζ) =
ζ

1 − ζg′(w1ζ)
. (2.17)From (2.17) we see that ζ0 is the smallest solution of the equation

ζg′(w1ζ) = 1 (2.18)on the interval (0, ρ/w1) if suh a solution exists. If it does not exist then ζ0 = ρ/w1.If ζ0 < ρ/w1 then g is analyti at w1ζ0 and we say that we have a generi ensemble.This has been alled the elongated or �uid phase by other authors [20℄. If ζ0 = ρ/w1we have a nongeneri ensemble. Notie that if ρ = ∞ then the ensemble is alwaysgeneri. For nongeneri ensembles we therefore have �nite ρ. In that ase we analways hoose ρ = 1 by saling the weights wn → wnρ
n−1. This saling does nota�et the probabilities (2.3).Now onsider weight fators with ρ = 1 and let w1 be a free parameter. The



22 Chapter 2 Caterpillars with a loal ationgeneriity ondition is then 1
w1
g′(1) > 1, i.e. w1 < wc where

wc ≡ g′(1) =

∞∑

n=2

(n− 1)wn (2.19)is a ritial value for w1. If w1 = wc we have a nongeneri ensemble whih we referto as ritial and if w1 > wc we have a nongeneri ensemble whih we refer to assubritial. This phase has been alled the ondensed phase in the literature [20℄. Inthe following subsetion we determine the asymptoti behavior as N −→ ∞ of the�nite volume partition funtions ZN for the di�erent phases.2.2.1 The generi phaseLet wn be weight fators with w1 6= 0 and wn 6= 0 for some n > 2 whih lead to ageneri ensemble.Lemma 2.2.1 Under the stated assumptions on the weight fators, the asymptotibehaviour of ZN is given by
ZN =

1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N
0 (1 +O(N−1)) (2.20)if the integers n > 0 for whih wn+1 6= 0 have no ommon divisors greater than 1.Otherwise, if their greatest ommon divisor is d ≥ 2, then

ZN =
d

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
ζ−N
0 (1 +O(N−1)) (2.21)if N = 1 mod d, and ZN = 0 otherwise.The proof of this Lemma is standard, f. [42℄, where the orresponding result forgeneri trees is established. We inlude it here for ompleteness.Proof First assume that gcd{n|n > 0, wn+1 6= 0} = 1. The funtion

f(ζ) = 1 − ζg′(w1ζ) (2.22)has a zero at ζ0. The multipliity of the zero is 1 sine it is easily seen that f ′(ζ0) 6= 0.We therefore see that Z has a simple pole at ζ0 and sine gcd{n|n > 0, wn+1 6= 0} = 1there is no other pole on the irle |ζ| = ζ0. By Taylor expanding g′(w1ζ) around
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w1ζ0 we get

Z(ζ) =
1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)

(
ζ

ζ0 − ζ

)

+O(ζ0 − ζ). (2.23)Now de�ne
h(ζ) = Z(ζ) − 1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)

(
ζ

ζ0 − ζ

) (2.24)and denote its radius of onvergene by R. The funtion h has no poles for |ζ| ≤ ζ0and therefore R > ζ0. We onlude that for any ǫ > 0 the oe�ients of h annotgrow faster than
[ζn]{h(ζ)} = O

(
1

R
+ ǫ

)n (2.25)for n large. Therefore,
ZN =

1

g′(w1ζ0) + ζ0w1g′′(w1ζ0)
[ζN ]

(
ζ

ζ0 − ζ

)

+O

(
1

R
+ ǫ

)N

. (2.26)The result follows by straightforward alulation of [ζN ]
(

ζ
ζ0−ζ

) and notiing that
O(ζ−N

0 /N) > O(1/R+ ǫ)N (2.27)for ǫ small enough.Now assume that d = gcd{n|n > 1, wn+1 6= 0} ≥ 2. Then the funtion g is of theform g(z) = g̃(zd) and therefore Z has d simple poles ζ0, ζ1, . . . , ζd−1 on the irle
|ζ| = ζ0, whih are the d'th roots of ζd

0 . We then de�ne
h(ζ) = Z(ζ) −

d−1∑

i=0

1

g′(w1ζi) + ζiw1g′′(w1ζi)

(
ζ

ζi − ζ

) (2.28)whih is analyti with radius of onvergene R > ζ0. We then get with the sameargument as above that
ZN =

d−1∑

i=0

1

g′(w1ζi) + ζiw1g′′(w1ζi)
ζ−N
i (1 +O(N−1))

=
1

ζ0g′(w1ζ0) + ζ2
0w1g′′(w1ζ0)

d−1∑

i=0

ζ−N+1
i (1 +O(N−1)) (2.29)where the latter equality follows from ζig

′(w1ζi) = ζ0g
′(w1ζ0) and
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ζ2
i g

′′(w1ζi) = ζ2
0g

′′(w1ζ0) for i = 0, . . . , d−1. The last sum equals dζ−N+1
0 if N−1 = 0mod d but is zero otherwise. This ompletes the proof.

�2.2.2 The subritial phaseWe take ρ = 1 and w1 > wc so that we are in the subritial phase. We study aonrete model of weights wi, i ≥ 2 where
wi = i−β(1 + o(1)) (2.30)and let w1 be a free parameter in the spei�ed range. Figure 2.3 shows the phasediagram of the aterpillars. A neessary ondition for being in the subritial phaseis β > 2 sine otherwise wc = ∞.Lemma 2.2.2 For the weights given in (2.30) and w1 > wc we have

ZN =
1

(w1 − wc)2
N1−βwN

1

(
1 + o(1)

) (2.31)as N −→ ∞.Proof We an write
ZN =

N∑

ℓ=1

ZN,ℓ. (2.32)

�
�
�

�
�
�

��
��
��
��

��
��
��
�� Subcritical

2

Generic

Critical

1w

βFigure 2.3: A diagram showing the di�erent phases of the aterpillars.



2.2 Critial point and the di�erent phases 25De�ne a sequene of funtions fN on the positive integers by
fN (ℓ) = w−N

1 Nβ−1ZN,ℓ = w−ℓ
1 Nβ−1

∑

N1+...+Nℓ−1=N−ℓ

ℓ−1∏

i=1

(Ni + 1)wNi+2. (2.33)We begin by showing that
lim

N−→∞
fN(ℓ) =

1

w2
c

(ℓ− 1)

(
wc

w1

)ℓ

≡ f(ℓ). (2.34)There is at least one index i in the sum de�ning fN (ℓ) suh that Ni ≥ N−ℓ
ℓ−1 . Ifthere is another index j 6= i suh that Nj > A where A > 1 is a onstant then we getan upper bound on that ontribution to fN(ℓ) of the form

w−ℓ
1 w−1

N N−1(ℓ− 1)2
∑

N1+...+Nl−1=N−ℓ

N1≥
N−ℓ
ℓ−1

N2>A

N1 + 1

(N1 + 2)
β

ℓ−1∏

i=2

(Ni + 1)wNi+2

≤ C(ℓ)
Nβ

(N + ℓ− 2)
β

∑

N3,...,Nℓ−1≥0

∑

N2>A

(N2 + 1)wN2+2

ℓ−1∏

i=3

(Ni + 1)wNi+2

≤ D(ℓ)wℓ−3
c

∑

N2>A

(N2 + 1)wN2+2 (2.35)where C(ℓ) and D(ℓ) are numbers whih only depend on ℓ. The last expression goesto zero as A −→ ∞ sine g′(1) is �nite. The remaining ontribution to fN (ℓ) is
w−ℓ

1 w−1
N N−1

ℓ−1∑

k=1

∑

N1+...Nℓ−1=N−ℓ

Nk≥
N−ℓ
ℓ−1

Nj≤A, j 6=k

ℓ−1∏

i=1

(Ni + 1)wNi+2

−−−−→
N→∞

w−ℓ
1 (ℓ− 1)

(
A∑

n=0

(n+ 1)wn+2

)ℓ−2

−−−−→
A→∞

w−2
c (ℓ− 1)

(
wc

w1

)ℓwhih proves (2.34).Note that fN (ℓ) = 0 if ℓ > N and therefore it is lear that fN (ℓ) is summable for



26 Chapter 2 Caterpillars with a loal ationevery N . We also see that f(ℓ) is summable sine w1 > wc. For ℓ ≤ N

fN (ℓ) = w−ℓ
1 Nβ−1

∑

N1+...+Nℓ−1=N−ℓ

ℓ−1∏

i=1

(Ni + 1)wNi+2

≤ Cw−ℓ
1 Nβ−1(ℓ− 1)

∑

N1+...+Nℓ−1=N−ℓ

N1≥
N−ℓ
ℓ−1

N1 + 1

(N1 + 2)β

ℓ−1∏

i=2

(Ni + 1)wNi+2

≤ C
1

w2
c

(
wc

w1

)ℓ
Nβ−1(N − 1)
(

N−ℓ
ℓ−1 + 2

)β
≤ C′(ℓ− 1)β

(
wc

w1

)ℓ (2.36)where C and C′ are positive onstants. The �rst inequality in (2.36) is obtained byobserving that at least one of the indies Ni must be larger than N−ℓ
ℓ−1 and in theseond one we used the de�nition of wc. It follows that the sequene (fN )

∞
N=1 isdominated by a summable funtion and we an alulate the limit

lim
N→∞

(
w−N

1 w−1
N N−1ZN

)
= lim

N→∞

∞∑

ℓ=1

fN (ℓ) =

∞∑

ℓ=1

f(ℓ) =
1

(w1 − wc)
2 . (2.37)This ompletes the proof.

�From the above lemma we obtain the following result
lim

N→∞

ZN,ℓ

ZN
= (ℓ− 1)

(

1 − w1

wc

)2 (wc

w1

)ℓ (2.38)whih indiates that with probability 1 the aterpillar has �nite length whih is expo-nentially distributed with a parameter wc/w1. If the length of an in�nite aterpillaris ℓ < ∞ it is lear that it has one or more verties of in�nite order. The inequal-ity (2.35) shows that there an be at most one vertex of in�nite order in the limit
N −→ ∞. We will state this observation more preisely in the next setion when weprove the onvergene of the measures ν̃N .2.2.3 The ritial lineWe take ρ = 1 and w1 = wc so that we are on the ritial line and hoose the weightsas in (2.30) where β > 2. We make the extra assumption that the generating funtion



2.3 Convergene of the �nite volume measures 27
Z is analyti in a domain

D(∆, φ, ζ0) = {ζ : |ζ| < ζ0 + ∆, φ/2 < Arg(ζ − ζ0) < 2π − φ/2, ζ 6= ζ0} (2.39)for some ∆ > 0 and some angle φ ∈ (0, π/2), and that
Z(ζ) ∼ (ζ0 − ζ)2−β (2.40)as ζ −→ ζ0 on D(∆, φ, ζ0). This ondition allows one to dedue the asymptotibehaviour of ZN , the oe�ients of Z, see [42, Setion VI. 3 pages 389-392℄ for adetailed explanation. The above ondition on the weights is not empty. For example,the expliit hoie

w1 = 1, w2 = 0 and wn =
(β − 2)Γβ−2(n− 2)

(n− 1)!
, n ≥ 3 (2.41)where Γγ(n) = (n− 1 − γ)(n − 2 − γ) · · · (2 − γ)(1 − γ), n ≥ 2 and Γγ(1) = 1 yields

wn ∼ n−β and
Z(ζ) =

ζ

1 − ζ(1 − (1 − ζ)β−2)
, (2.42)whih satis�es the above onditions for ζ0 = 1, any ∆ > 0 and any φ ∈ (0, π/2).We will enounter this partiular hoie of weights again at the end of Part II. Astraightforward appliation of [42, Corollary VI. 1℄ gives the following lemmaLemma 2.2.3 Choose branhing weights as in (2.30) with w1 = wc, suh that Z isanalyti in a domain D(∆, φ, ζ0) for some ∆ > 0,φ ∈ (0, π/2) and obeys

Z(ζ) ∼ (ζ0 − ζ)2−β (2.43)as ζ −→ ζ0 on D(∆, φ, ζ0). Then
ZN ∼ Nβ−3ζ−N

0 . (2.44)as N −→ ∞.2.3 Convergene of the �nite volume measuresIn this setion we prove that the measures ν̃N onverge weakly as N −→ ∞ to ameasure ν̃ and we give a omplete desription of ν̃ for di�erent phases of the model.



28 Chapter 2 Caterpillars with a loal ationTheorem 2.3.1 For the generi and nongeneri branhing weights in Lemmas 2.2.1�2.2.3, the measures ν̃N onverge weakly as N −→ ∞ to a probability measure ν̃onentrated on the set of in�nite aterpillars. If w1 ≤ wc, ν̃ is onentrated on theset of aterpillars of in�nite length and the degrees of the verties s1, s2, . . . on thespine are independently distributed by
φ(n) = ζ0(n− 1)wn(w1ζ0)

n−2, n ≥ 2. (2.45)If w1 > wc, ν̃ is onentrated on the set of aterpillars of �nite length with exatlyone vertex of in�nite degree. The length of the spine is distributed by
ψ(ℓ) = (ℓ− 1)

(

1 − w1

wc

)2(
wc

w1

)ℓ

. (2.46)All the verties between r1 and r2 are equally likely to be of in�nite degree and thedegree of the others are independently distributed by 1
φ(n) =

1

wc
(n− 1)wn. (2.47)Proof We de�ne a family of sets

U = {B 1
k
(c) | k ∈ N, c ∈ C̃′}. (2.48)From the properties of the metri spae (C̃, d̃) the family U learly satis�es (i)and (ii) in Setion 1.3.2 and sine (C̃, d̃) is ompat, tightness is automatially ful-�lled. It therefore only remains to prove property (iii). Choose a k ∈ N and a

c = (c1, c2, . . . , cℓ(c)−1) ∈ C̃′ and de�ne A = B 1
k
(c). Denote the set of indies

i ≤ min{k, ℓ(c) − 1} for whih ci < k by I and the set of indies i ≤ min{k, ℓ(c) − 1}suh that ci ≥ k by I. We onsider seperately the following ases.
w1 < wc: In this ase we are in the generi phase so w1ζ0 < ρ and ZN ∼ ζ−N

0f. Lemma 2.2.1. We assume that ℓ(c) ≥ k and if this onditions is not ful�lled weget a simple speial ase of the alulations below. The set A is then given by
A = {b ∈ C̃ | bi = ci if i ∈ I, bi ≥ k if i ∈ I, ℓ(b) ≥ k}. (2.49)Denote the number of elements in I by K. Now, order the indies in I in inreasingorder and for a given aterpillar in A let Ni, 1 ≤ i ≤ K be the term in the aterpillar1We use the same notation for the degree distribution as in the ase w1 ≤ wc.



2.3 Convergene of the �nite volume measures 29orresponding to the i�th index in I. We an then write
ν̃N (A) = Z−1

N W0

∑

N1+···+NK+M=N+k−c0
Nj≥k, ∀j

ZM

K∏

i=1

(Ni − 1)wNi
wNi−2

1 (2.50)where
W0 =

∏

i∈I

(ci − 1)wci
wci−2

1 and c0 =
∑

i∈I

ci. (2.51)First onsider the ontribution to the sum in (2.50) from terms for whih Ni ≥
(N + k − c0)/(K + 1) for some i = 1, . . . ,K. It an be estimated from above by

C sup{(Ni − 1)wNi
wNi−2

1 ζNi−2
0 | Ni ≥ (N + k − c0)/(K + 1)} (2.52)where C is a number independent of N . This learly onverges to zero as N −→ ∞sine w1ζ0 < ρ. The remaining ontribution to the sum is from terms where M ≥

(N + k − c0)/(K + 1). We then �nd that
ν̃N (A) −→ ζk

0

∏

i∈I

(ci − 1)wci
(w1ζ0)

ci−2

(
∞∑

i=k

(i− 1)wi(w1ζ0)
i−2

)K (2.53)as N −→ ∞. It is lear from the above alulations and the formula (2.53) that ν̃has the stated properties.
w1 = wc: In this ase w1ζ0 = ρ = 1 and ZN ∼ Nβ−3ζ−N

0 where β > 2, f. Lemma2.2.3. We proeed as in the generi ase up to Equation (2.52) whih is replaed bythe estimate
C sup{Z−1

N ζ−N
0 (Ni − 1)wNi

| Ni ≥ (N + k − c0)/(K + 1)} ∼ N2(2−β) (2.54)whih onverges to zero as N −→ ∞ sine β > 2. We then ontinue and get the result(2.53) as above.
w1 > wc: In this ase w1ζ0 = 1 and ZN ∼ N−β+1ζ−N

0 f. Lemma 2.2.2 where β > 2.First assume that ℓ(c) ≥ k as in the previous ases. Then Equation (2.50) ap-plies. However, the upper bound (2.52) no longer onverges to zero. We there-fore onsider the ontribution from terms for whih two di�erent numbers n1, n2 ∈
{N1, . . . , NK ,M} obey n1 ≥ (N + k − c0)/(K + 1) and n2 > J for some positive



30 Chapter 2 Caterpillars with a loal ationnumber J > k. As in (2.35), this ontribution is estimated from above by
C
∑

i>J

i−β+1 (2.55)where C is a positive number independent of N and J . This onverges to zero as
J −→ ∞ sine β > 2. The only remaining ontribution to ν̃N (A) is

Z−1
N W0

( K∑

i=1

∑

N1+···+NK+M=N+k−c0
k≤Nj≤J, j 6=i, M≤J

Ni≥k

ZM

K∏

j=1

(Nj − 1)wNj
w

Nj−2
1

+
∑

N1+···+NK+M=N+k−c0
k≤Nj≤J, ∀j

ZM

K∏

j=1

(Nj − 1)wNj
w

Nj−2
1

)

−−−−→
N→∞

W0ζ
−k+2K+c0
0

(

K(w1 − wc)
2

J∑

n=1

Znζ
n
0

( J∑

n=k

(n− 1)wn

)K−1

+
( J∑

n=k

(n− 1)wn

)K
)

−−−−→
J→∞

ζk
0

∏

i∈I

(ci − 1)wci

( ∞∑

n=k

(n− 1)wn

)K−1
(

K(w1 − wc) +
∞∑

n=k

(n− 1)wn

)

.(2.56)Now assume that ℓ(c) < k. Then with preisely the same alulation (with no ZMfator) one gets
ν̃N (A) −→ ζ

ℓ(c)
0

∏

i∈I

(ci − 1)wci

( ∞∑

n=k

(n− 1)wn

)K−1

K(w1 − wc)
2 (2.57)as N −→ ∞. From (2.57) one sees that ν̃ is onentrated on the set of aterpillarsof �nite length with the stated length distribution ψ. The estimate (2.55) shows thatthere appears preisely one vertex of in�nite degree on the spine and one an deduethe distribution of the degree of the others from (2.57).

�



2.4 Dimensions of the di�erent phases 312.4 Dimensions of the di�erent phasesThe generi phase is very simple and it is one dimensional for any sensible notion ofdimension. The same applies on the ritial line when g′′(1) < ∞. We state this inthe following theorem.Theorem 2.4.1 For the generi branhing weights in Lemma 2.2.1 and the ritialbranhing weights in Lemma 2.2.3 with β > 3, it holds that
d̄s = d̄H = 1 (2.58)and
ds = dH = 1 (2.59)almost surely.Proof We start by onsidering the Hausdor� dimension. For an in�nitely long ran-dom aterpillar c ∈ (C̃, ν̃), let (Xn(c))n be a sequene of random variables orre-sponding to the number of leaves attahed to the verties s1, s2, . . . of c. De�ne

SR(c) =
∑R

i=1Xi(c). Then |BR(c)| = SR−1(c) +R. From (2.45) it is lear that
〈|BR|〉ν̃ = (ζ0g

′′(w1ζ0) − 2)(R− 1) +R. (2.60)Sine g′′(w1ζ0) < ∞ it follows from (1.21) that the annealed Hausdor� dimension is
d̄H = 1. By the strong law of large numbers

|BR(c)|/R −→ ζ0g
′′(w1ζ0) − 1 <∞ (2.61)almost surely as R −→ ∞ whih shows that dH = 1 almost surely.Next we �nd the spetral dimension by establishing bounds on the return probabil-ity generating funtion. Let c be an in�nitely long aterpillar with the orrespondingreturn and �rst return generating funtions Qc(x) and Pc(x). We get an upper boundon Qc(x) by throwing away all the leaves from the spine. Then, by the monotoniityresults of [37℄ we �nd that

Qc(x) ≤ x−1/2 (2.62)whih shows that d̄s ≥ 1 and ds ≥ 1 almost surely. To get a lower bound on Qc(x) weuse a slight modi�ation of Lemma 7 in [38℄ whih is the following. For all integers
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R > 1 and 0 < x ≤ 1,

Pc(x) ≥ 1 − 1

R− 1
− x− x|BR(c)|. (2.63)We then get, using (1.15),

Qc(x) ≥
1

1
R−1 + x+ x|BR(c)| (2.64)and by Jensen's inequality

〈Qc(x)〉ν̃ ≥ 1
1

R−1 + x+ x〈|BR|〉ν̃
. (2.65)Choose R =

[
x−1/2

]. We �nd, using (2.60) and (2.65), that d̄s ≤ 1. Using (2.64) andthe fat that |BR(c)| ∼ R almost surely shows that ds ≤ 1 almost surely.
�Next we onsider a point on the ritial line where g′′(1) = ∞. We see straight awayfrom (2.60) that the annealed Hausdor� dimension is in�nite in this ase and Equation(2.65) provides no useful bound on the annealed spetral dimension. However we anobtain almost sure results on the dimensions.Theorem 2.4.2 For the ritial branhing weights in Lemma 2.2.3 with 2 < β ≤ 3,it holds that

dH =
1

β − 2
(2.66)almost surely.Proof To make the notation more ompat de�ne γ = β − 2. We prove a strongerstatement, namely that there exist onstants C1 and C2 and for ν̃�almost all ater-pillars c a onstant Rc > 0 suh that

C1(log(R)−1R)1/γ ≤ |BR(c)| ≤ (λ(R)R)1/γ (2.67)for all R ≥ Rc. Here, λ(R) an by any positive funtion with the property that
∞∑

R=1

1

Rλ(R)
<∞. (2.68)



2.4 Dimensions of the di�erent phases 33In partiular we an hoose λ(R) = (log(R))η for any η > 1 whih is su�ient toobtain the desired result. Let (Xn(c))n be the sequene of random variables de�nedin the proof of Theorem 2.4.1. Sine 1/γ ≥ 1 it is learly su�ient to prove theinequalities (2.67) for SR(c). Begin with the lower bound. Take κ, θ > 0. UsingMarkov's inequality and the independene of the Xi's we get
P(SR(c) < κ) = P

(
e−θSR > e−θκ

)
≤ eθκ

(

E

(

e−θXi(c)
))R

= eθκ
(
ζ0g

′(e−θ)
)R
.Taylor expanding g′(e−θ) around 1 yields

g′(e−θ) = g′(1) − (1 − e−θ)g′′(ξ) (2.69)for some number ξ ∈ (e−θ, 1). Sine g′′ is inreasing, it holds that g′′(ξ) > g′′(e−θ).Estimating g′′(e−θ) by an integral and using ζ0g′(1) = 1 yields
ζ0g

′(e−θ) ≤ 1 − C(1 − e−θ)γ ≤ e−C(1−e−θ)γ

= e−Cθγ(1+O(θ)) (2.70)where C is a onstant. Now hoose κ = K(log(R))−1/γR1/γ and θ = 1/κ. Then, for
R large enough

P(SR(c) < K(log(R))−1/γR1/γ) ≤ C3e
−CK−γ log(R) = C3R

−CK−γ (2.71)where C3 is a positive onstant. Choosing K = C1 small enough we see that
∞∑

R=1

P(SR(c) < C1(log(R))−1/γR1/γ) <∞ (2.72)and therefore, by the Borel�Cantelli lemma, there exists a onstant Rc suh that
SR(c) ≥ C1(log(R))−1/γR1/γ almost surely for all R ≥ Rc.The upper bound follows from [41, Theorem 2℄ whih states, for our purposes,that the probability of the event

SR(c) > aR, for in�nitely many R (2.73)is zero if the sum
∞∑

R=0

P(Xk ≥ aR) (2.74)



34 Chapter 2 Caterpillars with a loal ationonverges, where aR is a positive sequene with the property that aR/R −→ ∞ as
R −→ ∞. Now

P(Xk ≥ aR) ≤ C4a
−γ
R (2.75)for a suitable onstant C4. Choosing aR = (λ(R)R)1/γ , where λ(R) has the propertiesstated above, ompletes the proof.

�Theorem 2.4.3 For the ritial branhing weights in Lemma 2.2.3 with 2 < β ≤ 3,it holds that
ds =

2

β − 1
(2.76)almost surely.Proof Let c be an in�nitely long aterpillar. Equation (2.64) provides a lower boundon Qc(x) and Equation (6) in [38℄ provides an upper bound suh that

1
1

R−1 + x+ x|BR(c)| ≤ Qc(x) ≤ R+
2

x|BR(c)| . (2.77)Using (2.67) for a suitable hoie of λ(R) we get ν̃�almost surely the inequality
1

1
R−1 + x+ x(λ(R)R)1/(β−2)

≤ Qc(x) ≤ R+
2

xC1(log(R)−1R)1/(β−2)
(2.78)for all R ≥ Rc and Rc large enough. Choosing R = [x−

β−2
β−1 ] we �nd that there arenumbers K1(c) and K2(c) suh that ν̃�almost surely

K1(c)λ([x
− β−2

β−1 ])−1x−
β−2
β−1 ≤ Qc(x) ≤ K2(c) log([x−

β−2
β−1 ])x−

β−2
β−1 . (2.79)This yields the desired result.

�Theorem 2.3.1 implies that the Hausdor� dimension dH of a random aterpillarin the subritial phase is almost surely in�nite sine with probability one there is aball of �nite radius whih ontains in�nitely many verties. The annealed Hausdor�dimension is in�nite by the same argument. Similarly, the spetral dimension is almostsurely in�nite beause a random walk whih hits the in�nite order vertex returns tothe root with probability 0. From the analysis below one an easily hek that the



2.4 Dimensions of the di�erent phases 35return probability on a randomly hosen subritial aterpillar τ , pτ (t), deays fasterthan any power of t.In the remainder of this setion we show that, although the spetral dimension isalmost surely in�nite, the annealed spetral dimension is �nite.Theorem 2.4.4 For subritial aterpillars de�ned by the weight fators given in(2.30) with w1 > wc it holds that
d̄s = 2(β − 1). (2.80)Proof We will refer to the unique vertex of in�nite order as the trap. If the walkhits the trap it returns to the root with probability zero. Therefore, the part ofthe aterpillar beyond the trap is irrelevant for the random walk. When �nding thespetral dimension it is therefore natural to onsider the probability that the trap isat a distane ℓ from the root instead of onsidering the probability of the total lengthof the aterpillar given in (2.46).For a aterpillar of a given length, all the verties between r1 and r2 are equallylikely to be of in�nite order so the probability that the trap is at a distane ℓ fromroot is given by

p(ℓ) =

∞∑

k=ℓ+1

ψ(k)

k − 1
=
(

1 − wc

w1

)(wc

w1

)ℓ−1

. (2.81)From now on we will disregard the part of the aterpillar beyond the trap. Let Bℓ,kbe the set of aterpillars with distane ℓ between root and trap and whih have onevertex of order k and all other verties of order no greater than k, with the exeptionof the trap of ourse. Let a(k) be the probability that a given vertex on the spinebetween the root and the trap has order no greater than k. Then
a(k) =

k∑

q=2

φ(q). (2.82)The probability that at least one of these verties has order k and all the others haveorder no greater than k is then
c(k, ℓ) = a(k)ℓ−1 − a(k − 1)ℓ−1. (2.83)



36 Chapter 2 Caterpillars with a loal ationThe average return generating funtion for the subritial aterpillars is then
Q(x) =

∞∑

ℓ=1

p(ℓ)
∞∑

k=2

c(k, ℓ)
∑

τ∈Bℓ,k

ν̃({c | c ∈ Bℓ,k})Qτ (x). (2.84)For a given distane ℓ between root and trap we denote byMℓ the linear subgraphwhih starts at the root and ends at the trap, see Fig. 2.4. The �rst return generatingfuntion for Mℓ is given by
PMℓ

(x) = 1 −√
x

(1 +
√
x)ℓ + (1 −√

x)ℓ

(1 +
√
x)ℓ − (1 −√

x)ℓ
, (2.85)see e.g. [37℄. Now attah k − 2 links to eah vertex of the graph Mℓ exept the rootand the trap and denote the resulting graph by Mℓ,k, see Fig. 2.5. Then Mℓ,k is thelargest graph in the set Bℓ,k. Using the methods of [51℄ we �nd that the �rst returngenerating funtion for Mℓ,k is

PMℓ,k
(x) =

(

1 +
k − 2

2
x

)

PMℓ
(xk(x)) (2.86)where

xk(x) =
(k−2)2

4 x2 + (k − 1)x
(
1 + k−2

2 x
)2 . (2.87)To �nd an upper bound on the spetral dimension of subritial aterpillars weestablish a lower bound on the n-th derivative of the average return generating fun-tion. Let n be the smallest positive integer suh that Q(n)(x) diverges as x −→ 0. Wesee in the following alulations that we have to hoose n suh that n+1 < β ≤ n+2.By (1.15) we �nd that (−1)nQ

(n)
τ ≥ (−1)nP

(n)
τ for any τ . Thus, by di�erentiating(2.84) n times and throwing away every term in the sum over ℓ exept the ℓ = 2 term,
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�� *
ℓFigure 2.4: The graph Mℓ. The root is denoted by a irled vertex and the trap by anasterisk.



2.4 Dimensions of the di�erent phases 37we get the lower bound
(−1)nQ(n)(x) ≥ (−1)n

(

1 − wc

w1

)
wc

w1

∞∑

k=2

φ(k)P
(n)
M2,k

(x). (2.88)We easily �nd that
PM2,k

(x) =
1 − x

2 + (k − 2)x
(2.89)and show by indution that

P
(n)
M2,k

(x) = (−1)nn!
(k − 2)n−1k

(2 + (k − 2)x)n+1
. (2.90)Then, by (2.47) and (2.90),

(−1)n
∞∑

k=2

φ(k)P
(n)
M2,k

(x) =
n!

wc

∞∑

k=2

(k − 2)n−1k1−β(k − 1)

(2 + (k − 2)x)n+1

≥ Cxβ−n−2

∫ ∞

x

yn+1−β

(2 + y)n+1
dy (2.91)where C > 0 is a onstant. If β < n+ 2 the last integral is onvergent when x −→ 0but if β = n+ 2 it diverges logarithmially. In both ases we get an upper bound forthe annealed spetral dimension d̄s ≤ 2(β − 1).To �nd a lower bound on the spetral dimension of subritial aterpillars weestablish an upper bound on the n-th derivative of the average return generatingfuntion. First note that 1 > a(k) = a(k − 1) + φ(k) and therefore

c(k, ℓ) = (a(k) − a(k − 1))

×
(
a(k)ℓ−2 + a(k)ℓ−3a(k − 1) + . . .+ a(k)a(k − 1)ℓ−3 + a(k − 1)ℓ−2

)

≤ φ(k)(ℓ − 1). (2.92)
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Figure 2.5: The graph Mℓ,k.



38 Chapter 2 Caterpillars with a loal ationNow onsider a aterpillar τ ∈ Bℓ,k and the graphMℓ. Denote the verties on thespine of Mℓ between the root and the trap by s1, s2, . . . , sℓ−1. One an obtain thegraph τ from Mℓ by attahing mτ (si) links to si, i = 1, . . . , ℓ− 1 where 0 ≤ mτ (si) ≤
k − 2. Using the methods of [51℄ we an write

Qτ (x) =
∑

ω: r1−→r1on Mℓ

Kτ (x, ω)WMℓ
(ω)(1 − x)|ω|/2 (2.93)where the sum is over all random walks ω on Mℓ whih begin and end at the root,

Kτ (x, ω) =

|ω|−1
∏

t=1
ωt∈{s1,...,sℓ−1}

(

1 +
mτ (ωt)

2
x

)−1 and (2.94)
WMℓ

(ω) =

|ω|−1
∏

t=0

(σ(ωt))
−1. (2.95)The i�th derivative of the funtion Kτ (x, ω) an be estimated as

(−1)i d
i

dxi
K(x, ω) ≤ H(|ω|) (k − 2)i

(2 + (k − 2)x)i
(2.96)where H is a polynomial with positive oe�ients. From the relation (1.15) and theexpliit formula (2.85) one an easily see that (−1)iQ

(i)
Mℓ

(0) is a positive polynomialin ℓ of degree 2i+ 1. Therefore, di�erentiating (2.93) n times and using the estimate(2.96) we get the upper bound
(−1)nQ(n)

τ (x) ≤
n∑

i=0

Si(ℓ)
(k − 2)i

(2 + (k − 2)x)i
(2.97)where the Si are positive polynomials in ℓ. Di�erentiating (2.84) n times w.r.t. x andusing the estimates (2.92) and (2.97) we �nally obtain

(−1)nQ(n)(x) ≤
n∑

i=0

∞∑

ℓ=1

p(ℓ)Si(ℓ)(ℓ− 1)
∞∑

k=2

φ(k)
(k − 2)i

(2 + (k − 2)x)i
. (2.98)The sum over ℓ is onvergent sine Si is a polynomial in ℓ and p(ℓ) deays exponen-tially. The sum over k is estimated from above by an integral as in (2.91) whih yieldsa lower bound on the annealed spetral dimension d̄s ≥ 2(β − 1). This proves (2.80).

�



2.5 Generalization of the aterpillar model 392.5 Generalization of the aterpillar modelThe aterpillar model an be generalized to more ompliated tree models by replaingthe leaves on the spine by trees with verties of orders bounded by K, the aterpillarsorrespond to K = 1. We will not go into details of the alulations for this model,however using a similar analysis as for the aterpillars, one obtains two phases: a �uidphase (generi) and a ondensed phase (nongeneri), separated by a ritial value of
w1 given by

wc(K) = g′(1) −
K∑

n=2

wn. (2.99)In the �uid phase, the �nite volume probability measures onverge to a measureonentrated on trees with an in�nite spine with ritial Galton�Watson2 outgrowthsanalogous to the generi trees in [38℄. In the ondensed phase the measures onvergeto trees with spine of a �nite length ℓ distributed by
ψ(ℓ,K) = (ℓ− 1)

(

1 − w1

wc(K)

)2(
wc(K)

w1

)ℓ

. (2.100)Exatly one of the verties on the spine has in�nite degree and the order of otherverties is independently distributed by
φ(k,K) =

1

wc(K)
(k − 1)wk, k ≥ 2. (2.101)The distribution of the distane between the root and the vertex of in�nite degree isgiven by

p(ℓ,K) =

(

1 − wc(K)

w1

)(
wc(K)

w1

)ℓ−1

. (2.102)The outgrowths from the spine are independent subritial Galton�Watson trees witho�spring probabilities
pn(K) =

wn+1
∑K

n=1 wn

, 0 ≤ n ≤ K − 1. (2.103)As N −→ ∞ one �nds that the size of the large vertex is approximately (1−m(K))Nwith high probability, where m(K) < 1 is the mean o�spring probability of theGalton�Watson proess. What makes the alulations easy in the ondensed phase inthe above models is the fat that the large vertex whih emerges as N −→ ∞ has to2Galton�Watson proesses are de�ned in Setion 3.2.



40 Chapter 2 Caterpillars with a loal ationstay on the spine due to the restrition on the order of the verties in the outgrowths.When the uto� on the vertex orders is removed (K = ∞) one obtains the tree modelwhih is studied in the next hapter (with the di�erene that there are two markedverties in the present model). In this ase it is more di�ult to loate the largevertex and one has to use other methods in the alulations. It is tempting to simplylet K −→ ∞ in the above formulas to haraterize the K = ∞ model, on the otherhand it is not lear that interhanging the K −→ ∞ and N −→ ∞ limits is allowed.However the analysis in the next hapter shows that the above haraterization ofthe ondensed phase holds and one arrives at the same formulas as one would get bysimply taking K −→ ∞.



3Planar trees with a loalationIn this hapter we study an equilibrium statistial mehanial model of planar treeswith a loal ation. We start by de�ning the set of planar trees and endow it witha metri. We then introdue the model and show that it exhibits two phases, anelongated and a ondensed phase. The main results are the proof of the asymptotibehaviour of the �nite volume partition funtion in the ondensed phase. This resultis used to prove onvergene of the �nite volume measures to a measure on in�nitetrees. We onlude by alulating the annealed spetral dimension, with respet tothe in�nite volume measure, in the ondensed phase.3.1 Planar treesIn this setion we de�ne rooted planar trees and onstrut a metri on the set of allrooted planar trees. The de�nition resembles the one given in [35℄, however here wealso allow verties of in�nite degree. We inlude verties of in�nite degree sine theyappear in the ondensed phase of the random tree model in Setion 3.3. In words,the planarity ondition means that edges inident on a vertex are ordered. Whenthe degree of a vertex is in�nite one has many di�erent possibilities of ordering thelinks and therefore the planarity ondition must by arefully de�ned. The de�nitionsbelow take are of this point, the verties are allowed to have at most ountably41



42 Chapter 3 Planar trees with a loal ationin�nite degree and the edges are given the simplest possible ordering.We start by introduing a sequene of pairwise disjoint, ountable sets (DR)R≥0with the properties that if DR = ∅ then DS = ∅ for all S ≥ R. The sets D0 and D1are de�ned to have only a single element. The set DR will eventually denote the setof verties at a distane R from the root. To introdue the edges and the planarityondition, we de�ne orderings on eah of the sets DR and order preserving maps
φR : DR −→ DR−1, R ≥ 1 (3.1)whih satisfy the following: For eah vertex v ∈ DR−1 suh that |φ−1

R (v)| = ∞, thereexists an order isomorphism
ψv : N −→ φ−1

R (v)where N has the standard ordering. If |φ−1
R (v)| <∞ we de�ne the order isomorphism

ψv : {1, 2, . . . , |φ−1
R (v)|} −→ φ−1

R (v). One an show by indution on R that suhorderings on DR an be de�ned and that they are well�orderings. It is lear thatgiven the ordered sets DR, R ≥ 0 and the order preserving maps φR, R ≥ 1 with theabove properties, the maps ψv are unique.Let Γ̃ be the set of all pairs of sequenes {(D0, D1, D2, . . .), (φ1, φ2, . . .)} whihsatisfy the above onditions. De�ne an equivalene relation ∼ on Γ̃ by identifyingthe elements {(D0, D1, . . .), (φ1, φ2, . . .)} and {(D′
0, D

′
1, . . .), (φ

′
1, φ

′
2, . . .)} if and onlyif for all R ≥ 1 there exist order isomorphisms χR : DR −→ D′
R suh that φ′R =

χR−1 ◦ φR ◦ χ−1
R . De�ne Γ := Γ̃/ ∼. If τ ∈ Γ̃ we denote the equivalene lass of τ by

[τ ] and all it a rooted planar tree, f. Setion 1.3.1. As a graph, the tree has a vertexset
V =

∞⋃

R=0

DRand an edge set
E = {(v, φR(v)) | v ∈ DR, R ≥ 1}whih are independent of the representative {(D0, D1, . . .), (φ1, φ2, . . .)} up to graphisomorphisms. The single element in D0 is taken to be the root. In the following, allproperties of trees [τ ] ∈ Γ we are interested in are independent of representatives andwe write τ instead of [τ ]. Rather than always speifying the sequenes (D0, D1, D2, . . .)and (φ1, φ2, . . .), we will refer to the elements in Γ with a single Greek letter, usually

τ . We then write DR(τ), φR(·, τ) et. when we need more detailed information on τ .Note that sine the sets DR, D
′
R are well�ordered for all R ≥ 1 the order isomor-



3.1 Planar trees 43
ψv(1)

ψv(2)
ψv(3)

v

Towards rootFigure 3.1: The ordering of φ−1
R (v).phisms χR in the above de�nition are unique. When we draw the trees in the plane weuse the onvention that ψv(k) is the k-th vertex lokwise from the nearest neighbourof v losest to the root. See Figure 3.1.We de�ne the left ball of graph radius R, LR(τ) as the subtree of BR(τ) gen-erated by subsets ES ⊆ DS(BR(τ)), S = 1, ..., R suh that E0 = D0(BR(τ)),

E1 = D1(BR(τ)) and
ES = {ψv(i) | v ∈ ES−1, i = 1, 2, . . . ,min{R, σ(v)} − 1} (3.2)for S ≥ 2, see Fig. 3.2. It is easy to hek that for all τ ∈ Γ

|LR(τ)| ≤ (R− 1)R − 1

R− 2
. (3.3)We de�ne a metri d on Γ by

d(τ1, τ2) = inf

{
1

R

∣
∣
∣
∣
LR(τ1) = LR(τ2), R ∈ N

}

, τ1, τ2 ∈ Γ. (3.4)The metri used in [35,38℄, in the study of the generi phase, is de�ned in the same
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B3(τ)

L3(τ)

Figure 3.2: An example of the subgraphs BR(τ ) and LR(τ ).



44 Chapter 3 Planar trees with a loal ationway as d but the ball BR is used instead of LR. Trees whih are di�erent lose to theroot are always �far apart� in this metri and therefore it is only suitable to measuredistanes between trees of a large diameter whih have verties of �nite degree. Inthe new metri d however, trees an be lose to eah other if they do not di�er toomuh lose to the root.Denote the open ball in Γ entered at τ0 and with radius r by
Br(τ0) = {τ ∈ Γ | d(τ0, τ) < r}. (3.5)In the same way as in the previous hapter on the aterpillars we �nd that the metrispae (Γ, d) has the following properties.Proposition 3.1.1 The metri spae (Γ, d) is ompat.Proposition 3.1.2 For r > 0 and τ0 ∈ Γ, the ball Br(τ0) is both open and losed.Moreover, if τ1 ∈ Br(τ0) then Br(τ1) = Br(τ0).Proposition 3.1.3 The set Γ′ of �nite trees is a ountable dense subset of Γ.3.2 The modelLet wn, n ≥ 1 be a sequene of nonnegative numbers whih we all branhing weights.For tehnial onveniene we will always take

w1, w2 > 0 and wn > 0 for some n ≥ 3. (3.6)De�ne the �nite volume partition funtion
ZN =

∑

τ∈ΓN

∏

i∈V (τ)\{r}

wσ(i). (3.7)De�ne a probability distribution νN on ΓN by
νN (τ) = Z−1

N

∏

i∈V (τ)\{r}

wσ(i). (3.8)The weights wn, or alternatively the measures νN , de�ne a tree ensemble. Note that
νN is not a�eted by a resaling of the branhing weights of the form wn → wnab

n



3.2 The model 45
Z(ζ)ζ

=
∞∑

i=0

wi+1

Z(ζ)

Z(ζ)

Z(ζ)

iFigure 3.3: A diagram explaining the reursion (3.11). The root is indiated by a irledpoint.where a, b > 0. We introdue the generating funtions
Z(ζ) =

∞∑

N=1

ZNζ
N (3.9)and

g(z) =

∞∑

n=0

wn+1z
n. (3.10)Then we have the standard relation

Z(ζ) = ζg(Z(ζ)) (3.11)whih is explained in Fig. 3.3.Denote the radius of onvergene of Z(ζ) and g(z) by ζ0 and ρ respetively andde�ne Z0 = Z(ζ0). If Z0 < ρ then we say that we have a generi (elongated, �uid)ensemble of trees. Otherwise we say that we have a nongeneri ensemble. If ρ = ∞then we always have a generi ensemble. If ρ is �nite then we �x ρ = 1 by saling thebranhing weights wn → wnρ
n−1.There is an interesting and useful relation between the tree ensemble (ΓN , νN )and trees generated by the so alled Galton�Watson proess. The proess is de�nedin the following way. We start with a single anestor (in general there an be many)whih has n o�springs with probability pn where pn are nonnegative numbers and

∞∑

n=0

pn = 1. (3.12)



46 Chapter 3 Planar trees with a loal ationEah o�spring then has n o�springs itself independently with the same probabilities
pn and so on. For onveniene we add a root r to the Galton�Watson trees by linkinga vertex of order one to the anestor. The proess generates a probability measureon the set of all �nite trees

µ(τ) =
∏

i∈V (τ)\{r}

pσ(i)−1, where τ ∈ Γ′. (3.13)We de�ne a generating funtion for the o�spring probabilities
f(z) =

∞∑

n=0

pnz
n. (3.14)Galton�Watson proesses are usually divided into three ategories depending on thesize of the �rst moment of the generating funtion m = f ′(1). It is lear that mrepresents the mean number of o�springs of eah individual. If m > 1 the proessis said to be superritial and the probability that it survives forever is positive. If

m = 1 the proess is said to be ritial and it dies out eventually with probabilityone. If m < 1 the proess is said to be subritial and it dies out eventually withprobability one, muh faster than in the ritial ase.The probability distribution νN an be obtained from a Galton�Watson proesswith o�spring probabilities
pn = ζ0wn+1Zn−1

0 (3.15)by onditioning the trees to be of size N
νN (τ) =

µ(τ)

µ(ΓN )
. (3.16)The mean o�spring probability is then

m = Z0
g′(Z0)

g(Z0)
(3.17)whih we will show to be ≤ 1 by (3.11). Generi trees are always ritial and non-generi trees an be either ritial or subritial. We will now analyse this in moredetail. As mentioned above ρ = ∞ is always generi. Let us start with a set ofbranhing weights wn whih give ρ = 1. At this stage the model an be either generior nongeneri. We �x the values of wn for n ≥ 2 but for now we let w1 be a free



3.2 The model 47parameter of the model. De�ne
h(Z) ≡ g(Z)

Z . (3.18)From (3.11) we see that h(Z) = 1/ζ(Z) for Z ≤ Z0. Di�erentiating h we get
h′(Z) =

g(Z)

Z2

[

Z g
′(Z)

g(Z)
− 1

] (3.19)and again
h′′(Z) =

g′′(Z)

Z − 2

Z h
′(Z). (3.20)The generiity ondition an be interpreted as h having a quadrati minimum at

Z = Z0 < 1, see Fig. 3.4. This means thatm = Z0
g′(Z0)
g(Z0) = 1 showing that the generiphase orresponds to ritial Galton�Watson trees. This shows that given a Z0 < 1and the branhing weights wn, n ≥ 2, it must hold that w1 =

∑∞
n=2(n− 2)wnZn−1

0 .We an therefore make any model with ρ = 1 generi by hoosing
w1 <

∞∑

n=2

(n− 2)wn ≡ wc (3.21)where wc is a ritial value for w1 whih depends on wn for n ≥ 3. It is interestingto note that the ritial value is independent of w2. Also note that if wc = ∞, i.e. if
g′(z) diverges as z −→ 1, we always have a generi ensemble.The next possible senario is that h has a quadrati minimum at Z = Z0 = 1. Thishappens when w1 = wc or in other words when m = g′(1)

g(1) = 1. This is a nongeneri
(a)

h(Z)

ZZ0 ρ = 1

h(Z)

ZZ0 = ρ = 1

(b)

h(Z)

Z0 = ρ = 1 Z
(c)Figure 3.4: The three possible senarios. (a) Generi, ritial, w1 < wc.(b) Nongeneri, ritial, w1 = wc. () Nongeneri, subritial, w1 > wc.



48 Chapter 3 Planar trees with a loal ation
�
�
�

�
�
�

��
��
��
��

��
��
��
�� Subcritical

2

Generic

Critical

1w

βFigure 3.5: A diagram showing the possible phases of the trees. The ritial line is deter-mined by the equation w1 = wc.ensemble whih still orresponds to ritial Galton�Watson trees.Finally, by hoosing w1 > wc, h has no quadrati minimum and m = g′(1)
g(1) < 1. Inthis ase the trees are nongeneri and orrespond to subritial Galton�Watson trees.We will refer to this phase as the subritial nongeneri phase or the ondensed phase.3.3 Subritial nongeneri treesIn this setion we examine the subritial nongeneri phase and determine the asymp-toti behaviour of ZN . We �x a number β and for n ≥ 2 we �x the branhing weightssuh that

wn = n−β(1 + o(1)), n ≥ 2 (3.22)and for now w1 is a free parameter. In this ase ρ = 1. If β ≤ 2 then g′(1) = ∞ andtherefore we are in the generi phase for all values of w1. If β > 2 we an have anyone of the three ases disussed in the previous setion depending on the value of w1,see Fig. 3.5. Now hoose β > 2 and w1 > wc suh that
m =

g′(1)

g(1)
< 1, (3.23)meaning we are in the nongeneri, subritial phase. Then Z0 = ρ = 1 and we seefrom (3.11) that

ζ0 =
1

g(1)
. (3.24)The main result of this setion is the following.



3.3 Subritial nongeneri trees 49Theorem 3.3.1 For the branhing weights (3.22) whih satisfy (3.23) it holds that
ZN = (1 −m)−βN−βζ1−N

0 (1 + o(1)) . (3.25)To determine the large N behaviour of ZN we split it into the following sum
ZN = Z1,N + EN (3.26)where Z1,N is the ontribution to ZN from trees whih have exatly 1 vertex ofmaximum degree and EN is the ontribution to ZN from trees whih have ≥ 2 vertiesof maximum degree. The plan is to estimate these two terms separately and show thatfor largeN the main ontribution is from Z1,N . It will follow from the proof that largetrees, of sizeN , are most likely to have exatly one large vertex whih is approximatelyof degree (1−m)N . This will be stated more preisely in Setion 3.4. The argumentsused in the proof of Theorem 3.3.1 rely on a �trunation method� and some lassialresults from probability theory. We begin the proof by de�ning trunated versionsof the generating funtions introdued in the previous setion. Then we introduenotation from probability theory and state a few lemmas. In Subsetion 3.3.1 weanalyse the asymptoti behaviour of Z1,N and in Subsetion 3.3.2 we do the same for

EN .For the trunation method, we will need the following de�nitions. Let Li,N be the�nite volume partition funtion for trees of N edges whih have all verties of degree
≤ i and de�ne the funtions

Li(ζ) =
∞∑

N=1

Li,Nζ
N (3.27)and

ℓi(z) =

i−1∑

n=0

wn+1z
n. (3.28)We have the standard relation

Li(ζ) = ζℓi(Li(ζ)) (3.29)obtained in the same way as (3.11).



50 Chapter 3 Planar trees with a loal ationLet Yj,i,N be the �nite volume partition funtion for trees of N edges whih haveall verties of degree ≤ i and one marked (not weighted) vertex of degree one atdistane j from the root. De�ne
Yj,i(ζ) =

∞∑

N=1

Yj,i,Nζ
N (3.30)and

Yi(ζ) =

∞∑

j=1

Yj,i(ζ). (3.31)With generating funtion arguments we �nd that
Yj,i(ζ) = ζℓ′i(Li(ζ))Yj−1,i(ζ) (3.32)for j ≥ 2, see Fig. 3.6. Using Y1,i(ζ) = ζ this yields
Yj,i(ζ) = ζ

(

ζℓ′i(Li(ζ))
)j−1

, (3.33)and by summing over j we get
Yi(ζ) =

ζ

1 − ζℓ′i(Li(ζ))
. (3.34)

j

≤ i

≤ i
≤ i

≤ i
ζ Yj−1,i(ζ)

Li(ζ)

Li(ζ)

Yj,i(ζ)

=
i−1∑

k=0

k wk+1

≤ i k

Li(ζ)

j − 1

Figure 3.6: A diagram explaining (3.33). The marked vertex is indiated by ⊗. Theballoons whih inlude the �≤ i� are trees whih have verties of degree at most i. If thedegree of the nearest neighbour to the root is k + 1, there are k di�erent ways of plaing themarked vertex onto a balloon.



3.3 Subritial nongeneri trees 51It will be useful to formulate our problem in the language of probability theory.De�ne the probability generating funtions
fi(z) =

ℓi(z)

ℓi(1)
and f(z) =

g(z)

g(1)
. (3.35)Let X(i)

1 , X
(i)
2 , . . . be i.i.d. random variables whih have a probability generating fun-tion fi(z) i.e.

P(X
(i)
j = k) =

{

wk+1/ℓi(1) if 0 ≤ k ≤ i− 1,

0 if k > i− 1,
(3.36)and let X1, X2, . . . be i.i.d. random variables whih have a probability generatingfuntion f(z). De�ne

mi = E(X
(i)
j ), σ2

i = Var(X(i)
j ), S

(i)
N = X

(i)
1 + . . .+X

(i)
N (3.37)and

SN = X1 + . . .+XN . (3.38)Note that m = E(Xj) and from (3.23) we know that m < 1. Clearly mi −→ m as
i −→ ∞. We need the following lemmas, the �rst three deal with onvergene ratesin the weak law of large numbers.Lemma 3.3.2 For any ǫ > 0 and any s < β − 2 it holds that

lim
N→∞

Ns
P

(∣
∣
∣
∣

SN

N
−m

∣
∣
∣
∣
> ǫ

)

= 0. (3.39)Proof It is lear that E(|Xj |t) <∞ for all t < β−1. The result then follows diretlyfrom [60, Theorem 28, pg. 286℄.
�The next Lemma is a lassial result of Bennett [15℄.Lemma 3.3.3 (Bennett's inequality) If W1,W2, . . . are independent random vari-ables, E(Wj) = 0, Var(Wj) = σ2

W and Wj ≤ b a.s. for every j, where b and σW arepositive numbers, then for any ǫ > 0

P




1

N

N∑

j=1

Wj > ǫ



 ≤ exp

{

−η
[(

1 +
1

λ

)

log (1 + λ) − 1

]} (3.40)
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η =

Nǫ

b
and λ =

bǫ

σ2
W

. (3.41)Lemma 3.3.4 If i = O(Nγ) where γ < 1 then for any ǫ > 0 small enough thefollowing holds
P

(

S
(i)
N

N
−mi > ǫ

)

≤ exp
{
−CǫN1−γ

}
. (3.42)where C is a positive onstant.Proof This follows diretly from Bennett's inequality with Wj = X

(i)
j −mi. Then

σW = σi and we an take b = i sine X(i)
j < i almost surely. Now assume that

i = O(Nγ). Then
η = ǫO(N1−γ). (3.43)If β > 3 then σi <∞ and λ = O(Nγ) and the result follows. If 2 < β ≤ 3 then

σ2
i =

{

O(i3−β) if β < 3,

O(log(i)) if β = 3
(3.44)so λ −→ ∞ as N −→ ∞ whih ompletes the proof.

�In the following we will use Lagrange's inversion formula repeatedly [66, pg. 167℄. Weunderstand [zn] {f(z)} as the oe�ient of zn in the Taylor expansion of f about
z = 0.Lemma 3.3.5 (Lagrange's inversion formula) If h(z) is a formal power series in zand Li satis�es (3.29) then

[ζN ] {h(Li(ζ))} =
1

N
[zN−1]

{
h′(z)ℓi(z)

N
}
. (3.45)Applying the above to the funtion h(z) = zj we get

[ζN ]
{
Li(ζ)

j
}

=
j

N
[zN−j]

{
ℓi(z)

N
}
. (3.46)The following lemma will be helpful. We omit the proof sine it is trivial.
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≤ i

≤ i

≤ i

≤ i

≤ i

wi+1

{ }

Z1,N =
∑N−1

i=0 [ζN ]

Li(ζ)

Li(ζ)

Li(ζ)

Li(ζ)

Yi(ζ)

Figure 3.7: An illustration of Equation (3.47). The balloons whih inlude the �≤ i� aretrees whih have verties of degree at most i. There is thus preisely one vertex of maximumdegree i + 1.Lemma 3.3.6 If X ≥ 0 and Y are random variables then for any ǫ > 0

P (|X + Y | ≤ ǫ) ≥ P (X ≤ ǫ/2)P (|Y | ≤ ǫ/2)and
P (|X + Y | > ǫ) ≤ P (|Y | > ǫ/2) + P (X > ǫ/2) .3.3.1 Calulation of Z1,NUsing the lemmas in the previous subsetion we are ready to study the asymptotibehaviour of Z1,N . It is easy to see that

Z1,N =

N−1∑

i=0

wi+1[ζ
N ]
{
Yi(ζ)Li(ζ)

i
}
, (3.47)as is explained in Fig. 3.7. Combining Equations (3.29) and (3.34) one an use theLagrange inversion formula (3.45) for the funtion

hij(z) =
zj+1

ℓi(z) − zℓ′i(z)
(3.48)to get

[ζN ]
{
Yi(ζ)Li(ζ)

j
}

=
1

N
[zN−j−1]

{(

j + 1

ℓi(z) − zℓ′i(z)
+

z2ℓ′′i (z)

(ℓi(z) − zℓ′i(z))
2

)

ℓi(z)
N

}

.



54 Chapter 3 Planar trees with a loal ationNote that the left hand side is inreasing in i and therefore of ourse also the righthand side. This fat will be used repeatedly in the proof of Lemma 3.3.8. De�ne thefuntions
fi,1(z) =

ℓi(1) − ℓ′i(1)

ℓi(z) − zℓ′i(z)
(3.49)and

fi,2(z) =
z2ℓ′′i (z)

(ℓi(z) − zℓ′i(z))
2

(ℓi(1) − ℓ′i(1))2

ℓ′′i (1)
. (3.50)It is easy to hek that all derivatives of the funtions are positive for 0 ≤ z ≤ 1 andthat fi,1(1) = fi,2(1) = 1. We then de�ne X(i,1) and X(i,2) to be random variableshaving fi,1 and fi,2, respetively, as probability generating funtions. We will needthe following lemmaLemma 3.3.7 If i = O(N) as N −→ ∞ then for any ǫ > 01. P

(
X(i,1) ≥ ǫN

)
≤ C1N

2−β,2. ℓ′′N(1)P
(
X(i,2) ≥ ǫN

)
≤ C2

{

N3−β if β 6= 3,

log(N) if β = 3,where C1 and C2 are positive numbers whih in general depend on ǫ and β.Proof We use a weighted version of Chebyshev's inequality whih states that if X isa random variable and φ(x) > 0 for x > 0 is monotonially inreasing and E(φ(X))exists then
P (|X | ≥ t) ≤ E(φ(X))

φ(t)
. (3.51)First we prove ase (1). Choose φ(x) = x⌊β⌋ where ⌊·⌋ denotes the �oor funtion. Itis lear that f (n)

i,1 (1) < ∞ for all n and therefore E(φ(X(i,1))) < ∞. One an hekthat as i −→ ∞

E(φ(X(i,1))) = O(ℓ
(⌊β⌋+1)
i (1)) = O(i−β+⌊β⌋+2). (3.52)If i = O(N) as N −→ ∞ then by the Chebyshev inequality there exists a positiveonstant C suh that

P

(

X(i,1) ≥ ǫN
)

≤ C
N−β+⌊β⌋+2

(ǫN)⌊β⌋
= C

N2−β

ǫ⌊β⌋
. (3.53)



3.3 Subritial nongeneri trees 55In the proof of ase (2) �rst onsider the ase when 2 < β ≤ 3. Then
ℓ′′N(1) =

{

O(N3−β) if β 6= 3,

O(log(N)) if β = 3,
(3.54)as N −→ ∞ whih proves the laim. If β > 3 then ℓ′′N(1) is �nite when N −→ ∞ andthe proof is exatly the same as in ase (1).

�We are now ready to prove the main result of this subsetion.Lemma 3.3.8
Z1,N = (1 −m)−βN−βζ1−N

0 (1 + o(1)) . (3.55)Proof In this proof we let C,C1, C2, . . . denote positive numbers independent of Nwhose values may di�er between equations. De�ne
GN (a, b) = g(1)1−NNβ−1

∑

a≤n≤b

wN−n[zn]

{

ℓN−n−1(z)
N

×
(

N − n

ℓN−n−1(z) − zℓ′N−n−1(z)
+

z2ℓ′′N−n−1(z)

(ℓN−n−1(z) − zℓ′N−n−1(z))
2

)}

.(3.56)It follows that
NβζN−1

0 Z1,N = GN (0, N − 1). (3.57)Now hoose an ǫ > 0 small enough and a γ suh that 2/β < γ < 1 and split the aboveexpression into four terms
NβζN−1

0 Z1,N = GN (0, ⌊(m− ǫ)N⌋) +GN (⌊(m− ǫ)N⌋ + 1, ⌊(m+ ǫ)N⌋)
+ GN (⌊(m+ ǫ)N⌋ + 1, ⌊N −Nγ⌋) +GN (⌊N −Nγ⌋ + 1, N − 1).(3.58)We show that as N −→ ∞ and ǫ −→ 0 the seond term has a positive limit but theother terms onverge to zero. To make the notation more ompat de�ne

N+ = N − ⌊(m+ ǫ)N⌋ − 1 and N− = N − ⌊(m− ǫ)N⌋. (3.59)



56 Chapter 3 Planar trees with a loal ationThe �rst term in (3.58) an be estimated from above by
GN (0, ⌊(m− ǫ)N⌋)

≤
(
N

N−

)β−1 ⌊(m−ǫ)N⌋
∑

n=0

[zn]

{

f(z)N

(

C1fN,1(z) +
C2ℓ

′′
N (1)

N − n
fN,2(z)

)}

≤ C3P

(∣
∣
∣
∣

SN +X(N,1)

N
−m

∣
∣
∣
∣
> ǫ

)

+
C4ℓ

′′
N(1)

N
P

(∣
∣
∣
∣

SN +X(N,2)

N
−m

∣
∣
∣
∣
> ǫ

)

.(3.60)By Lemma 3.3.6 we have for i = 1, 2,

P

(∣
∣
∣
∣

SN +X(N,i)

N
−m

∣
∣
∣
∣
> ǫ

)

≤ P

(∣
∣
∣
∣

SN

N
−m

∣
∣
∣
∣
> ǫ/2

)

+ P

(

X(N,i) > Nǫ/2
)

. (3.61)This, ombined with Equation (3.54) and Lemmas 3.3.2 and 3.3.7, shows that the twoterms in (3.60) go to zero as N −→ ∞.The third term in (3.58) is estimated from above by
GN (⌊(m+ ǫ)N⌋ + 1, ⌊N −Nγ⌋) ≤

(
N

N − ⌊N −Nγ⌋

)β−1

×
⌊N−Nγ⌋
∑

n=⌊(m+ǫ)N⌋+1

[zn]

{

f(z)N

(

C1fN,1(z) +
C2ℓ

′′
N (1)

(N − ⌊N −Nγ⌋)fN,2(z)

)}

≤ C3N
(1−γ)(β−1)

P

(∣
∣
∣
∣

SN +X(N,1)

N
−m

∣
∣
∣
∣
> ǫ

)

+ C4N
(1−γ)(β−1)−γℓ′′N (1)P

(∣
∣
∣
∣

SN +X(N,2)

N
−m

∣
∣
∣
∣
> ǫ

)

. (3.62)Sine γ > 2/β it holds that (1−γ)(β−1) < β−2 and (1−γ)(β−1)−γ < β−3. Thenby (3.54), (3.61) and Lemmas 3.3.2 and 3.3.7 we see that last two terms onverge tozero as N −→ ∞.To estimate the fourth term of (3.58) from the above we �rst note that
[ζN ] {Yi(ζ)} = [ζN ]

{
∂

∂w1
Li(ζ)

}

≤ N

w1
[ζN ] {Li(ζ)} (3.63)



3.3 Subritial nongeneri trees 57and thus
GN (a, b) ≤ w−1

1 g(1)1−NNβ
∑

a≤n≤b

wN−n(N − n)[zn]
{
ℓN−n−1(z)

N
}
. (3.64)Using this for N large enough and ǫ small enough we get

GN (⌊N −Nγ⌋ + 1, N − 1) ≤ C1N
β

N−1∑

n=⌊N−Nγ⌋+1

[zn]
{
fN−⌊N−Nγ⌋(z)

N
}

≤ C1N
β
P

(

S
(N−⌊N−Nγ⌋)
N

N
−mN−⌊N−Nγ⌋ ≥ ǫ

)

≤ C1N
β exp

(
−C2ǫN

1−γ
) (3.65)where in the last step we used Lemma 3.3.4. The last expression onverges to zero as

N −→ ∞ sine γ < 1.Finally we show that the seond term in (3.58) has a nonzero ontribution as
N −→ ∞. By (3.22) we an hoose n large enough suh that

(1 − ǫ)n−β ≤ wn ≤ (1 + ǫ)n−β .We then get the upper bound
GN (⌊(m− ǫ)N⌋ + 1, ⌊(m+ ǫ)N⌋) ≤ (1 + ǫ)g(1)

(
N

N+

)β−1

×
(

1

ℓN(1) − ℓ′N (1)

⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN,1(z)f(z)N

}

+
ℓ′′N(1)

(ℓN (1) − ℓ′N(1))2N+

⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN,2(z)f(z)N

}

)

≤ (1 + ǫ)g(1)

(
N

N+

)β−1(
1

ℓN (1) − ℓ′N (1)
+

ℓ′′N(1)

(ℓN (1) − ℓ′N(1))2N+

)

−→ (1 + ǫ)(1 − (m+ ǫ))1−β

1 −m
(3.66)as N −→ ∞ by (3.54). In a similar way we get the lower bound
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GN (⌊(m− ǫ)N⌋ + 1, ⌊(m+ ǫ)N⌋) ≥ (1 − ǫ)g(1)

(
N

N−

)β−1(ℓN+(1)

g(1)

)N

×
(

1

ℓN+(1) − ℓ′N+
(1)

⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN+,1(z)fN+(z)N

}

+
ℓ′′N+

(1)

(ℓN+(1) − ℓ′N+
(1))2N−

⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN+,2(z)fN+(z)N

}

)

.(3.67)By (3.54) the seond term onverges to zero as N −→ ∞. Looking at the �rst termwe �nd that
(1 − ǫ)g(1)

ℓN+(1) − ℓ′N+
(1)

(
N

N−

)β−1

−→ (1 − ǫ)(1 − (m− ǫ))1−β

1 −m
(3.68)as N −→ ∞ and

(
ℓN+(1)

g(1)

)N

=



1 − 1

g(1)

∞∑

n=N+

wn+1





N

=
(
1 +O(N−β+1)

)N −→ 1 (3.69)as N −→ ∞ sine β > 2. Finally we have for N large enough
⌊(m+ǫ)N⌋
∑

n=⌊(m−ǫ)N⌋+1

[zn]
{
fN+,1(z)fN+(z)N

}
= P

(∣
∣
∣
∣
∣

S
(N+)
N +X(N+,1)

N
−m

∣
∣
∣
∣
∣
≤ ǫ

)

≥ P

(∣
∣
∣
∣
∣

S
(N+)
N +X(N+,1)

N
−mN+

∣
∣
∣
∣
∣
≤ ǫ/2

)

≥ P

(∣
∣
∣
∣
∣

S
(N+)
N

N
−mN+

∣
∣
∣
∣
∣
≤ ǫ/4

)

P

(

X(N+,1) ≤ Nǫ/4
)

≥
(

1 −
σ2

N+

N (ǫ/4)
2

)

(
1 − CN2−β

) (3.70)where in the seond last step we used Lemma 3.3.6 and in the last step we usedChebyshev's inequality and Lemma 3.3.7. It is lear from (3.44) that σ2
N+
/N −→ 0as N −→ ∞ and therefore the last expression onverges to 1.



3.3 Subritial nongeneri trees 59From the above estimates (3.60), (3.62) and (3.65�3.70) we �nd that
(1 − ǫ) (1 − (m− ǫ))1−β

1 −m
≤ lim inf

N→∞
NβζN−1

0 Z1,N

≤ lim sup
N→∞

NβζN−1
0 Z1,N ≤ (1 + ǫ) (1 − (m+ ǫ))

1−β

1 −m
.Sine this holds for all ǫ > 0 small enough, the limit exists and

lim
N→∞

NβζN−1
0 Z1,N = (1 −m)−β (3.71)whih ompletes the proof.

�3.3.2 An estimate of ENWe now estimate EN , the remaining ontribution to ZN . Note that Li+1(ζ) − Li(ζ)is the grand anonial partition funtion for trees whih have at least one vertex ofdegree i + 1 and no vertex of degree greater than i + 1. Consider a tree whih hasat least 2 verties of max degree i + 1. Denote the two max degree verties losestto the root and seond losest to the root by s1 and s2 respetively. They are notneessarily unique but for the following purpose we an hoose any we like. Denotethe path from the root to s2 by (r, s2). We an write
(a) (b)

r s1

s2

r

deg = j + 1

s2

s1

Figure 3.8: (a) The ase when s1 /∈ (r, s2). At least two balloons attahed to the vertexof degree j + 1 (exluding the rooted one) indiated in the �gure have to have at least onevertex of degree i+1, namely s1 and s2. (b) The ase when s1 ∈ (r, s2). At least one balloonattahed to the vertex s1 (exluding the rooted one) has to have at least one vertex of degree
i + 1 , namely s2.
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EN =

⌊N+1
2 ⌋−1
∑

i=0

(
i−1∑

j=0

wj+1[ζ
N ]







Yi(ζ)

j
∑

n=2

(
j

n

)

(Li+1(ζ) − Li(ζ))
n

︸ ︷︷ ︸

s1 and s2 in here Li(ζ)
j−n







+ wi+1
︸︷︷︸

s1

[ζN ]







Yi(ζ)

i∑

n=1

(
i

n

)

(Li+1(ζ) − Li(ζ))
n

︸ ︷︷ ︸

s2 in here Li(ζ)
i−n







)

.(3.72)The outermost sum is over all possible max degrees. The �rst term in the braketstakes are of the ase when s1 /∈ (r, s2). Then j + 1 is the degree of the vertex where
(r, s1) and (r, s2) start to di�er. At least two of the subtrees attahed to this vertex(exluding the rooted one) have to have at least one vertex of degree i+1. See Figure3.8 (a). The seond term in the brakets takes are of the ase when s1 ∈ (r, s2).At least one of the subtrees attahed to s1 (exluding the rooted one) has to have atleast one vertex of degree i+ 1. See Figure 3.8 (b).Lemma 3.3.9

[ζN ] {Li+1(ζ) − Li(ζ)} ≤ wi+1N

i
[ζN ]

{
ζLi+1(ζ)

i
}
. (3.73)Proof Use the Lagrange inversion theorem to obtain

[ζN ] {Li+1(ζ) − Li(ζ)} =
1

N
[zN−1]

{
ℓi+1(z)

N − ℓi(z)
N
}

=
1

N
[zN−1]

{

(ℓi+1(z) − ℓi(z))
∑

N1+N2=N−1

ℓi+1(z)
N1ℓi(z)

N2

}

≤ wi+1[z
N−i−1]

{
ℓi+1(z)

N−1
}Now use the Lagrange inversion theorem the opposite way to obtain the result.

�Lemma 3.3.10
EN ≤ 2N2

N−1∑

i=0

w2
i+1[ζ

N−1]
{
Yi+1(ζ)Li+1(ζ)

2i−1
}
. (3.74)
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j
∑

n=2

(
j

n

)

(Li+1(ζ) − Li(ζ))
n Li(ζ)

j−n

= Li+1(ζ)
j − Li(ζ)

j − j(Li+1(ζ) − Li(ζ)Li(ζ)
j−1

= (Li+1(ζ) − Li(ζ))




∑

j1+j2=j−1

Li+1(ζ)
j1Li(ζ)

j2 − jLi(ζ)
j−1





≤ j(Li+1(ζ) − Li(ζ))
(
Li+1(ζ)

j−1 − Li(ζ)
j−1
)

= j(Li+1(ζ) − Li(ζ))
2

∑

j1+j2=j−2

Li+1(ζ)
j1Li(ζ)

j2

≤ j(j − 1)(Li+1(ζ) − Li(ζ))
2Li+1(ζ)

j−2.It is also lear that the above inequality holds inside [ζN ] {·} brakets. Therefore thesum over j in (3.72) is estimated from above by
i−1∑

j=0

wj+1[ζ
N ]

{

Yi(ζ)

j
∑

n=2

(
j

n

)

(Li+1(ζ) − Li(ζ))
n Li(ζ)

j−n

}

≤ [ζN ]
{
Yi(ζ)(Li+1(ζ) − Li(ζ))

2ℓ′′i (Li+1(ζ))
}
.Now use Lemma 3.3.9 to get

[ζN ]
{
Yi(ζ)(Li+1(ζ) − Li(ζ))

2ℓ′′i (Li+1(ζ))
}

=
∑

N1+N2+N3=N

[ζN1 ] {Yi(ζ)ℓ
′′
i (Li+1(ζ))} [ζN2 ] {Li+1(ζ) − Li(ζ)} [ζN3 ] {Li+1(ζ) − Li(ζ)}

≤ w2
i+1

i2
N2

∑

N1+N2+N3=N

[ζN1 ] {Yi(ζ)ℓ
′′
i (Li+1(ζ))} [ζN2 ]

{
ζLi+1(ζ)

i
}

[ζN3 ]
{
ζLi+1(ζ)

i
}

=
w2

i+1

i2
N2[ζN ]

{
ζ2Yi(ζ)ℓ

′′
i (Li+1(ζ))Li+1(ζ)

2i
}
.Observe that

ζℓ′′i (Li+1(ζ))Li+1(ζ)

i2
≤ ζℓi+1(Li+1(ζ))

Li+1(ζ)
= 1 (3.75)where the last equality follows from (3.29). Combining the above results we get theestimate
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i−1∑

j=0

wj+1[ζ
N ]

{

Yi(ζ)

j
∑

n=2

(
j

n

)

(Li+1(ζ) − Li(ζ))
n Li(ζ)

j−n

}

≤ w2
i+1N

2[ζN−1]
{
Yi+1(ζ)Li+1(ζ)

2i−1
}
.We get preisely the same estimate for the term in the seond line in (3.72) (thealulations are even simpler) exept that it is of order N smaller and the resultfollows.

�The above lemma gives us the following resultLemma 3.3.11
NβζN

0 EN −→ 0 as N −→ ∞. (3.76)Proof By Lemma 3.3.10
NβζN

0 EN ≤ 2Nβ+2ζN
0

⌊N+1
2 ⌋−1
∑

i=0

w2
i+1[ζ

N−1]
{
Yi+1(ζ)Li+1(ζ)

2i−1
}
. (3.77)The sum on the right hand side has the same form as Z1,N with β replaed by 2β,f. Equation (3.47). Equation (3.55), whih desribes the asymptoti behaviour of

Z1,N , an therefore be applied to show that the right hand side is o(N2−β). Sine
β > 2, this onverges to zero as N −→ ∞.

�Combining Lemmas 3.3.8 and 3.3.11 ompletes the proof of Theorem 3.3.1.3.3.3 Generalization of ZNFor tehnial reasons whih are relevant in the next setion, we need to generalize thesequene ZN in the following way. In a tree τ , denote the unique nearest neighbourto the root r by s. De�ne
Z

(R)
N =

∑

τ∈ΓN

wσ(s)+R−1

∏

i∈V (τ)\{r,s}

wσ(i). (3.78)



3.3 Subritial nongeneri trees 63In analogy with (3.9) and (3.10), de�ne the generating funtions
Z(ζ, R) =

∞∑

N=1

Z
(R)
N ζN (3.79)and

gR(z) =

∞∑

n=0

wn+Rz
n. (3.80)Clearly ZN = Z

(1)
N ,Z(ζ) = Z(ζ, 1) and g(z) = g1(z). With the same arguments asfor (3.11) we �nd the relation

Z(ζ, R) = ζgR(Z(ζ)). (3.81)Let Z0,R = Z(ζ0, R). The following lemma is a generalization of Theorem 3.3.1.Lemma 3.3.12 For the branhing weights (3.22) whih satisfy (3.23) it holds that
Z

(R)
N =

(

1 −m+
g′R(1)

g(1)

)

(1 −m)−βN−βζ1−N
0 (1 + o(1)) . (3.82)Proof We write

Z
(R)
N = Z

(R)
1,N + E

(R)
N (3.83)in analogy with (3.26). One an show with the same methods as in the previoussubsetion that limN→∞E

(R)
N /ZN = 0. Therefore we fous on the term Z

(R)
1,N , theontribution from trees for whih there is exatly one vertex of maximum degree. Wesplit this term into the ase when the maximum degree vertex is the next neighbourof the root and when it is not. We an then write

Z
(R)
1,N =

N−1∑

i=0

wi+R[ζN ]
{
ζLi(ζ)

i
}

+

N−2∑

i=0

wi+1[ζ
N ]
{
ζℓ′i,R(Li(ζ))Yi(ζ)Li(ζ)

i
}(3.84)where we de�ned

ℓi,R(z) =

i−1∑

n=0

wn+Rz
n. (3.85)Let

h(z) =
zi+1

ℓi(z)
(3.86)
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k(z) =

ℓ′i,R(z)zi+2

ℓi(z) (ℓi(z) − zℓ′i(z))
. (3.87)Using the Lagrange inversion formula for the funtions h and k we �nd that

[ζN ]
{
ζLi(ζ)

i
}

=
1

N
[zN−i−1]

{(
i+ 1

ℓi(z)
− zℓ′i(z)

ℓi(z)2

)

ℓi(z)
N

} (3.88)and
[ζN ]

{
ζℓ′i,R(Li(ζ))Yi(ζ)Li(ζ)

i
}

=
1

N
[zN−i−2]

{(

(i+ 2)ℓ′i,R(z)

ℓi(z)(ℓi(z) − zℓ′i(z))

+ z
d

dz

(

ℓ′i,R(z)

ℓi(z)(ℓi(z) − zℓ′i(z))

))

ℓi(z)
N

}

.(3.89)We now use exatly the same arguments as in the proof of Lemma 3.3.8 to evaluatethe asymptoti behaviour of (3.84). One an show that the ontribution from theseond term in the urly brakets in (3.88) and (3.89) is negligible. Then one anshow that for any ǫ > 0

lim inf
N→∞

NβζN−1
0 Z

(R)
1,N ≥ (1 − ǫ) (1 − (m− ǫ))

1−β

(

1 +
g′R(1)

g(1) − g′(1)

)and
lim sup
N→∞

NβζN−1
0 Z

(R)
1,N ≤ (1 + ǫ) (1 − (m+ ǫ))1−β

(

1 +
g′R(1)

g(1) − g′(1)

)

.Sine this holds for all ǫ > 0 the result follows.
�3.4 Properties of the �nite volume measuresIn this setion we study some properties of the measures νN for the three di�erentsenarios disussed in Setion 3.2. We let m denote the mean o�spring probabilityde�ned in (3.17). The three ases are the generi, ritial ase (w1 < wc, m = 1),the nongeneri, ritial ase (w1 = wc, m = 1) and the nongeneri, subritial ase(w1 > wc, m < 1).



3.4 Properties of the �nite volume measures 65All results stated for generi trees are already known [38℄ but are rederived herein a slightly di�erent way. In the generi ase, Equation (3.11) an be solved for
Z(ζ) lose to the ritial point ζ0 and one an then �nd the asymptoti behaviour of
ZN , the oe�ients of Z(ζ), see [58, Theorem 3.1℄ 1. In the nongeneri ritial ase,the funtion Z(ζ) has the same ritial behaviour as in the generi ase as long as
g′′(1) <∞, see [50, Lemma A.2℄. With the same arguments as in [42,50℄ one gets thefollowing result for Z(R)

N .Lemma 3.4.1 Under the stated assumption on the branhing weights (3.6) and as-suming that m = 1 and g′′(Z0) <∞ it holds that
Z

(R)
N =

√

g(Z0)

2πg′′(Z0)
ζ0g

′
R(Z0)N

−3/2ζ−N
0 (1 + o(1)) . (3.90)In partiular [50,58℄

ZN =

√

g(Z0)

2πg′′(Z0)
N−3/2ζ−N

0 (1 + o(1)) . (3.91)An analogous result for the asymptoti behaviour of ZN , for a speial hoie ofbranhing weights orresponding to nongeneri, ritial trees with g′′(1) = ∞, isstated in [42, VI.18 and VI.19, page 407℄. A generalization to Z(R)
N is straightforwardand is given in the next lemma.Lemma 3.4.2 For the nongeneri, ritial branhing weights de�ned by (3.22), with

2 < β < 3 and w1 = wc the following holds
Z

(R)
N = Cζ0g

′
R(1)N− β

β−1 ζ−N
0 (1 + o(1)) (3.92)where C > 0 is a onstant.We now prove that the measures νN onverge for a ertain type of asymptotibehaviour of Z(R)

N and haraterize their limit.Theorem 3.4.3 If
Z

(R)
N = C (1 −m+ ζ0g

′
R(Z0))N

−δζ−N
0 (1 + o(1)) (3.93)1See also [42, Theorem VI.6, page 404 ℄.



66 Chapter 3 Planar trees with a loal ationwhere C is a positive onstant and δ > 1, then the measures νN onverge weakly, as
N −→ ∞, to a probability measure ν whih has the following properties:

• If m = 1, ν is onentrated on the set of trees with exatly one in�nite spinehaving �nite, independent, ritial Galton�Watson outgrowths de�ned by theo�spring probabilities in (3.15). The numbers i and j of left and right outgrowthsfrom a vertex on the spine are independently distributed by
φ(i, j) =

1

m
ζ0wi+j+2Zi+j

0 . (3.94)
• If m < 1, ν is onentrated on the set of trees with exatly one vertex of in�nitedegree whih we denote by t. The length ℓ of the path (r, t) is distributed by

ψ(ℓ) = (1 −m)mℓ−1. (3.95)The outgrowths from the path (r, t) are �nite, independent, subritial Galton�Watson trees de�ned by the o�spring probabilities in (3.15). The numbers i and
j of left and right outgrowths from a vertex v ∈ (r, t), v 6= t are independentlydistributed by (3.94).Proof First we prove existene of ν. Sine the metri spae (Γ, d) has the propertiesstated in Propositions (3.1.2�3.1.3) it is enough, as was explained in Setion 1.3.2, toshow that for any k ∈ N and τ ′ ∈ Γ′ the probabilities

νN

(

B 1
k

(τ ′)
) (3.96)onverge as N −→ ∞. The ball in (3.96) an be written as

B 1
k

(τ ′) = {τ ∈ Γ | LR(τ) = τ0} (3.97)for some R where τ0 = LR(τ ′). Denote the number of verties in τ0 of degree R by
S and the number of verties in τ0 at distane R from the root by T . It is lear that
S + T ≥ 0.We an now write

νN ({τ ∈ Γ | LR(τ) = τ0}) =

Z−1
N W0

∑

N1+...+NS+T =N−|τ0|+T+S

S∏

i=1

Z
(R)
Ni

S+T∏

j=S+1

ZNj
(3.98)
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ZN3

ZN5

ZN4

Z
(R)
N2

τ0

Z
(R)
N1

Figure 3.9: An example of the set (3.97) where R = 4, S = 2 and T = 3. When onditioningon trees of size N one attahes the weights Z
(R)
Ni

, i = 1 . . . S and ZNj , j = S + 1 . . . S + T asindiated in the �gure.where
W0 =

∏

v∈V (τ0)\{r}
σ(v),|(r,v)|6=R

wσ(v) (3.99)is the weight of the tree τ0 (apart from the verties whih are expliitly exluded), and
|(r, v)| denotes the length of the path (r, v), see Fig. 3.9. For one of the indies k ineah term of the above sum it holds thatNk ≥ N−|τ0|+S+T

S+T . Consider the ontributionfrom terms for whih Nn > A for some other index n 6= k and A > 0. The indies nand k an belong to either one of the sets {1, . . . , S} or {S + 1, . . . , S + T }, in totalfour possibilities. First assume that S ≥ 2 and n, k ∈ {1, . . . , S}. Using (3.93), thisontribution an be estimated from above by
C1ζ

N
0 ZNS

2
∑

N1+...+NS+T =N−|τ0|+T+S

N1≥
N−|τ0|+S+T

S+T
, N2>A

Z
(R)
N1

ζN1
0

S∏

i=2

Z
(R)
Ni

ζNi

0

S+T∏

j=S+1

ZNj
ζ

Nj

0

≤ C2

(
(S + T )N

N − |τ0| + T + S

)δ ∑

N3,...,NS+T≥1
N2>A

S∏

i=2

Z
(R)
Ni

ζNi

0

S+T∏

j=S+1

ZNj
ζ

Nj

0

≤ C3ZS−2
0,R ZT

0

∑

N2>A

N−δ
2 ≤ C4A

1−δwhere C1, C2, C3 and C4 are positive numbers independent of N and A. Exatly



68 Chapter 3 Planar trees with a loal ationthe same upper bound is obtained, up to a onstant, for the other possible values of
k and n. The last expression goes to zero as A −→ ∞ sine δ > 1. The remainingontribution to the probability (3.98) is then

S+T∑

k=1

Z−1
N W0

∑

N1+...+NS+T =N−|τ0|+T+S
Nn≤A, n6=k

S∏

i=1

Z
(R)
Ni

S+T∏

j=S+1

ZNj

−−−−→
N→∞

W0ζ
|τ0|−S−T
0

(

S(1 −m+ ζ0g
′
R(Z0))

(
A∑

n=1

Z(R)
n ζn

0

)S−1( A∑

n=1

Znζ
n
0

)T

+ T

(
A∑

n=1

Z(R)
n ζn

0

)S ( A∑

n=1

Znζ
n
0

)T−1)

−−−−→
A→∞

W0ζ
|τ0|−S−T
0

(

S(1 −m+ ζ0g
′
R(Z0))ZS−1

0,R ZT
0 + TZS

0,RZT−1
0

)

. (3.100)This ompletes the proof of the existene of ν. We now haraterize ν separately forthe ases m = 1 and m < 1.
m = 1: Let AR be the set of all trees whih have a path (r, sR) of length R, exatlyone possibly in�nite tree attahed to sR and all other trees attahed to (r, sR) �nite,see Fig. 3.10. Using (3.100) one �nds that

ν(AR) = 1 (3.101)for all R and therefore by taking R to in�nity one �nds that ν is onentrated on treeswith exatly one spine having �nite outgrowths. The distribution of the outgrowthsfollows from (3.100).
m < 1: Let AR,ℓ be the set of all trees whih have a path (r, t) of length ℓ where
σ(t) ≥ R. Furthermore, the trees attahed to t in the the R�th, R+1�st, . . . position
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Figure 3.10: An illustration of the set AR.
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Figure 3.11: An illustration of the set AR,ℓ.lokwise from (r, t) are possibly in�nite but all other outgrowths from (r, t) are �nite,see Fig. 3.11. Using (3.100) one �nds that
ν(AR,ℓ) =

(

1 −m+
g′R(1)

g(1)

)

mℓ−1. (3.102)The sets AR,ℓ are dereasing in R so taking R to in�nity in (3.102) one �nds, by themonotone onvergene theorem, that the probability of exatly one vertex having anin�nite degree and being at a distane ℓ from the root is (1−m)mℓ−1. Summing thisover ℓ gives 1 whih shows that the measure is onentrated on trees with exatly onevertex of in�nite degree. The distribution of the outgrowths follows from (3.100).
�Theorem 3.4.4 Theorem 3.4.3 applies to the generi, ritial ensemble in Lemma3.4.1, the nongeneri, ritial ensemble in Lemma 3.4.2 and the nongeneri, subrit-ial ensembles de�ned by (3.22) and (3.23).Proof This follows from Lemmas 3.3.12, 3.4.1 and 3.4.2 sine (3.93) holds with

δ =







3/2 generi, and nongeneri ritial with g′′(1) <∞
β/(β − 1) nongeneri ritial with 2 < β < 3

β nongeneri subritial. (3.103)
�The next result onerns the size of the large vertex, in �nite trees, whih arisesin the nongeneri, subritial phase.Theorem 3.4.5 Consider the nongeneri branhing weights de�ned by (3.22) and(3.23). Let CN,ǫ be the event that a tree in ΓN has exatly one vertex of maximum



70 Chapter 3 Planar trees with a loal ationdegree σmax and (1 −m− ǫ)N ≤ σmax ≤ (1 −m+ ǫ)N . For any ǫ, δ > 0 there existsan N0 ∈ N suh that
νN (CN,ǫ) > 1 − δ (3.104)for all N ≥ N0.Proof This follows diretly from the estimates (3.60), (3.62), (3.65�3.70) and (3.76).

�3.5 The spetral dimension of subritial treesIt is lear, as in the ase of subritial aterpillars, that the Hausdor� and spetraldimensions of subritial trees are almost surely in�nite. However, it turns out thatthe annealed spetral dimension is �nite and in fat, it takes the same values as inthe ase of the subritial aterpillars. The main result of this setion is the followingtheorem.Theorem 3.5.1 For any β > 2 the annealed spetral dimension of the subritialtrees de�ned by (3.22) and (3.23) is̄
ds = 2(β − 1). (3.105)We will prove separately a lower bound and an upper bound on d̄s. We �rstpresent Faà di Bruno's formula for the n�th derivative of a omposite funtion (seee.g. [12℄) whih will be used repeatedly.Lemma 3.5.2 (Faà di Bruno's formula) If f and g are n times di�erentiable fun-tions then

dn

dxn
f(g(x)) =

∑

P

n
i=1 iqi=n

n!

q1!q2! · · · qn!
f (q1+...+qn)(g(x))

n∏

j=1

(
gj(x)

j!

)qj

. (3.106)The following lemma will be needed to obtain the lower bound on d̄s.Lemma 3.5.3 Let µ be a subritial Galton�Watson measure on Γ orresponding tothe o�spring probabilities (3.15). For any n < β − 1 and any nonnegative integers
θ1, . . . , θk, k ≤ n suh that θk 6= 0 and ∑k

a=1 aθa ≤ n it holds that
〈

k∏

a=1

(

(−1)aP
(a)
T (x)

)θa

〉

µ

<∞ (3.107)



3.5 The spetral dimension of subritial trees 71for all x ∈ [0, 1].Proof The result is obvious for x > 0 sine the oe�ients of PT (x) are smaller thanone. First, take a �xed �nite tree T with root of degree one. Denote the degree ofthe nearest neighbour of the root by N and the �nite trees attahed to that vertexby T1, . . . , TN−1. Then from [38℄ we have the reursion
PT (x) =

1 − x

ST (x)
(3.108)where

ST (x) = N −
N−1∑

i=1

PTi
(x). (3.109)Note that ST (x) ≥ 1, sine PTi

(x) ≤ 1 for all i. By Faà di Bruno's formula (with
f(x) = 1/x, g(x) = ST (x)) and using ST (x) ≥ 1 we �nd that

(−1)bP
(b)
T (x)

b!
≤

∑

P

b
i=1 iqi=b

(
q1 + · · · + qb
q1, . . . , qb

) b∏

j=1

(

(−1)j+1S
(j)
T (x)

j!

)qj

+
∑

Pb−1
i=1 iqi=b−1

(
q1 + · · · + qb−1

q1, . . . , qb−1

) b−1∏

j=1

(

(−1)j+1S
(j)
T (x)

j!

)qj(3.110)where (q1+···+qb

q1,...,qb

) is the multinomial oe�ient. Looking at the produt from the �rstsum we �nd that
b∏

j=1

(

(−1)j+1S
(j)
T (x)

j!

)qj

=

b∏

j=1

∑

p1+···+pN−1=qj

(
qj

p1, . . . , pN−1

)N−1∏

i=1

(

(−1)jP
(j)
Ti

(x)

j!

)pi

.(3.111)Expanding the above produts and keeping trak of the fators in eah term whihdepend on the same outgrowth Ti, i = 1, . . . , N − 1 we �nd that they are of the form
Ci

b∏

j=1

(

(−1)jP
(j)
Ti

(x)

j!

)αj (3.112)where∑b
j=1 jαj ≤ b and Ci is a number independent of Ti (the terms in the latter sumin (3.110) are of the same form, if b is replaed by b− 1). The equality∑b

j=1 jαj = bholds only when pi = αj = qj in whih ase pa = 0 if a 6= i and Ci = 1. The total



72 Chapter 3 Planar trees with a loal ationontribution from suh terms in (3.111) is therefore
N−1∑

i=1

b∏

j=1

(

(−1)jP
(j)
Ti

(x)

j!

)qj

. (3.113)Now hoose numbers θ1, . . . , θk suh that θk 6= 0 and ∑k
a=1 aθa ≤ n. De�ne

Θ =
∑k

a=1 aθa. The following produt of (3.110) over b has an upper bound
k∏

b=1

(

(−1)bP
(b)
T (x)

b!

)θb

≤
N−1∑

i=1

k∏

b=1

(

(−1)jP
(b)
Ti

(x)

b!

)θb

+C

Θ∑

M=1

∑

α(M)

∑

1≤i1<i2<···<iM≤N−1

M∏

p=1

k∏

b=1




(−1)bP

(b)
Tip

(x)

b!





αb,ip

+ Cwhere ∑α(M) is a sum over nonnegative integers αb,ip
whih satisfy either(i) k∑

b=1

bαb,ip
< Θ or (ii) k−1∑

b=1

bαb,ip
= Θ (3.114)and C is a number whih only depends on k and (θ1, . . . , θk). Taking the µ expetationvalue of the above inequality and using the fat that the subtrees Ti, i = 1, . . . , N − 1are identially and independently distributed and distributed as T itself, yields

〈
k∏

b=1

(

(−1)bP
(b)
T (x)

b!

)θb
〉

µ

≤ m

〈
k∏

b=1

(

(−1)bP
(b)
T (x)

b!

)θb
〉

µ

+
C

g(1)

Θ∑

M=1

∑

α(M)

g(M)(1)

M !

M∏

p=1

〈
k∏

b=1




(−1)bP

(b)
Tip

(x)

b!





αb,p〉

µ

+ Cand thus
〈

k∏

b=1

(

(−1)bP
(b)
T (x)

b!

)θb
〉

µ

≤

C

(1 −m)g(1)

Θ∑

M=1

∑

α(M)

g(M)(1)

M !

M∏

p=1

〈
k∏

b=1




(−1)bP

(b)
Tip

(x)

b!





αb,p〉

µ

+
C

1 −m
.(3.115)
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Figure 3.12: A sequene (θ1, θ2, . . . , θk) is represented by a Young tableau where θi repre-sents the number of rows of size i. The size of a tableau is Θ and the number of elements inthe top row (grey boxes) is the value of k. The tableaux are �rst ordered by Θ and then by
k if possible. Tableaux with the same values of Θ and k are inomparable.Note, thatM ≤ Θ ≤ n < β−1 and thus g(M)(1) <∞. Therefore, for x > 0, the righthand side of (3.115) is �nite. To show that the left hand side is �nite at x = 0 weproeed by indution on the sequenes (θ1, θ2, . . . , θk). We de�ne a partial orderingon the set of suh sequenes in the following way (see also Fig. 3.12). Sequenes
(θ1, . . . , θk) and (θ′1, . . . , θ

′
ℓ) obey (θ′1, . . . , θ

′
ℓ) < (θ1, . . . , θk) if and only if(i) ℓ∑

i=1

iθ′i <

k∑

i=1

iθi or (ii) ℓ∑

i=1

iθ′i =

k∑

i=1

iθi and ℓ < k.For the smallest values, k = 1 and Θ = 1, we �nd with the same alulations as abovethat
〈−P ′

T (x)〉µ ≤ 1

1 −m
. (3.116)Next assume that (3.107) holds for for all sequenes (θ′1, θ

′
2, . . . , θ

′
k′) whih are lessthan a given sequene (θ1, θ2, . . . , θk) with k,Θ ≤ n. Then, by (3.114), all the termson the right hand side of (3.115) are �nite and therefore the left hand side is �nitefor all x ∈ [0, 1]. This shows that (3.107) holds for the sequene (θ1, θ2, . . . , θk).

�3.5.1 A lower bound on d̄sTo �nd a lower bound on d̄s we study an upper bound on a suitable derivative of theaverage return probability generating funtion. Let Mℓ be a linear graph of length ℓ
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*s2

Tστ (s2)−2(s2)

T1(s2) T2(s2)

r t
s1

Tστ (s1)−2(s1)

T1(s1) T2(s1)

T (s1) T (s2)

ℓFigure 3.13: A tree from Bℓ,k.with the root at one end and a vertex of in�nite degree (trap) on the other end. Let
Bℓ,k be the set of trees with distane ℓ between root and trap and suh that at leastone vertex on the spine has degree k and all the other verties have degree no greaterthan k, f. proof of Theorem 2.4.4 in Setion 2.4. We an write

〈Qτ (x)〉ν =

∞∑

ℓ=1

ψ(ℓ)

∞∑

k=2

c(k, ℓ)
∑

τ∈Bℓ,k

ν(τ | τ ∈ Bℓ,k)Qτ (x) (3.117)where
c(k, ℓ) =




∑

i+j≤k−2

φ(i, j)





ℓ−1

−




∑

i+j≤k−3

φ(i, j)





ℓ−1

. (3.118)In a tree in Bℓ,k, denote the root by r, the trap by t and the verties on the spine by
s1, s2, . . . , sℓ−1. Denote the outgrowths attahed to si by T (si), where i = 1, . . . , ℓ−1and denote the j-th outgrowth from si by Tj(si) where j = 1, . . . , στ (si) − 2, seeFig. 3.13. The �rst return probability generating funtion for T (si) (viewing si as theroot) an be written in terms of the �rst return probability generating funtions for
Tj(si) in the following way

PT (si)(x) =
1

στ (si) − 2

στ (si)−2
∑

j=1

PTj(si)(x). (3.119)



3.5 The spetral dimension of subritial trees 75Now take a τ ∈ Bℓ,k. We an write
Qτ (x) =

∑

ω: r→ron Mℓ

Kτ (x, ω)WMℓ
(ω)(1 − x)|ω|/2 (3.120)where

Kτ (x, ω) =

|ω|−1
∏

t=1
ωt∈{s1,...,sℓ−1}

2

2 + (στ (ωt) − 2)(1 − PT (ωt)(x))
(3.121)and

WMℓ
(ω) =

|ω|−1
∏

t=0

(σMℓ
(ωt))

−1. (3.122)Choose n suh that n+ 1 < β ≤ n+ 2. Di�erentiating n times we get
(−1)nQ

(n)
τ (x)

n!
=

∑

n1+n2=n

∑

ω: r→ron Mℓ

WMℓ
(ω)

(−1)n1K
(n1)
τ (x, ω)

n1!

(−1)n2

n2!

dn2

dxn2
(1 − x)|ω|/2.(3.123)Let ω be a random walk and denote the subwalk of ω whih only travels on theverties s1, . . . , sℓ−1 by ω′. Denote the number of verties in ω′ by |ω′| and the t�thvertex in ω′ by ω′

t. Then
(−1)mK

(m)
τ (x, ω)

m!
=

∑

n1+···+n|ω′|=m

|ω′|
∏

t=1

(−1)nt

nt!

dnt

dxnt

(
2

2 + (στ (ω′
t) − 2)(1 − PT (ω′

t)
(x))

)

.By Faà di Bruno's formula we get
(−1)p

p!

dp

dxp

(
2

2 + (στ (ω′
t) − 2)(1 − PT (ω′

t)
(x))

)

=

2

2 + (στ (ω′
t) − 2)(1 − PT (ω′

t)
(x))

∑

q1+2q2+···+pqp=p

(
q1 + · · · + qp
q1, . . . , qp

)

×
( 2(στ (ω′

t) − 2)

2 + (στ (ω′
t) − 2)(1 − PT (ω′

t)
(x))

︸ ︷︷ ︸

(∗)

)q1+···+qp
p
∏

a=1




(−1)aP

(a)
T (ω′

t)
(x)

a!





qa

.
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t)

(x) ≤ 1−x. Also note that (∗) is inreasing in στ (si) and sine στ (si) ≤ kfor i = 1, . . . , ℓ− 1 we �nd that
(∗) ≤ 2(k − 2)

2 + (k − 2)x
. (3.124)Observe that 2(k − 2)

2 + (k − 2)x
≤ 1 for k = 2, 3 and that 2(k − 2)

2 + (k − 2)x
≥ 1 for k ≥ 4.Finally, note that (q1+···+qp

q1,...,qp

)
≤ pp. Combining these results and using (3.119) we getthe upper bound

(−1)mK
(m)
τ (x, ω)

m!
≤ mm

(
2(k − 2)

2 + (k − 2)x

)(1−δk,2)(1−δk,3)m

∑

n1+···+n|ω′|=m

|ω′|
∏

t=1

∑

q1+2q2+···+ntqnt=nt

nt∏

a=1

1

(στ (ω′
t) − 2)qa

×
∑

p1+···+pστ (ω′
t
)−2=qa

(
qa

p1, . . . , pστ (ω′
t)−2

) στ (ω′
t)−2
∏

j=1




(−1)aP

(a)
Tj(ω′

t)
(x)

a!





pj

.(3.125)Expanding the above produts and keeping trak of the fators in eah term whihdepend on the same outgrowth Tj(si), i = 1, . . . , ℓ− 1, j = 1, . . . , στ (sj) − 2, we �ndthat they are of the form
Cij

n∏

a=1

(

(−1)aP
(a)
Tj(si)

(x)
)θa (3.126)where∑n

a=1 aθa ≤ n and Cij is independent of Tj(si). By Lemma 3.5.3, the expetedvalue of (3.126) over the outgrowths Tj(si) is �nite, and sine the total number ofterms in (3.125) is a polynomial in |ω′| we �nd that
〈

(−1)mK(m)
τ (x, ω)

〉

ν,τ∈Bℓ,k

≤ H(|ω|)
(

2(k − 2)

2 + (k − 2)x

)(1−δk,2)(1−δk,3)m (3.127)where H(|ω|) is a polynomial with positive oe�ients. From this inequality and the



3.5 The spetral dimension of subritial trees 77fat that (−1)iQ
(i)
Mℓ

(0) is a polynomial in ℓ of degree 2i+ 1, it follows that
〈(−1)nQ(n)

τ (x)〉ν,τ∈Bℓ,k
≤

n∑

m=0

Sm(ℓ)

(
2(k − 2)

2 + (k − 2)x

)(1−δk,2)(1−δk,3)m (3.128)where Sm(ℓ), m = 0, . . . , n are polynomials with positive oe�ients. From here weproeed as below Equation (2.97) and �nd that d̄s ≥ 2(β − 1).
�3.5.2 An upper bound on d̄sTo �nd an upper bound on d̄s we study a lower bound on a suitable derivative of theaverage return probability generating funtion. The aim is to ut o� the branhes ofthe �nite outgrowths from the spine so that only single leaves are left. We then usemonotoniity results from [51℄ to ompare return probability generating funtions. Asbefore we hoose n suh that n+ 1 < β ≤ n+ 2. We begin by di�erentiating (3.129)

n times and throwing away every term in the sum over ℓ exept the ℓ = 2 term
〈

(−1)nQ(n)
τ (x)

〉

ν
≥ (1 −m)m

∞∑

k=2

∑

i+j=k−2

φ(i, j)
〈

(−1)nQ(n)
τ (x)

〉

ν,τ∈B2,k

. (3.129)Let M2,k be the graph onstruted by attahing k − 2 leaves to the vertex s1 in M2,f. proof of Theorem 2.4.4 in Setion 2.4 . Take a tree τ ∈ B2,k. Denote the nearestneighbours of s1, exluding r and t, by u1, . . . , uk−2. Denote the �nite tree attahedto ui by U(ui), i = 1, . . . , k − 2, and view ui as its root, see Fig. 3.14. We an write
*

U1

tr

u1 u2

s1

U2

uk−2

Uk−2Figure 3.14: A graph τ ∈ B2,k.
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Qτ (x) =

∑

ω: r→ron M2,k

Fτ (x, ω)WM2,k
(ω)(1 − x)|ω|/2 (3.130)where

Fτ (x, ω) =

|ω|−1
∏

t=1
ωt∈{u1,...,uk−2}

1

1 + (στ (ωt) − 1)(1 − PU(ωt)(x))
. (3.131)De�ne

H(x) =
∑

ω: r→ron M2,k

〈Fτ (x, ω)〉ν,τ∈B2,k
WMℓ

(ω)
dn−1

dxn
(1 − x)|ω|/2. (3.132)Di�erentiating one we easily �nd that

(−1)nH ′(x) ≤
〈

(−1)nQ(n)
τ (x)

〉

ν,τ∈B2,k

(3.133)and using the methods of [51℄ we �nd that there exists a sequene ξi onverging tozero as i −→ ∞ on whih
(−1)nQ

(n)
M2,k

(ξi) ≤ (−1)nH ′(ξi). (3.134)Note that from the relation
Qτ (x) =

1

1 − Pτ (x)
(3.135)one an show that (−1)nQτ (x) ≥ (−1)nPτ (x) for any τ . Thus, we �nally have

〈

(−1)nQ(n)
τ (ξi)

〉

ν
≥ (1 −m)m

∞∑

k=2

∑

i+j=k−2

φ(i, j)(−1)nP
(n)
M2,ℓ

(ξi) (3.136)on a sequene ξi onverging to zero. We now proeed as in Equation (2.91) and �ndthat d̄s ≤ 2(β − 1).
�



4DisussionWe have studied an equilibrium statistial mehanial model of two lasses of trees:aterpillars and branhed polymers. The two lasses have idential phase struture,an elongated phase and a ondensed phase. We have proven onvergene of the Gibbsmeasures in both phases and on the ritial line separating them. The main resultis a rigorous proof of the emergene of a vertex of in�nite degree in the ondensedphase. The phenomenon of ondensation seems to appear in more general models ofgraphs and it would be interesting to prove analogous results in those ases.In the aterpillar model, we alulated the Hausdor� and spetral dimensions inthe generi phase and on the ritial line when g′′(1) < ∞ and found that they areequal to one. In the generi phase of the branhed polymer model, it holds that
d̄H = 2 and d̄s = 4/3, see [38℄. The proof of this result relies only on the fat that thein�nite volume measure is onentrated on the set of trees with one in�nite spine with�nite ritial Galton�Watson outgrowths and that g′′(1) < ∞. Therefore, it followsfrom Theorem 3.4.3 in the previous hapter that d̄H = 2 and d̄s = 4/3 on the ritialline when g′′(1) < ∞. Note that the equality (1.23) holds in both ases disussed inthis paragraph.We showed that on the ritial line in the aterpillar model, when g′′(1) = ∞, theHausdor� and spetral dimensions are almost surely

dH =
1

β − 2
and ds =

2

β − 1
(4.1)with 2 < β ≤ 3 where β is the exponent de�ning the subritial branhing weights79
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wn ∼ n−β . The equality (1.23) holds in this ase. No analogous results have beenproved for the ritial line in the branhed polymer model when g′′(1) = ∞. However,saling arguments suggest that

dH =
β − 1

β − 2
and ds =

2(β − 1)

2β − 3
(4.2)where 2 < β ≤ 3, see [26, 29℄, and one an hek that the equality (1.23) holds. Notethat by Theorem 3.4.3, the in�nite volume measure is still onentrated on the setof trees with one in�nite spine with ritial Galton�Watson outgrowths. Therefore, apossible way to prove (4.2) is to follow the arguments in [38℄, but taking into aountthe di�erent behaviour of ritial Galton�Watson proesses having g′′(1) = ∞. Someresults on suh Galton�Watson proesses an be found in [63℄.We have alulated the annealed spetral dimension in the ondensed phase in boththe aterpillar and branhed polymer models, and it takes the values d̄s = 2(β − 1)where β > 2. This is di�erent from the value d̄s = 2 whih was obtained in [29℄ usingsaling arguments. Furthermore, we argued that the annealed Hausdor� dimension isin�nite and therefore the inequality (1.22) holds sine 2 < d̄s < ∞, and d̄s an takeany value in this range.



Part IIRandom tree growth byvertex splitting





5The vertex splitting modelIn this part of the thesis we onsider a new model of randomly growing trees, referredto as the vertex splitting model. We start by de�ning the model and then we examinesome properties of large trees. First, we study the distribution of the degrees ofverties and show that it has a well de�ned limit as the size of the tree goes toin�nity, whih is independent of the initial tree. Exat results are provided underertain onditions on the parameters of the model and the general ase is supportedby simulations.Seondly, we derive the Hausdor� dimension of the trees by studying the salingof ertain volume distribution funtions. We establish bounds on the Hausdor� di-mension and show that it an vary ontinuously with the splitting weights between 1and +∞. The results we obtain are supported by simulations.Next, we study the orrelations between the degrees of neighbouring verties. Thisamounts to studying the density of edges whih onnet verties of given degrees. Weshow that there is a very good agreement between our analytial results and numerialsimulations. We onlude by disussing the amount of assortative mixing in the vertexsplitting model, i.e. whether verties of high degree prefer to be neigbours of vertiesof high degree or to be neighbours of verties of low degree.Finally, we disuss the relationship between our model and other models of randomtrees, in partiular the alpha model of phylogeneti trees. We prove onvergene of the�nite volume measures generated by the growth rules of the alpha model and alulatethe annealed Hausdor� dimension with respet to the in�nite volume measure.83



84 Chapter 5 The vertex splitting model5.1 De�nition of the modelLet Γ(D) be the olletion of all rooted planar trees for whih every vertex has �nitedegree at most D. Let Γ
(D)
N be those trees T ∈ Γ(D) with |T | = N . Denote thenumber of verties of degree i in T by ni(T ). Let

M =














0 w1,2 w1,3 · · · w1,D−1 w1,D

w2,1 w2,2 w2,3 · · · w2,D−1 w2,D

w3,1 w3,2 w3,3 · · · w3,D−1 0

w4,1 w4,2 w4,3 0 0... ... ... ... ... ...
wD,1 wD,2 0 · · · 0 0












be a symmetri matrix with nonnegative entries that we all partitioning weights. Wede�ne a olletion of nonnegative numbers alled splitting weights, w1, w2, . . . , wD, by

wi =
i

2

i+1∑

j=1

wj,i+2−j . (5.1)We now de�ne a growth rule for planar trees whih we all vertex splitting. Givena tree T ∈ Γ
(D)
N(i) Choose a vertex v of T with probability wi/W(T ) where i is the order of v and

W(T ) =

D∑

j=1

wjnj(T ). (5.2)(ii) Partition the edges inident with v into two disjoint sets V and V ′ of adjaentedges with probability
wk,i+2−k

wi
.The set V ontains k− 1 of the edges and V ′ ontains i− (k− 1) of these edges,

k = 1, . . . , i. For a given k, all suh partitionings are taken to be equally likely.(iii) Move all edges in V ′ from v to a new vertex v′ and reate an edge joining v to
v′. If v is the root, then the new vertex of order one is taken to be the root.This vertex splitting operation is illustrated in Figure 5.1 (the root vertex is irled).After the splitting operation, the degree of vertex v is k and the degree of vertex v′ is
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v v

V

V’ V’
V

v’

Figure 5.1: Illustration of the splitting proess for i = 6 and k = 5.
i+2−k. Sine the maximum allowed vertex degree is D we de�ne wD+1,1 = w1,D+1 =

0, i.e. we do not allow splittings of verties of degree D that produe verties of degree
D + 1. If the partitioning weights are hosen suh that wi,j = 0 for i 6= 1 or j 6= 1,then the vertex splitting model is equivalent to the preferential attahment modeldisussed in [31℄.We will often think of the number of edges as time and denote it by ℓ assumingwe start with the single vertex tree at time ℓ = 0. In Chapters 7 and 8 we will �ndit onvenient to label the verties aording to their time of reation. In this ase weappend the following to our rules:(iv) The single root vertex (whih is the only tree in Γ

(D)
0 ) is given the label 0. Let

a be the label of the vertex v hosen in (i) at time ℓ. If v is further away fromthe root than v′ in step (iii) then we let v keep the label a and give v′ the label
ℓ+ 1. Otherwise label v with ℓ+ 1 and label v′ with a.This book-keeping devie has no e�et on the dynamis of the model.If the partitioning weights are hosen suh that the splitting weights are linear,

wi = ai+ b (5.3)for some a and b, then the model is easier to analyse sine the weight of a tree T ∈ Γ(D)depends only on the size of the tree
W(T ) = (2a+ b)|T | + b. (5.4)This is easily seen from the two onstraints on the vertex degrees,

D∑

i=1

ni(T ) = |T | + 1 and D∑

i=1

ini(T ) = 2|T |. (5.5)



86 Chapter 5 The vertex splitting modelBy abuse of notation, in this ase we will write W(|T |) = W(T ). We will alsosometimes restrit to uniform partitioning weights, i.e.
wi,k+2−i =







wk/
(
k+1
2

) for i = 1, . . . , k + 1, if k < D,

wk/
(
k
2

) for i = 2, . . . , k, if k = D.

(5.6)



6Vertex degree distribution
6.1 The ase of linear splitting weightsStart from a �nite tree T0 at time ℓ0 = |T0| and perform vertex splitting aording tothe rules desribed in the previous hapter ℓ1 times. We then obtain a tree in Γ

(D)
ℓ0+ℓ1

.Let ℓ = ℓ0 + ℓ1. The vertex splitting operation indues a probability measure νℓ on
Γ

(D)
ℓ , whih of ourse depends on the initial tree T0. In this setion we will drop T0from funtion arguments with the understanding that it is implied, unless otherwisestated.Let Pℓ(m1, . . . ,mD) be the probability that T ∈ Γ

(D)
ℓ has (n1(T ), . . . , nD(T )) =

(m1, . . . ,mD) aording to the measure νℓ. We wish to study the mean value of nk(T )with respet to the measure νℓ. Denote this value by nℓ,k. We de�ne the vertex degreedensities ρℓ,k ≡ nℓ,k/(ℓ+ 1) and with some onditions on the partitioning weights wewill prove the existene of the limit
lim

ℓ→∞
ρℓ,k ≡ ρkand show that the ρk satisfy a system of linear equations.Let x = (x1, . . . , xD) ∈ RD and de�ne the probability generating funtion

Hℓ(x) =
∑

n1+···+nD=ℓ+1

Pℓ(n1, . . . , nD)xn1
1 · · ·xnD

D (6.1)
87



88 Chapter 6 Vertex degree distributionProposition 6.1.1 The probability generating funtion Hℓ(x) satis�es thereurrene
Hℓ+1(x) =

∑

n1+···+nD=ℓ+1

Pℓ(n1, . . . , nD)
∑D

i=1 niwi

c(x) · ∇(xn1
1 · · ·xnD

D ) (6.2)for all ℓ ≥ ℓ0, where
c(x) = (c1(x), c2(x), . . . , cD(x)) (6.3)with
ci(x) =

i

2

i+1∑

j=1

wj,i+2−jxjxi+2−j (6.4)and ∇ =
(

∂/∂x1, . . . , ∂/∂xD

) is the standard gradient operator.Proof Any tree ontributing to Hℓ+1 an be obtained by splitting a vertex in a treewith ℓ edges. This proess an be divided into three steps:(i) Choose a tree T ∈ Γ
(D)
ℓ with vertex degree distribution (n1, . . . , nD) with prob-ability Pℓ(n1, . . . , nD).(ii) Selet a vertex in T of degree i with probability niwi/

∑

j njwj .(iii) Partition the edges inident to the hosen vertex into two sets V and V ′ ofadjaent edges with j − 1 and i+ 1 − j elements, respetively, with probability
iwj,i+2−j/wi if j 6= i+ 2− j and with probability i

2wj,i+2−j/wi if j = i+ 2− j.In the latter ase there is a symmetry between V and V ′ whih aounts for thefator 1/2.Multiplying together the probabilities in (i)�(iii) gives the probability of removing avertex of degree i and reating two new verties of degree j and i+2−j. In terms of thegenerating funtion this amounts to replaing xn1

1 · · ·xnD

D by x−1
i xjxi+2−jx

n1

1 · · ·xnD

D .The probability is
Pℓ(n1, . . . , nD)
∑

j njwj
ni ×







iwj,i+2−j if j 6= i+ 2 − j,
i
2wj,i+2−j otherwise.The partial derivative ∂/∂xi in ∇ takes are of removing a vertex of degree i andprovides the fator ni. In ci(x), the fators xjxi+2−j add two verties of degree j



6.1 The ase of linear splitting weights 89and i + 2 − j respetively and the appropriate weights are given. Now sum over allpossible partitionings in (iii), the dot produt of c(x) and ∇ aounts for the sumover all vertex degrees, and �nally sum over all vertex degree on�gurations in theinitial tree to obtain (6.2).
�For linear weights (5.3), Equation (6.2) redues to a muh simpler reursion

Hℓ+1(x) =
1

W(ℓ)
c(x) · ∇Hℓ(x) (6.5)by (5.4), where W(ℓ) = (2a+b)ℓ+b. The remainder of this subsetion onerns linearweights only. We have

nℓ,k =
∑

n1+...+nD=ℓ+1

Pℓ(n1, ..., nD)nk = ∂kHℓ(x)|x=1, (6.6)where 1 = (1, 1, . . . , 1). To get a reursion equation for nℓ,k, di�erentiate both sidesof (6.5) with respet to xk and set x = 1 to �nd
nℓ+1,k =

1

W(ℓ)

(
D∑

i=k−1

iwk,i+2−knℓ,i +

D∑

i=1

wi∂i∂kHℓ(x)|x=1

)

. (6.7)Sine the weights are linear we an use the onstraints in (5.5) to rewrite the lastterm in (6.7) as
D∑

i=1

wi∂i∂kHℓ(x)|x=1 = (−wk + W(ℓ))nℓ,k. (6.8)Inserting this into (6.7) we see that the equations lose
nℓ+1,k =

1

W(ℓ)

(

−wknℓ,k +
D∑

i=k−1

iwk,i+2−knℓ,i

)

+ nℓ,k. (6.9)We an also write the reursion in terms of ρℓ,k and �nd
(ℓ+ 2)ρℓ+1,k =

ℓ+ 1

W(ℓ)

(

−wkρℓ,k +

D∑

i=k−1

iwk,i+2−kρℓ,i

)

+ (ℓ+ 1)ρℓ,k (6.10)



90 Chapter 6 Vertex degree distributionThe above equation an be put in the matrix form
ρℓ+1 = Aℓ ρℓ (6.11)where

ρℓ = (ρℓ,1, ρℓ,2, . . . , ρℓ,D)
T
, Aℓ =

ℓ+ 1

ℓ+ 2

(

I +
1

W(ℓ)
B

)

, (6.12)
B =













w1,2 2w1,3 · · · (D − 2)w1,D−1 (D − 1)w1,D 0

w2,1 2w2,2 · · · (D − 2)w2,D−2 (D − 1)w2,D−1 Dw2,D

0 2w3,1 · · · (D − 2)w3,D−3 (D − 1)w3,D−2 Dw3,D−1... . . . . . . ... ... ...... . . . (D − 2)wD−1,1 (D − 1)wD−1,2 DwD−1,3

0 · · · 0 0 (D − 1)wD,1 DwD,2













− diag(wi)1≤i≤D(6.13)and I is the identity matrix.If we denote the vertex degree densities of the initial tree T0 by ρℓ0 we an writethe densities for trees on ℓ edges whih grow from the initial tree as
ρℓ =

(
ℓ−1∏

i=ℓ0

Ai

)

ρℓ0 =
ℓ0 + 1

ℓ+ 1

(
ℓ−1∏

i=ℓ0

(

I +
1

W(i)
B

))

ρℓ0 . (6.14)We will establish onvergene of the right hand side by imposing some tehnialrestritions on B. It turns out that the limiting distribution is independent of theinitial distribution ρℓ0 . We begin with some neessary lemmas.Lemma 6.1.2 If λ is an eigenvalue of B with orresponding eigenvetor
eλ = (eλ1, . . . , eλD), i.e.

Beλ = λeλ, (6.15)then the following holds:
λ

D∑

i=1

eλi =

D∑

i=1

wieλi and (6.16)
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λ

D∑

i=1

ieλi = 2

D∑

i=1

wieλi. (6.17)Proof We prove the seond identity. The �rst identity is established by a similaralulation. Multiply the i-th omponent of the eigenvalue equation (6.15) by i andsum over i to get
λ

D∑

i=1

ieλi = −
D∑

i=1

iwieλi +

D∑

i=1

i

D∑

k=i−1

kwi,k+2−ieλk

= −
D∑

i=1

iwieλi +
D∑

k=1

k

(
k+1∑

i=1

iwi,k+2−i

)

eλk. (6.18)Using wi,j = wj,i we �nd that
k+1∑

i=1

iwi,k+2−i =
k + 2

2

k+1∑

i=1

wi,k+2−i (6.19)and this together with the de�nition of the splitting weights (5.1) proves the identity.
�Lemma 6.1.3 If1. wk,1 = w1,k > 0 for k = 1, . . . , D (i.e. it is possible to produe verties of degree

D) and2. wi,D+2−i > 0 for at least one i with 2 ≤ i ≤ D − 1,then w2 is a positive, simple eigenvalue of B. All other eigenvalues of B have asmaller real part. The orresponding eigenvetor ew2 an be taken to have all entriespositive.Proof We begin by hoosing a number γ > max1≤k≤D {wk − kwk,2} and de�ne P =

B + γI. The matrix P has only nonnegative entries and the onditions (1) and (2)on B guarantee that it is primitive, i.e. there is a number k suh that all entriesof the matrix P
k are positive. Therefore, by the Perron�Frobenius theorem [62℄,

P has a simple positive eigenvalue r and all other eigenvalues of P have a smallermodulus. The orresponding eigenvetor er an be taken to have all entries positive.



92 Chapter 6 Vertex degree distributionWe normalize the eigenvetor suh that
D∑

i=1

eri = 1. (6.20)Shifting bak to the matrix B we �nd that w ≡ r − γ is a simple real eigenvalueof B with the largest real part and the orresponding eigenvetor is ew = er. We seeright away from (6.16) and with the hosen normalization that
w =

D∑

i=1

wiewi. (6.21)Sine the weights are linear, Lemma 6.1.2 shows that w = w2.
�Note that the �rst ondition on the weights in the above lemma is natural sine wehave �xed a maximal degree D and therefore we want to be able to produe vertiesof degree D. The seond ondition, however, does not seem to be neessary for theresults to hold but we still require it in order to use the Perron�Frobenius theorem forprimitive matries. This ondition is not very restritive in the ase of linear weightssine it holds for all a and b exept when aD + b = 0.Lemma 6.1.4 Let λ ∈ C. Then

ℓ0 + 1

ℓ+ 1

ℓ−1∏

i=ℓ0

(

1 +
1

W(i)
λ

)

−→







(ℓ0+1)w2

ℓ0w2+b if λ = w2,
0 if Re(λ) < w2

(6.22)as ℓ −→ ∞.Proof The result follows from the identity
ℓ0 + 1

ℓ+ 1

ℓ−1∏

i=ℓ0

(

1 +
1

W(i)
λ

)

=
ℓ0 + 1

ℓ+ 1

Γ
(

ℓ+ b+λ
w2

)

Γ
(

ℓ0 + b
w2

)

Γ
(

ℓ+ b
w2

)

Γ
(

ℓ0 + b+λ
w2

) . (6.23)
�



6.2 Expliit solutions 93Theorem 6.1.5 With the assumptions on B in Lemma 6.1.3 and the additional as-sumption that B is diagonalizable, the limit as ℓ −→ ∞ of the right hand side ofEquation (6.14) exists and is given by the eigenvetor ew2 of B normalized suh that
D∑

i=1

ew2i = 1. (6.24)Proof We use the normalization in (6.24) and expand ρℓ0 in the basis of eigenvetorsof B. Using the results of Lemmas 6.1.2 and 6.1.3 and that T0 satis�es the equationsin (5.5) we see that the expansion is of the form
ρℓ0 =

w2ℓ0 + b

w2(ℓ0 + 1)
ew2 +

D−1∑

i=1

aieλi
(6.25)where λi, i = 1, . . . , D − 1 are the eigenvalues of B with real part less than w2. Theresult now follows from Lemma 6.1.4.

�Theorem (6.1.5) shows that with the above onditions on B the limit of the vertexdegree densities exists, is independent of the initial tree and is given by
ρ ≡ lim

ℓ→∞
ρℓ = ew2 . (6.26)The limiting densities are therefore the unique positive solution to Equation (6.15),i.e.

ρk = −wk

w2
ρk +

D∑

i=k−1

i
wk,i+2−k

w2
ρi. (6.27)6.2 Expliit solutionsWe disuss three simple speial ases.1) When D = 3 we �nd that

B =







0 2w1,3 0

w2,1 w2,2 − 2w3,1 3w3,2

0 2w3,1 0






. (6.28)If the weights satisfy the onditions in Lemma 6.1.3 it is easy to see that B is diag-



94 Chapter 6 Vertex degree distributiononalizable. For linear splitting weights wi = ai+ b and uniform partitioning weightsthe positive solution of (6.27) is
ρ1 = ρ3 =

2

7
and ρ2 =

3

7
(6.29)for all values of a and b as an easily be seen from the simple struture of B in thisase.2) When D = 4, the splitting weights linear and the partitioning weights uniformone an hek that

B =










0 2
3 (2a+ b) 1

2 (3a+ b) 0

a+ b − 1
3 (2a+ b) 1

2 (3a+ b) 2
3 (4a+ b)

0 2
3 (2a+ b) − 1

2 (3a+ b) 2
3 (4a+ b)

0 0 1
2 (3a+ b) − 1

3 (4a+ b)










. (6.30)When 4a+ b > 0 the weights satisfy the onditions in Lemma 6.1.3. The eigenvaluesof B are − 1
12 (33a + 13b ±

√
a2 − 78ab− 15b2), w2 and 0. This shows that B isdiagonalizable exept when a/b = 39± 16

√
6. One an analyse these ases separatelyusing a basis of generalized eigenvetors and show that the right hand side of Equation(6.14) still onverges to ew2 .3) Fix a maximal degree D. Choose partitioning weights

w1,i = wi,1 = (i− 1)−1, i = 2, . . . , D,

w2,D = wD,2 = D−1and all other weights equal to zero. The splitting weights are then wi = 1 for i =

1, . . . , D. These weights satisfy the onditions in Lemma 6.1.3. Note that if we takethe limit D −→ ∞ we get a speial ase of the preferential attahment model. Thenonzero matrix elements of B are
Bi+1,i = B1,i = −Bi,i = B2,1 = B2,D = 1, 1 < i < D. (6.31)The harateristi polynomial of B is

pD(λ) = (−1)D (1 − λ)
(

1 − (1 + λ)
D−1

) (6.32)



6.3 Generality of results 95whih an easily be proved by indution. The roots of the harateristi polynomialare λ = 1 and λ = exp ( 2πik
D−1 ) − 1, k = 1, . . . , D − 1 and they are all distint whihshows that B is diagonalizable. The solution to (6.27) is

ρk =
2D−k+δkD−1 − δk1

2D−1 − 1
, k = 1, . . . , D. (6.33)6.3 Generality of resultsIt is not obvious how restritive the ondition that B must be diagonalizable is re-garding the olletion of weights one an onsider. In the previous subsetion we sawthat for D = 3 and D = 4 the ondition was not very restritive. Also we saw that forevery D there is at least one hoie of weights whih satis�es the onditions in Lemma6.1.3 and yields a diagonalizable matrix B. We will now show that this guaranteesthat almost all weights give a diagonalizable B.Fix a maximal degree D. Let BD be the set of matries B whih orrespond topartitioning weights that give linear splitting weights and satisfy the onditions inLemma 6.1.3. It is lear that if B,B′ ∈ BD then

tB + (1 − t)B′ ∈ BD for all t ∈ [0, 1] and so BD is onvex. Let
B′

D = {B ∈ BD | B is diagonalizable} .From the previous subsetion we know that B′
D 6= ∅. Sine BD is onvex and B′

D 6= ∅then by [47, Corollary 1℄, B′
D is dense in BD in the standard topology.We believe that it is possible to extend the result of onvergene of the righthand side of (6.14) to all partitioning weights giving linear splitting weights, relaxingboth the ondition of diagonalizability of B and ondition (2) in Lemma 6.1.3. Wealso believe, in view of simulations, that Equation (6.27) even desribes orretly thevertex degree distribution for non�linear splitting weights and for the ase D = ∞.We will look at this more losely in the next two subsetions.6.4 Mean �eld equation for general weightsTo generalize Equation (6.27) beyond the ase of linear splitting weights we notiethat Lemmas 6.1.2 and 6.1.3 do not rely on the linearity of the weights exept in theonlusion of Lemma 6.1.3 where we show that w = w2. We therefore onjeture thatin general the limiting vertex degree densities are the unique positive solution to
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ρk = −wk

w
ρk +

D∑

i=k−1

i
wk,i+2−k

w
ρi, (6.34)subjet to the onstraints

ρ1 + . . .+ ρD = 1 (6.35)
w1ρ1 + . . .+ wDρD = w. (6.36)Reall that w is the unique simple positive eigenvalue of B de�ned in (6.13) with thelargest real part of all the eigenvalues and ρk, k = 1, . . . , D are the omponents of theassoiated eigenvetor with the proper normalization.The existene and uniqueness of a positive solution to (6.34) satisfying (6.35) and(6.36) follows from the Perron�Frobenius argument in the proof of Lemma 2.2. Inorder to distinguish (6.34) from (6.27) we refer to it as the mean �eld equation forvertex degree densities. One an also arrive diretly at this equation by assumingthat for large t an equilibrium with small enough �utuations is established, and thenperforming the splitting proedure on this equilibrium.The solution to the mean �eld equation for the D = 3 model and uniform parti-tioning weights is

ρ3 =
7α−

√

α (α+ 24 β + 24)

6(2α− β − 1)
(6.37)where α =

w2

w1
and β =

w3

w1
. Note that from the onstraints we have ρ1 = ρ3 and

ρ2 = 1 − 2ρ3. This solution (and solutions in general) only depends on the ratio ofthe weights. In Figure 6.1 we ompare the above solution to simulations.
6.5 The D = ∞ model with linear weightsIn this subsetion we drop the assumption that there is an upper bound on the vertexdegrees but we still assume that all vertex degrees are �nite. If we assume thatEquation (6.27) holds for D = ∞, then it is possible to �nd an exat solution inthe ase of linear splitting weights, wi = ai + b, and uniform partitioning weights.
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Figure 6.1: The value of ρ3 as given in (6.37) ompared to results from simulations. Eahpoint is alulated from 20 trees with 10000 verties.
Equation (6.27) beomes

ρk = −wk

w2
ρk +

∞∑

i=k−1

2

i+ 1

wi

w2
ρi. (6.38)Subtrating from this the same equation for ρk+1 we �nd

ρk

(

1 +
wk

w2

)

− ρk+1

(

1 +
wk+1

w2

)

=
2

k

wk−1

w2
ρk−1. (6.39)Let x = b/a. The reursion (6.39) has the solution

ρk(x) =







2

C(−1)
if x = −1 and k = 1

1

C(x)

2k−1Γ (k + x)

Γ (k) Γ (k + 3 + 2x)
(k + 1 + 2x) otherwise, (6.40)where

C(x) =
e
√
π 2−

3
2−xI 1

2+x(1)

2 + x
(6.41)is a normalization onstant suh that∑i ρi = 1. Here, Iν is the modi�ed Bessel fun-tion of the �rst kind. The variable x an take values from −1 to ∞. The asymptoti



98 Chapter 6 Vertex degree distributionbehaviour of ρk(x) for large k is
ρk(x) =

1

C(x)

1

k!
2k−1k−1−x

(

1 +O

(
1

k

))

. (6.42)The speial ase x = ∞ orresponds to onstant weights for whih the solution is
ρk(∞) =

1

e

1

(k − 1)!
. (6.43)In Figure 6.2 we ompare the above solutions to simulations for �ve di�erent valuesof x. The solid lines are y = k + 1 + 2x plotted against k for �ve di�erent values of

x. The data points on the graph are alulated from simulations of 100 trees with
106 verties. For a given k and x they are alulated from the degree densities of thesimulated trees ρk,sim.(x) by

y = C(x)
Γ (k) Γ (k + 3 + 2x)

2k−1Γ (k + x)
ρk,sim.(x) (6.44)with an obvious modi�ation if x = −1.
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Figure 6.2: A omparison of Equation (6.40) to simulations.



7Subtree struture probabilitiesand the Hausdor� dimensionIn this hapter we onsider the model in whih verties are labelled with their timeof reation as explained in the de�nition of the splitting proess (item (iv)). Foronveniene we will start from the single vertex tree at time 0. We onsider onlylinear splitting weights wi = ai+b but omment on generalizations in the last setion.We derive exat expressions for probabilities of partiular subtree strutures asseen from the vertex reated at a given time. By averaging over these probabilities andassuming the existene of a saling limit, we shall show how to extrat the Hausdor�dimension of the trees, as de�ned in (1.25), and derive bounds on this dimension. Inspeial ases we give an exat expression for the Hausdor� dimension.7.1 Volume distribution funtionsConsider a tree of ℓ edges generated with the splitting proedure starting from thesingle vertex tree at time 0. To simplify the notation we de�ne
W (ℓ) ≡ W(T ) − w1 = (2a+ b)ℓ− a (7.1)where the last equality follows from the linearity of the weights. This is the totalweight of splitting a vertex in a tree T , exluding the root vertex (or any other leafin fat). Let pR(ℓ; s) be the probability that the vertex reated at time s is the root.99



100 Chapter 7 Subtree struture probabilities and the Hausdor� dimensionIf s < ℓ we �nd that
pR(ℓ; s) =

1

W (ℓ− 1) + w1
W (ℓ− 1)pR(ℓ− 1; s), (7.2)sine we an split any vertex exept the root in order to get from a tree at time ℓ− 1to a tree at time ℓ. This ontributes the fator pR(ℓ− 1; s) to pR(ℓ; s). Similarly,

pR(ℓ; ℓ) =
1

W (ℓ− 1) + w1

ℓ−1∑

s=0

w1pR(ℓ− 1; s), (7.3)sine if we reate a new root vertex at time ℓ the previous root vertex, labelled s in(7.3) ould have been reated at any time before ℓ. We depit these proesses in Fig.7.1.
`� 1s s= W (`� 1)W (`� 1) + w1`

= 1W (`� 1) + w1 `�1Xs=0 w1` ` s `� 1Figure 7.1: Diagrams representing equations (7.2) and (7.3).If v is a vertex of order k in a tree T , then there is a unique edge e1 inident on
v leading towards the root (unless v is the root). Let e2, . . . , ek be the other edgesinident on v. The largest subtree of T whih ontains the root and e1 but none ofthe links ei with i ≥ 2 will be alled the left subtree (with respet to v). The maximalsubtrees whih ontain one ej with j 6= 1 and no other link ei will be alled the rightsubtrees (with respet to v). If k = 1 then there are of ourse no right subtrees and if
v is the root then we view the left subtree as being empty. Let pk(ℓ1, . . . , ℓk; s) denotethe probability that the vertex reated at time s has a left subtree of ℓ1 edges andright subtrees of ℓ2, . . . , ℓk edges, where ℓ1+. . .+ℓk = ℓ. By the nature of the splittingoperation and beause of the initial onditions, pk(ℓ1, ℓ2, . . . , ℓk; s) is symmetri underpermutations of (ℓ2, . . . , ℓk). We will sometimes refer to the vertex reated at time sas the s-vertex.



7.1 Volume distribution funtions 101By the de�nition of the relabelling when we split we have
p1(ℓ; ℓ) = 0, (7.4)beause the vertex loser to the root gets a new label and therefore no leaf exept theroot an have the maximal label. In the ase s < ℓ we �nd the reursion

p1(ℓ; s) =
1

W (ℓ− 1) + w1

[

W (ℓ− 1)p1(ℓ− 1; s)

+
D−1∑

i=1

iwi+1,1

∑

ℓ′1+...+ℓ′i=ℓ−1

pi(ℓ
′
1, . . . , ℓ

′
i; s) + δℓ1w1

]

. (7.5)The �rst term in the square braket orresponds to the ase when we do not split thevertex with label s. The seond term orresponds to splitting the s-vertex whih anhave any order up to D − 1. Finally the last term orresponds to the speial asewhen we have ℓ = 1 so the s-vertex is the root of the trivial tree, see Fig. 7.2.
+

D−1∑

i=1

iwi+1,1

∑

ℓ′1+...+ℓ′i=ℓ−1

=
1

W (ℓ − 1) + w1

(

W (ℓ − 1) ℓ − 1

s

ℓ′1

s

ℓ′2

ℓ′i

s
+ δℓ1w1

s

ℓ

)

Figure 7.2: A diagram representing Equation (7.5).For a general k ≥ 2 and s < ℓ the reursion an be written
pk(ℓ1, . . . , ℓk; s) =

1

W (ℓ− 1) + w1
×

[

δk2δℓ11w1pR(ℓ− 1; s) +

k∑

i=1

W (ℓi − 1)pk(ℓ1, . . . , ℓi − 1, . . . , ℓk; s)
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+

D∑

i=k

(i+ 1 − k)wk,i−k+2

∑

ℓ′1+...+ℓ′
i+1−k

=ℓ1−1

pi(ℓ
′
1, . . . , ℓ

′
i+1−k, ℓ2, . . . , ℓk; s)

]

,(7.6)see Fig. 7.3. The �rst term orresponds to the ase when the s-vertex is the root

+

k∑

i=1

W (ℓi − 1)

+

D∑

i=k

(i + 1 − k)wk,i−k+2

∑

ℓ′1+...+ℓ′
i−k+1=ℓ1−1

=
1

W (ℓ − 1) + w1

(

δk2δℓ11w1

s

s

s

ℓ − 1

)

ℓ1

s

ℓ2

ℓk

ℓ2

ℓi − 1

ℓk

ℓ1

ℓ′i+1−k

ℓ′1

ℓ1 − 1

ℓ2

ℓkFigure 7.3: A diagram representing Equation (7.6).before the splitting in whih ase we have ℓ1 = 1 and k = 2. The seond termorresponds to the ase when we split a vertex di�erent from the s-vertex and thelast term arises when we split the s-vertex in the step from time ℓ− 1 to time ℓ.



7.1 Volume distribution funtions 103Finally we have
pk(ℓ1, . . . , ℓk; ℓ) =

1

W (ℓ− 1) + w1
× (7.7)

ℓ−1∑

s=0

k∑

j=2

D−1∑

i=k−1

∑

ℓ′
1
+...+ℓ′

i+1−k
=ℓj−1

wk,i−k+2pi(ℓ1, . . . , ℓj−1, ℓ
′
1, . . . , ℓ

′
i+1−k, ℓj+1, . . . , ℓk; s),where ℓ1 + . . .+ ℓk = ℓ, see Fig.7.4. Here s is the label of the vertex that is split in

=
1

W (ℓ − 1) + w1

ℓ−1∑

s=0

k∑

j=2

D−1∑

i=k−1

wk,i−k+2

∑

ℓ′1+...+ℓ′
i+1−k

=ℓj−1

ℓ1

ℓk

ℓ

ℓ2

×

ℓj − 1
ℓj−1

s
ℓ′i+1−k

ℓ′1

ℓj+1ℓk

ℓ1

Figure 7.4: A diagram representing Equation (7.7).the step from time ℓ−1 to time ℓ and we sum over all possible degrees of the s-vertexand all ways of splitting it.We de�ne the following mean probabilities by averaging over the vertex labels in(7.2�7.7)
pR(ℓ) =

1

ℓ+ 1

ℓ∑

s=0

pR(ℓ; s) (7.8)



104 Chapter 7 Subtree struture probabilities and the Hausdor� dimensionand
pk(ℓ1, . . . , ℓk) =

1

ℓ+ 1

ℓ∑

s=0

pk(ℓ1, . . . , ℓk; s), (7.9)where ℓ1 + . . .+ ℓk = ℓ. We refer to these funtions as volume distribution funtions.From (7.8) we get a reursion for the volume distribution funtions, going from time
ℓ to ℓ+ 1

pR(ℓ+ 1) =
ℓ+ 1

ℓ+ 2
pR(ℓ). (7.10)For k = 1 we obtain from (7.4), (7.5) and (7.9)

p1(ℓ+ 1) (7.11)
=

ℓ+ 1

ℓ+ 2

1

W (ℓ) + w1

[

W (ℓ)p1(ℓ) +

D−1∑

i=1

iwi+1,1

∑

ℓ′1+...+ℓ′
i

=ℓ

pi(ℓ
′
1, ..., ℓ

′
i) + 2δℓ0w1

]

.Finally, the general ase for k ≥ 2 is
pk(ℓ1, . . . , ℓk)

=
ℓ+ 1

ℓ+ 2

1

W (ℓ) + w1

[

δk2δℓ11w1pR(ℓ) +
k∑

i=1

W (ℓi − 1)pk(ℓ1, . . . , ℓi − 1, . . . , ℓk)

+

D∑

i=k

(i− k + 1)wk,i−k+2

∑

ℓ′
1
+...+ℓ′

i+1−k
=ℓ1−1

pi(ℓ
′
1, . . . , ℓ

′
i+1−k, ℓ2, . . . , ℓk) (7.12)

+

k∑

j=2

D∑

i=k−1

wk,i−k+2

∑

ℓ′
1
+...+ℓ′

i+1−k
=ℓj−1

pi(ℓ1, . . . , ℓj−1, ℓ
′
1, . . . , ℓ

′
i+1−k, ℓj+1, . . . , ℓk)

]where ℓ1 + . . .+ ℓk = ℓ+ 1 and we have made use of (7.6), (7.7) and (7.9).7.2 Geodesi distanes and two point funtionsOne an redue the above reursion formulas for the volume distribution funtionsto simpler reursion formulas whih su�e for the determination of the Hausdor�dimension. De�ne the two-point funtions
qki(ℓ1, ℓ2) =

∑

ℓ′1+...+ℓ′
k−i

=ℓ1

∑

ℓ′′1 +...+ℓ′′i =ℓ2

pk(ℓ′1, . . . , ℓ
′
k−i, ℓ

′′
1 , . . . , ℓ

′′
i ), (7.13)



7.2 Geodesi distanes and two point funtions 105where k = 2, . . . , D and i = 1, . . . , k − 1. In total there are D(D − 1)/2 of thesefuntions. If we de�ne
q1,0(ℓ1, ℓ2) = δℓ20δℓ1ℓp1(ℓ1 + ℓ2)then qki(ℓ1, ℓ2) is the probability that i right trees of total volume ℓ2 are attahed toa vertex of degree k in a tree of total volume ℓ1 + ℓ2. By summing over the equationsin the previous setion we get

qki(ℓ1, ℓ2) =
ℓ+ 1

ℓ+ 2

1

W (ℓ) + w1

[

D∑

j=k−1

wk,j+2−k

(

(j − i)qji(ℓ1 − 1, ℓ2) + iqj,j−(k−i)(ℓ1, ℓ2 − 1)
)

+
(

W (ℓ1 − 1) + (k − i− 1)(w2 − w3)
)

qki(ℓ1 − 1, ℓ2)

+
(

W (ℓ2 − 1) + (i− 1)(w2 − w3)
)

qki(ℓ1, ℓ2 − 1)

+δk2δℓ11w1pR(ℓ2) + δi1δℓ21wk,1

∑

ℓ′1+...+ℓ′
k−1=ℓ1

pk−1(ℓ
′
1, . . . , ℓ

′
k−1)

](7.14)with ℓ1 + ℓ2 = ℓ+ 1. We see that the two-point funtions satisfy an essentially losedsystem of equations. The last two terms in (7.14) do not ontribute to the salinglimit whih will be disussed in the next setion.The radius RT de�ned in (1.24) an be extrated from these two point funtions.Let T be a tree of ℓ edges and hose a v ∈ V (T ) and an e ∈ E(T ). If we ut theedge e at the vertex further away from v then the tree is split into two onnetedomponents, a tree T1 whih ontains v and a tree T2 that does not ontain v (seeFigure 7.5). Let ℓ2(v; e) be the number of edges of T2. We have the simple resultLemma 7.2.1
∑

w∈V (T )

dT (v, w)σT (w) =
∑

e∈E(T )

(2ℓ2(v; e) + 1). (7.15)Proof For the tree T with ℓ edges, we may assign two labels to every edge in thefollowing way. Starting from v, we walk around the tree while always keeping the treeto the left. Drop the labels 1 to 2ℓ on the sides of edges as we pass them.An example of suh a walk and labelling is shown in Figure 7.6. Let us mention
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v e T2

T1

ℓ1

ℓ2Figure 7.5: Cutting a tree along the edge e.
v

7
6

5

4
32

12 11

101
9

8ww

v Figure 7.6: A tree and its labels.
that the initial diretion from v is unimportant. In what follows we will denote thesenew labels by Greek letters.Given 1 ≤ α < β ≤ 2ℓ, de�ne φv(α, β) to be 1 if α and β are labels of thesame edge, and zero otherwise. In the above example we have φv(6, 9) = 1 whereas
φv(6, 12) = 0. For any vertex w ∈ T , let us de�ne ω(w) to be the smallest label ofthe edges adjaent to w. In the example above ω(w) = 6 and ω(v) = 1. We now havefor any w ∈ T

dT (v, w) =
∑

α,β: α≤ω(w)<β

φv(α, β) (7.16)and it follows that
∑

w∈V (T )

dT (v, w)σT (w) =
∑

α,β,γ:α≤γ<β

φv(α, β) =
∑

α,β:α<β

φv(α, β)(β − α).(7.17)



7.3 Saling and the Hausdor� dimension 107If φ(α, β) = 1, i.e. if α and β orrespond to the two faes of the edge e, then
β − α = 2 ℓ2(v; e) + 1 (7.18)and Equation (7.15) follows.

�We now apply (7.15) by hoosing for v the root r of the tree and averaging over alltrees obtained by the splitting proess. We notie that the average number of linksgiving the volume ℓ2(r; e) is simply the number of verties, ℓ+1, times the proportionof verties whih have a left tree (ontaining the root r) of ℓ1 = ℓ− ℓ2 edges and anarbitrary number of right trees (with a total number of ℓ2 edges). This proportion ispreisely given by
D∑

k=1

qk,k−1(ℓ− ℓ2, ℓ2). (7.19)Note that max{ℓ2(r; e) : e ∈ T } = ℓ− 1. We therefore obtain
〈RT 〉νℓ

=
ℓ+ 1

2ℓ

ℓ−1∑

ℓ2=0

(2ℓ2 + 1)

D∑

k=1

qk,k−1(ℓ− ℓ2, ℓ2). (7.20)Thus, if we know how the two point funtions qki(ℓ1, ℓ2) sale for large ℓ, we knowhow the radius of the tree sales with ℓ and we an ompute the Hausdor� dimension
dH .7.3 Saling and the Hausdor� dimensionWe assume that the following saling holds for the two-point funtions qki with ℓ large

qki(ℓ1, ℓ2) = ℓ−ρ
(
ωki(x) + γki(x)ℓ

−1 +O(ℓ−2)
) (7.21)where ℓ1 + ℓ2 = ℓ, x = ℓ1/ℓ ∈]0, 1[ and where ωki, γki are some funtions. It musthold that ωki > 0 and we assume that the saling exponent ρ satis�es

1 < ρ ≤ 2. (7.22)Note that for ℓ �nite, the probabilities qki(ℓ1, ℓ2) are of order ℓ−1 when ℓ1 is of order1 and are of order 1 when ℓ2 is of order 1. This implies that the saling funtions



108 Chapter 7 Subtree struture probabilities and the Hausdor� dimension
ωki(x) should sale when x −→ 0 or x −→ 1, respetively, as

ωki(x) ∼ x1−ρ and ωki(x) ∼ (1 − x)−ρ. (7.23)Using this ansatz and (7.20) the mean radius sales as
〈RT (r)〉 ≃ ℓ2−ρC, C =

∫ 1

0

dx (1 − x)ω(x), ω(x) =
∑

k

ωk,k−1(x). (7.24)Equations (7.23) and (7.22) ensure that the integral C is onvergent when ρ < 2.Equation (1.25) then implies that the Hausdor� dimension of the tree is given by
2 − ρ =

1

dH
. (7.25)For ρ = 2 we see that C is logarithmially divergent and this orresponds to an in�niteHausdor� dimension. Inserting (7.21) into the reursion Equation (7.14) for the twopoint funtions and expanding in ℓ−1 gives

ωki − ρωkiℓ
−1 − xℓ−1ω′

ki + γkiℓ
−1 +O(ℓ−2)

=
1

w2
ℓ−1
(

1 − w1 + 2w2 − w3

w2
ℓ−1 +O(ℓ−2)

)

×
[ D∑

j=k−1

wk,j+2−k

(

(j − i)ωji + iωj,j−(k−i) +O(ℓ−1)
)

+ℓ
(

w2x+ (−w3 + (k − i− 1)(w2 − w3))ℓ
−1
)(

ωki − ℓ−1ω′
ki + γkiℓ

−1 +O(ℓ−2)
)

+ℓ
(

w2(1 − x) + i(w2 − w3)ℓ
−1
)(

ωki + γkiℓ
−1 +O(ℓ−2)

)]

. (7.26)where the ′ denotes di�erentiation with respet to x and we have dropped the funtionargument x in an obvious way. The equation is trivially satis�ed in zeroth order of
ℓ−1. When we go to the next order we see that the following must hold

(2 − ρ)ωki =
1

w2

D∑

j=k−1

wk,j+2−k

(

(j − i)ωji + iωj,j−(k−i)

)

− wk

w2
ωki. (7.27)This eigenvalue equation may be rewritten as

Cω = w2(2 − ρ)ω (7.28)



7.3 Saling and the Hausdor� dimension 109where C is a `

D

2

´

×
`

D

2

´ matrix indexed by a pair of two indies ki with k > i, k =

2, . . . , D and ω is a vetor with two suh indies. The matrix elements of C are
Cki,jn = wk,j+2−k

(
(j − i) δin + iδn,j−(k−i)

)
− wkδkjδin. (7.29)We use the onvention that wi,j = 0 if i or j is less than 1 or greater than D. Thus,

w2(2 − ρ) is an eigenvalue of the matrix C and the assoiated eigenvetor must haveomponents ≥ 0. We now show that there is in general a unique solution to thiseigenvalue problem.Sine the only possibly negative elements of C are on the diagonal we an makethe matrix nonnegative by adding a positive multiple γ of the identity to both sidesof (7.28) and hoosing γ large enough.If enough of the weights wi,j are nonzero (w1,i > 0 for 2 ≤ i ≤ D and wj,3 > 0 for
2 ≤ j ≤ D− 1 is for example su�ient) then one an hek that the matrix C + γI isprimitive. Then, by the Perron�Frobenius theorem, it has a simple positive eigenvalueof largest modulus and its orresponding eigenvetor an be taken to have all entriespositive f. Lemma 6.1.3. Therefore this largest positive eigenvalue gives the ρ we areafter.7.3.1 An upper bound on the Hausdor� dimensionWe an get an upper bound on ρ by a straightforward estimate from (7.27). Theo�-diagonal terms in the sum are all nonnegative so we disregard them and get theinequality

ρ ≤ 2 −
(

k
wk,2

w2
− wk

w2

)

, k = 2, . . . , D. (7.30)Sine 1 < ρ ≤ 2 and for k ≥ 3

wk = kwk,2 +
k

2

k+1∑

i=1
i6=2, i6=k

wi,k+2−i > kwk,2 (7.31)the best we an get from this upper bound is when k = 2 whih yields



110 Chapter 7 Subtree struture probabilities and the Hausdor� dimension
ρ ≤ 2 − w2,2 − 2w1,3

w2,2 + 2w1,3
. (7.32)Now, 2 − ρ = 1

dH
and therefore, if w2,2 > 2w1,3, we obtain the upper bound

dH ≤ w2,2 + 2w1,3

w2,2 − 2w1,3
. (7.33)If w2,2 ≤ 2w1,3 the upper bound in (7.32) gives no information about the Hausdor�dimension. The ondition w2,2 > 2w1,3 means that splittings of verties of degree 2whih lengthen the tree are more frequent than the splittings of verties of degree 2whih inrease the branhing of the tree. It is interesting to note that this onditionbetween �strething� and branhing of verties of degree 2 is enough to provide a �niteHausdor� dimension.It is easy to verify that (7.33) is an equality if we hoose the weights suh that

wi,j = 0 if i 6= 1 or j 6= 1 with the exeption that w2,2 > 0. This ondition means thatwe only allow verties to evolve by link attahment, exept that we an split vertiesof degree 2. With this hoie the matrix C is lower triangular and we an simplyread the eigenvalues from the diagonal. Note that C is not primitive in this ase andtherefore we annot use the Perron�Frobenius theorem to determine whih eigenvaluegives the saling exponent. However, with these simple weights one an show expli-itly that there is preisely one eigenvetor with stritly positive omponents and theorresponding eigenvalue is the one that saturates the inequality in (7.33). Also notethat with this hoie we have set wD = 0 and sine the weights are linear, wi = ai+b,we have �xed a and b so that wi = 1− i
D . Therefore there is only one free parameterwhih we an hoose to be w2,2. Then we an write the Hausdor� dimension as

dH =
1 − 2/D

2w2,2 − (1 − 2/D)
(7.34)with

1

2
(1 − 2/D) < w2,2 < 1 − 2/D. (7.35)We see that for any D the Hausdor� dimension an vary ontinuously from 1 toin�nity.



7.3 Saling and the Hausdor� dimension 1117.3.2 Expliit solutions and numerial results for D = 3When the maximal degree is D = 3, the splitting weights are taken to be linear
wi = ai+ b and the partitioning weights uniform, it is easy to solve Equation (7.27)for the Hausdor� dimension . Sine the solution only depends on the ratio of theweights there is only one independent variable and we hoose it to be y := w3/w2where 0 ≤ y ≤ 2. The solution is

dH =
3(1 +

√
1 + 16y)

8y
(7.36)In Figure 7.7 we ompare this equation to results from simulations. The agreementof the simulations with the formula is good in the tested range 0.5 ≤ y ≤ 2. For smallervalues of y the Hausdor� dimension inreases fast and one would have to simulatevery large trees to see the saling.
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yFigure 7.7: Equation (7.36) ompared to simulations. The Hausdor� dimension, dH , isplotted against y = w3/w2. The leftmost data point is alulated from 50 trees with 50000verties and the others are alulated from 50 trees with 10000 verties.7.3.3 General mean �eld argumentOur argument to ompute the Hausdor� dimension relies on the reursion relationsfor the substruture probabilities, studied in Setion 7.2, whih are valid only whenthe splitting weights wi are linear funtions of the vertex degree i (wi = ai + b). Inthis ase the total probability weight W(T ) for a given tree T depends only on itssize ℓ (number of edges) and mean �eld arguments an be made exat.



112 Chapter 7 Subtree struture probabilities and the Hausdor� dimensionIn the general ase where the wi,j are arbitrary and the wi are not linear with i,these reursion relations are no longer exat. We an use a mean �eld argument andassume that they are still valid for large �typial� trees, provided that we replae inthese reursion relations the exat weights W (ℓ) + w1 = W(T ) by their mean �eldvalue for large trees
W (ℓ) + w1 −→ W(ℓ) =

∑

j

wjnℓ+1,j (7.37)where nℓ+1,j is the average number of i-verties in a tree with ℓ edges, studied inSetion 6.1. From the mean �eld analysis of Setion 6.4, we expet that these nℓ+1,jsale with ℓ as
nℓ+1,j ≃ ℓρj (7.38)with the vertex densities ρj given by the mean �eld equations (6.34, 6.35, 6.36) as theomponents of the eigenvetor ρ assoiated to the largest eigenvalue w of the matrix

B. Thus the mean �eld approximation amounts to replaing
W (ℓ) + w1 −→ W(ℓ) = w ℓ+ · · · (7.39)in the reursion relations of the previous setions, in partiular in the reursion relation(7.14) for the two point funtion qki.With this assumption, we an repeat the saling argument of Setion 7.3, and weend up with Equation (7.27), with the normalisation fator 1

w2
in the r.h.s. replaedby the mean �eld normalisation fator 1

w

(2 − ρ)ωki =
1

w

D∑

j=k−1

wk,j+2−k

(

(j − i)ωji + iωj,j−(k−i)

)

− wk

w
ωki . (7.40)This equation is still an eigenvalue equation of the form

Cω = w(2 − ρ)ω (7.41)where C is the (D2)× (D2) matrix with oe�ients given in (7.29).If we denote by χ the largest eigenvalue of this matrix C and if w is the largesteigenvalue of B then the Perron�Frobenius argument an be applied to show that χis nonnegative and that the eigenvetor ω has nonnegative omponents, whih is aonsisteny requirement for the argument, sine the ωki are resaled probabilities. We



7.3 Saling and the Hausdor� dimension 113end up with a mean �eld predition for the Hausdor� dimension of the simple form
dH =

1

2 − ρ
=
w

χ
. (7.42)General solution for D = 3In the D = 3 ase, the B and C matries are

B =






0 2w3,1 0

w2,1 w2,2 − 2w3,1 3w3,2

0 2w3,1 0




 , C =






w2,2 − 2w3,1 2w3,2 w3,2

w3,1 0 0

2w3,1 0 0




 (7.43)and we �nd

dH =
(w2,2 − 2w3,1) +

√
(w2,2 − 2w3,1)2 + 8w3,1(w2,1 + 3w3,2)

(w2,2 − 2w3,1) +
√

(w2,2 − 2w3,1)2 + 16w3,1w3,2

. (7.44)We have tested this formula when the partitioning weights wi,j are uniform. In this
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Figure 7.8: Equation (7.45) ompared to simulations. Eah data point is alulated from50 trees with 10000 verties.
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dH =

α−
√

α (α+ 24 + 24 β)

α−
√

α (α+ 16 β)
(7.45)where α =

w2

w1
and β =

w3

w1
. In Figure 7.8 we ompare this equation to results fromsimulations. There is a good agreement for small values of α and β, but the preisionof the numeris beomes poor for large values of α and β. This is expeted sine inthis ase, the trees will have a large Hausdor� dimension and one must go to verylarge trees to see the saling.



8Correlation between degreesof neigbouring vertiesConsider a tree of ℓ edges generated by the splitting proedure starting from thesingle vertex tree at time 0. We are interested in determining the density of edgeswhih have endpoints of degrees j and k in the limit when ℓ −→ ∞. We de�ne thisdensity in the following way. Distribute arrows uniformly at random to eah edge ofa tree and let ρ̄jk denote the average density of edges whih have an arrow pointingfrom a vertex of degree j to a vertex of degree k. A knowledge of the ρ̄jk allowsus to determine whether verties of high degree prefer to be neighbours of vertiesof high degree, in whih ase the tree is said to show assortative mixing, or whetherthey prefer to be neighbours of verties of low degree, in whih ase the tree is saidto show disassortative mixing. For instane, soial networks often show assortativemixing whereas biologial and tehnial networks tend to be disassortative [59℄.First note that the degree distribution of an endpoint of a randomly hosen edgein a graph is proportional to kρk rather than ρk. We therefore de�ne the densities
ρ̄k =

kρk
∑

i iρi
(8.1)for general graphs, and in the ase of trees ∑i iρi = 2. The amount of assortativemixing in a general graph is quanti�ed by a orrelation oe�ient r whih omparesthe densities ρ̄jk to densities in graphs where no orrelations are present, i.e. when115
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ρ̄jk = ρ̄j ρ̄k. The orrelation oe�ient is de�ned as

r =

∑D
j,k=1(j − 1)(k − 1)(ρ̄jk − ρ̄j ρ̄k)

∑D
j=1(k − 1)2ρ̄k −

(
∑D

k=1(k − 1)ρ̄k

)2 (8.2)where the denominator is hosen suh that r ∈ [−1, 1] [59℄. When r is negative thegraphs are disassortative and when r is positive they are assortative. Note that r = 0for graphs for whih ρ̄jk = ρ̄j ρ̄k and suh graphs are in general not onneted sine
ρ̄1,1 6= 0 if ρ̄1 6= 0. However, this does not hold in the other diretion; for instane,the preferential attahment model with linear attahment weights and D = ∞ has
r = 0 [59℄.For onveniene we �rst alulate the density of edges whih have endpoints ofdegrees j and k suh that the vertex of degree j is the one loser to the root. Thisdensity will be denoted by ρjk. It holds that ρ1k = 0 for all k, in general ρjk 6= ρkjand

ρ̄jk =
ρjk + ρkj

2
. (8.3)In the following setions we alulate ρjk using a saling argument and omparethe results in the ase D = 3 to results from simulations. We onlude the hapter bydisussing the amount of assortative mixing in the vertex splitting model. The modelis disassortative for the range of parameters we onsider exept in the speial ase ofthe preferential attahment model with linear splitting weights for whih r = 0.8.1 Calulation of ρjkTo arrive at the densities ρjk, we use the same labelling tehniques as in Chapter 7.To begin with, let us assume that the splitting weights are linear. De�ne

pjk(ℓ′1, . . . , ℓ
′
j−1; ℓ

′′
1 , . . . , ℓ

′′
k−1; s)as the probability that a vertex reated at time s is of degree k and has ℓ′′1 , . . . , ℓ′′k−1right trees and that the vertex to its left is of degree j with an ℓ′1 left tree and

ℓ′2, . . . , ℓ
′
j−1 right trees (exluding the right tree whih ontains s). Note that it issymmetri under permutations of both (ℓ′2, . . . , ℓ

′
j−1) and (ℓ′′1 , . . . , ℓ

′′
k−1) and

ℓ′1 + . . .+ ℓ′j−1 + ℓ′′1 + . . .+ ℓ′′k−1 = ℓ− 1.



8.1 Calulation of ρjk 117We derive reursion equations for pjk(ℓ′1, . . . , ℓ
′
j−1; ℓ

′′
1 , . . . , ℓ

′′
k−1; s) and all nontriv-ial equations are explained in Figures 8.1�8.5. To make the notation more ompatwe will write for i ≤ j

ℓi,j = ℓi, . . . , ℓj, and |ℓi,j | = ℓi + . . .+ ℓj .We an write the following reursions for going from time ℓ− 1 to time ℓ. Note that
s < ℓ in (8.4), (8.6) and (8.8).

p1k(ℓ′′1,k−1; s) =

1

W (ℓ− 1) + w1

“

k−1
X

i=1

W (ℓ′′i − 1)p1k(ℓ′′1,i−1, ℓ
′′
i − 1, ℓ′′i+1,k−1; s)

+ δk2w1pR(ℓ − 1; s) + δℓ1δk1w1

”

. (8.4)
p1k(ℓ′′1,k−1; ℓ) =

1

W (ℓ− 1) + w1

ℓ−1
X

s=0

D
X

i=k−1

(k − 1)wk,i+2−k

X

|ℓ̃1,i+1−k|=ℓ′′1 −1

p1i(ℓ̃1,i+1−k, ℓ′′1,k−1; s).(8.5)
pj1(ℓ

′
1,j−1; s) =

1

W (ℓ − 1) + w1

“

j−1
X

i=1

W (ℓ′i − 1)pj1(ℓ
′
1,i−1, ℓ

′
i − 1, ℓ′i+1,j−1; s)

+ (j − 1)wj,1pj−1(ℓ
′
1,j−1; s)

+

D
X

i=j−1

2wj,i+2−j

i − 1

j−2
X

p=1

j−1
X

n=p+1

X

|ℓ̃1,i+1−j |=ℓ′n−1

pi1(ℓ
′
1,n−1, ℓ̃1,i+1−j , ℓ

′
n+1,j−1; s),

+ (j − 1)

D
X

i=j

(i − j + 1)wj,i+2−j

i − 1

X

|ℓ̃1,i+1−j |=ℓ′1−1

pi1(ℓ̃1,i+1−j , ℓ
′
2,j−1; s)

”

, (8.6)
pj1(ℓ

′
1,j−1; ℓ) = 0. (8.7)

pjk(ℓ′1,j−1; ℓ
′′
1,k−1; s) =

1

W (ℓ − 1) + w1

“

j−1
X

i=1

W (ℓ′i − 1)pjk(ℓ′1,i−1, ℓ
′
i − 1, ℓ′i+1,j−1; ℓ

′′
1,k−1; s)
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+

k−1
X

i=1

W (ℓ′′i − 1)pjk(ℓ′1,j−1; ℓ
′′
1,i−1, ℓ

′′
i − 1, ℓ′′i+1,k−1; s)

+ (j − 1)wj,kpj+k−2(ℓ
′
1,j−1, ℓ

′′
1,k−1; s)

+
D

X

i=j−1

2wj,i+2−j

i − 1

j−2
X

p=1

j−1
X

n=p+1

X

|ℓ̃1,i+1−j |=ℓ′n−1

pik(ℓ′1,n−1, ℓ̃1,i+1−j , ℓ
′
n+1,j−1; ℓ

′′
1,k−1; s)

+ (j − 1)
D

X

i=j

i − j + 1

i − 1
wj,i+2−j

X

|ℓ̃1,i+1−j |=ℓ′1−1

pik(ℓ̃1,i+1−j , ℓ
′
2,j−1; ℓ

′′
1,k−1; s)

”

, (8.8)
= 1W (`� 1) + w1� k�1Xi=1 W (`00i � 1)

+ Æk2w1 + Æ`1Æk1w1
s s `00k�1 `00i � 1`001

s `� 1 s �`00k�1
`001

Figure 8.1: Illustration of Equation (8.4).
=

1

W (ℓ − 1) + w1

ℓ−1∑

s=0

D∑

i=k−1

(k − 1)wk,i+2−k

∑

ℓ̃1+...+ℓ̃i+1−k=ℓ′′1−1

s

ℓ′′1 − 1

ℓ̃1 ℓ̃i+1−k

ℓ′′2

ℓ′′k−1

ℓ

ℓ′′1

ℓ′′k−1

Figure 8.2: Illustration of Equation (8.5).
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pjk(ℓ′1,j−1; ℓ

′′
1,k−1; ℓ) =

1

W (ℓ − 1) + w1

ℓ−1
X

s=0

k−1
X

n=1

D
X

i=k−1

wk,i+2−k

×
X

|ℓ̃1,i+1−k|=ℓ′′n−1

pji(ℓ
′
1,j−1; ℓ

′′
1,n−1, ℓ̃1,i+1−k, ℓ′′n+1,k−1; s). (8.9)

+
D∑

i=j−1

2wj,i+2−j

i − 1

j−2
∑

p=1

j−1
∑

n=p+1

∑

ℓ̃1+...+ℓ̃i+1−j=ℓ′n−1

=
1

W (ℓ − 1) + w1

( j−1
∑

i=1

W (ℓ′i − 1)

+ (j − 1)wj,1

+ (j − 1)
D∑

i=j

i − j + 1

i − 1
wj,i+2−j

∑

ℓ̃1+...+ℓ̃i+1−j=ℓ′1−1

s

ℓ′j−1

ℓ′1

s

ℓ′j−1

ℓ′1
s

ℓ′i − 1 ℓ′j−1

ℓ′1

)

sℓ̃i+1−j

ℓ′1 − 1

ℓ̃1

ℓ′2

ℓ′j−1

s

p

ℓ′n−1 ℓ̃1

ℓ′n − 1

ℓ̃i+1−jℓ′1

ℓj−1 ℓn+1

Figure 8.3: Illustration of Equation (8.6).
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ℓ′1

ℓ′j−1

s

ℓ′′1

ℓ′′k−1

s

ℓ′′1

ℓ′′k−1

ℓ′1

ℓ′j−1

ℓ′i − 1

ℓ′1

ℓ′j−1 ℓ′′1

ℓ′′k−1
s

ℓ′1

ℓ′n−1

ℓj−1

ℓn+1

ℓ̃i+1−j

ℓ̃1

ℓ′′k−1

s

ℓ′′1

p

ℓ′n − 1

+

D∑

i=j−1

2

i − 1
wj,i+2−j

j−2
∑

p=1

j−1
∑

n=p+1

∑

ℓ̃1+...+ℓ̃i+1−j=ℓ′n−1

ℓ̃1

ℓ̃i+1−j

ℓ′2

ℓ′j−1

ℓ′1 − 1
ℓ′′1

ℓ′′k−1

s

ℓ′1

ℓ′j−1

s
ℓ′′i − 1

ℓ′′1

ℓ′′k−1

)

=
1

W (ℓ − 1) + w1

( j−1
∑

i=1

W (ℓ′i − 1)

+ (j − 1)wj,k

+ (j − 1)
D∑

i=j

i − j + 1

i − 1
wj,i+2−j

∑

ℓ̃1+...+ℓ̃i+1−j=ℓ′1−1

+
k−1∑

i=1

W (ℓ′′i − 1)

Figure 8.4: Illustration of Equation (8.8).



8.1 Calulation of ρjk 121
ℓ
′
1

ℓ′j−1 ℓ′′1

ℓ′′k−1
ℓ

=
1

W (ℓ − 1) + w1

ℓ−1∑

s=0

k−1∑

n=1

D∑

i=k−1

wk,i+2−k

∑

ℓ̃1+...+ℓ̃i+1−k=ℓ′′n−1

ℓ′n−1

s

ℓ′′1 ℓ′′n−1

ℓ′1

ℓ′′k−1

ℓ
′′
n+1

ℓ̃i+1−k

ℓ̃1

ℓ′′n − 1

Figure 8.5: Illustration of Equation (8.9).In deriving Equations (8.6) and (8.8) and the orresponding �gures, note that theindex p is introdued in the seond last diagram in eah �gure. The reason for this isthe following: even though pj1(ℓ
′
1, . . . , ℓ

′
j−1; s) and pjk(ℓ′1, . . . , ℓ

′
j−1; ℓ

′′
1 , . . . , ℓ

′′
k−1; s) aresymmetri under permutations of (ℓ′2, . . . , ℓ

′
j−1) it does matter where the edge goingfrom s towards the root, is loated. Therefore, we group together the balloons ounter-lokwise from s towards the rooted balloon and we group together the balloonslokwise from s towards the rooted balloon, one of the groups is possibly empty. Ifthe total number of balloons in the groups is i− 2 then there are i− 1 suh possibleon�gurations. In the equations we therefore divide by i − 1 and sum over all theon�gurations whih ontribute to the on�guration on the left of the equality sign.The index p in the sum is the loation of s lokwise from the rooted balloon. Notethat p an be no larger than j − 2 sine if it were larger, there would be no spae forthe balloons inside the dotted irle. Note that the balloons inside the dotted irleare always drawn lokwise from the vertex s. To ount the possibility that they areounter-lokwise from s we multiply by 2.Now average over the label s as before and get the following reursion, going fromtime ℓ to ℓ+ 1
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p1k(ℓ′′1,k−1) =

ℓ + 1

ℓ + 2

1

W (ℓ) + w1

“

k−1
X

i=1

W (ℓ′′i − 1)p1k(ℓ′′1,i−1, ℓ
′′
i − 1, ℓ′′i+1,k−1) + δk2w1pR(ℓ)

+ δℓ,0δk1w1 + (k − 1)

D
X

i=k−1

wk,i+2−k

X

|ℓ̃1,i+1−k|=ℓ′′1 −1

p1i(ℓ̃1,i+1−k, ℓ′′1,k−1)
”

.

pj1(ℓ
′
1,j−1) =

ℓ + 1

ℓ + 2

1

W (ℓ) + w1

“

j−1
X

i=1

W (ℓ′i − 1)pj1(ℓ
′
1,i−1, ℓ

′
i − 1, ℓ′i+1,j−1)

+ (j − 1)wj,1pj−1(ℓ
′
1,j−1)

+

D
X

i=j−1

2wj,i+2−j

i − 1

j−2
X

p=1

j−1
X

n=p+1

X

|ℓ̃1,i+1−j |=ℓ′n−1

pi1(ℓ
′
1,n−1, ℓ̃1,i+1−j , ℓ

′
n+1,j−1)

+ (j − 1)
D

X

i=j

i − j + 1

i − 1
wj,i+2−j

X

|ℓ̃1,i+1−j |=ℓ′1−1

pi1(ℓ̃1,i+1−j , ℓ
′
2,j−1)

”

.

pjk(ℓ′1,j−1; ℓ
′′
1,k−1) =

ℓ + 1

ℓ + 2

1

W (ℓ) + w1

“

j−1
X

i=1

W (ℓ′i − 1)pjk(ℓ′1,i−1, ℓ
′
i − 1, ℓ′i+1,j−1; ℓ

′′
1,k−1)

+

k−1
X

i=1

W (ℓ′′i − 1)pjk(ℓ′1,j−1; ℓ
′′
1,i−1, ℓ

′′
i − 1, ℓ′′i+1,k−1)

+ (j − 1)wj,kpj+k−2(ℓ
′
1,j−1, ℓ

′′
1,k−1)

+

D
X

i=j−1

2wj,i+2−j

i − 1

j−2
X

p=1

j−1
X

n=p+1

X

|ℓ̃1,i+1−j |=ℓ′n−1

pik(ℓ′1,n−1, ℓ̃1,i+1−j , ℓ
′
n+1,j−1; ℓ

′′
1,k−1)

+ (j − 1)

D
X

i=j

i − j + 1

i − 1
wj,i+2−j

X

|ℓ̃1,i+1−j |=ℓ′1−1

pik(ℓ̃1,i+1−j , ℓ
′
2,j−1; ℓ

′′
1,k−1)

+
k−1
X

n=1

D
X

i=k−1

wk,i+2−k

X

|ℓ̃1,i+1−k|=ℓ′′n−1

pji(ℓ
′
1,j−1; ℓ

′′
1,n−1, ℓ̃1,i+1−k, ℓ′′n+1,k−1)

”

.

Finally we de�ne the densities ρjk(ℓ) by averaging out the volume dependene of
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ρjk(ℓ) =

∑

ℓ′1+...ℓ′j−1+ℓ′′1 +...+ℓ′′
k−1=ℓ−1

pjk(ℓ′1, . . . , ℓ
′
j−1; ℓ

′′
1 , . . . , ℓ

′′
k−1)and similarly we denote the vertex degree density by

ρj(ℓ) ≡ ρℓ,j =
∑

ℓ1+...+ℓj=ℓ

pj(ℓ1, . . . , ℓj),f. Setion 6.1. We have the following reursion for the densities
ρjk(ℓ+ 1) =

ℓ+ 1

ℓ+ 2

1

W (ℓ) + w1

{

(ℓw2 − wj − wk + 2w1 − w2)ρjk(ℓ) + (j − 1)wj,kρj+k−2(ℓ)

+ (j − 1)

D∑

i=j−1

wj,i+2−jρik(ℓ) + (k − 1)

D∑

i=k−1

wk,i+2−kρji(ℓ)

+ δj1δℓ′′1 ,ℓ−1w1pR(ℓ) + δj1δℓ0w1

}for i, j ≥ 1. Now assume that ρjk(ℓ) = ρjk + rjkℓ
−1 + O(ℓ−2) and that a similarexpansion holds for ρj(ℓ). Expanding the above reursion in ℓ−1 gives

ρjk + rjkℓ
−1 +O(ℓ−2) =

(

1 − w1 + 2w2 − w3

w2
ℓ−1 +O(ℓ−2)

)

×
{(

1 +
−wj − wk + 2w1 − w2

w2
ℓ−1

)
(
ρjk + rjkℓ

−1 +O(ℓ−2)
)

+
ℓ−1

w2

[

(j − 1)wj,k

(
ρj+k−2 +O(ℓ−1)

)
+ (j − 1)

D∑

i=j−1

wj,i+2−j

(
ρik +O(ℓ−1)

)

+ (k − 1)

D∑

i=k−1

wk,i+2−k

(
ρji +O(ℓ−1)

)
]}

.This equation is trivially satis�ed in zeroth order of ℓ−1. When we go to the nextorder we get the following equation for the limits of the densities
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ρjk = −wj + wk

w2
ρjk + (j − 1)

wj,k

w2
ρj+k−2 + (j − 1)

D∑

i=j−1

wj,i+2−j

w2
ρik

+(k − 1)

D∑

i=k−1

wk,i+2−k

w2
ρji. (8.10)We an also arrive diretly at this equation by assuming that for large ℓ an equi-librium with small enough �utuations is established, and then perform the splittingproedure on this equilibrium. With the same methods, it is possible to derive anequation like (8.10) for the density ρj1,j2,...,jR

of linear paths of length R− 1 diretedtowards the root ontaining verties of degrees j1, . . . , jR. This would allow us toinvestigate how the orrelations fall of with distane R.Existene of solutions to Equation (8.10) an be established by the Perron�Frobeniusargument as in the previous setions. In the following subsetions we will �nd an ex-pliit solution for linear weights and disuss generalizations for non�linear weights.In both ases we ompare the results with simulations.
8.2 Solution in the simplest aseWhen D = 3, the splitting weights are linear and the partitioning weights uniform,we know that ρ1 = ρ3 = 2/7 and ρ2 = 3/7, see Chapter 6. Let y = w3/w2. Then thesolutions to Equation (8.10) are

ρ21 =
4(3 − y)

7(11 − 2y)
, ρ31 =

10

7(11 − 2y)
,

ρ22 =
4y2 − 12y + 105

7(2y + 7)(11 − 2y)
, ρ32 =

2(−8y2 + 18y + 63)

7(2y + 7)(11 − 2y)
,

ρ23 =
2(−4y2 + 20y + 21)

7(2y + 7)(11 − 2y)
, ρ33 =

8(3y − 14)

7(2y + 7)(2y − 11)
.

(8.11)



8.3 Results for non�linear weights 125Note that the following sum rules hold for the solutions
ρ21 + ρ31 = ρ1 = 2/7

ρ22 + ρ32 = ρ2 = 3/7

ρ23 + ρ33 = ρ3 = 2/7,

ρ21 + ρ22 + ρ23 = ρ2 = 3/7

ρ31 + ρ32 + ρ33 = 2ρ3 = 4/7.

(8.12)These relations show that there are only two independent link densities. We plot ρ21and ρ22 in Figure 8.6 and ompare to simulations.
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Figure 8.6: Two independent solutions given in (8.11) plotted against y = w3/w2 andompared to simulations. The two leftmost data points on eah line ome from simulationsof 50 trees with 50000 verties. The other data points ome from simulations of 50 treeswith 10000 verties.8.3 Results for non�linear weightsWe an generalize Equation (8.10) to a mean �eld equation, valid for arbitrary weights,by replaingw2, where it appears in a denominator, with w as we did with the equationfor vertex degree densities in Chapter 6. For D = 3 and uniform partitioning weightsthe two independent densities ρ21 and ρ22 are given by
ρ21 =

1

3

(3 + β) (7α− γ)

(2α− β − 1) (3α+ 2 β + γ + 6)
(8.13)
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Figure 8.7: A solution for the density ρ21 plotted as a funtion of β for a few values of α.Eah datapoint is alulated from simulations of 100 trees with 10000 verties.
ρ22 =

16

3

“

284 α2β
4
γ − 177 α5βγ + 3564 α3 + 18 α6γ + 161α β5γ − 873 γ + 11979 α2β3

−2259 α5 − 39 α6β − 207 α5γ + 6516 α2β4 − 5205 α5β − 1419 α4βγ + 996 αβ5

−5994 α4 − 892 α4β2γ + 1543 α2β5 − 18 α7 − 668 α3β4 + 324 α2γ + 909 αβ3γ

−2600 α5β2 − 975 α3β3 + 222 αβ6 − 1533 α3β2γ + 10206 α2β2 − 11799 α4β

−5300 α4β3 − 1521 α3βγ + 1899 α2β2γ + 1059α2 β3γ + 1269 α3β2 + 3240α2 β

+756 αβ
3

+ 4860 α
3
β + 6 β

6
γ − 11703 α

4
β

2
+ 1728α

2
βγ − 162 α

3
γ + 486α β

2
γ

+18 β
4
γ + 1530 αβ

4
+ 624α β

4
γ − 772 α

3
β

3
γ − 9 α

6
+ 24 β

5
γ

”.“

(3 α + 2 β + γ + 6)

×
“

11 α2 + 25 αβ + 5 αγ + 3 βγ + 12 α + 4 β2
”

(−α + γ) (1 − 2 α + β) (7 α + 2 β + γ)2
”where α =

w2

w1
, β =

w3

w1
and γ =

√

α (α+ 24 β + 24). These solutions are omparedto simulations in Figures 8.7 and 8.8. The other densities are obtained by using thesum rules (8.12).8.4 The orrelation oe�ientWe have alulated the orrelation oe�ient r in the ase of linear splitting weightsand D = 3. There are two independent parameters whih we take to be
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Figure 8.8: A solution for the density ρ22 plotted as a funtion of β for a few values of α.Eah data point is alulated from simulations of 100 trees with 10000 verties.
y = w3/w2 ∈ [0, 2] and z = w2,2/w2 ∈ [0, 1]. We �nd that

r = −18 z3 − 42 z2y − 27 z2 − 4 zy2 + 132 zy− 96 y + 4 y2

(3 z − 5) (3 z + 2 y − 12) (6 z − 2 y − 9)
(8.14)and we plot r in Fig. 8.9 as a funtion of y and z.The trees show disassortative mixing exept when y = z = 0 in whih ase r = 0.
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0Figure 8.9: The orrelation oe�ient r plotted as a funtion of y = w3/w2 and z = w2,2/w2in the ase of D = 3 and linear splitting weights.



128 Chapter 8 Correlation between degrees of neigbouring vertiesThis orresponds to the speial ase of the preferential attahment model. We haveheked that for D = 4, the preferential attahment model again has r = 0. It wouldbe interesting to hek whether this holds for all values of D. In pratise, the questionof assortative mixing is more relevant for large D and it would be desirable to obtainsuh general results.



9Relation to other models ofrandom treesIn this hapter we disuss how the vertex splitting model is related to other modelsof random trees. It has already been noted that the preferential attahment model isa speial ase whih orresponds to hoosing the only nonzero weights to be wk,1 =

w1,k, 2 ≤ k ≤ D. In the following setions we introdue the alpha model and itsgeneralization, the alpha�gamma model. We demonstrate how they arise as a ertainlimiting ase of the vertex splitting model and disuss how they are onneted to thetree models from Part I. We analyse some properties of these models and provideresults whih support some of the saling assumptions from the previous hapters.9.1 The alpha modelThe alpha model is a one parameter model of growing, rooted, binary trees whihwas introdued by D. Ford in [43℄ as a model of phylogeneti trees. Below, we willstate the growth rules of the alpha model and explain how it is related to both thevertex splitting model and the generi phases of the models from Part I. We provethat the �nite volume measures generated by the growth rules onverge to a measureon in�nite graphs, and we alulate the annealed Hausdor� dimension with respetto the in�nite volume measure as de�ned in Equation (1.21). It turns out that theannealed Hausdor� dimension agrees with the values obtained by Equation (7.44).129



130 Chapter 9 Relation to other models of random treesThe root and verties of degree 3 will be referred to as internal verties and vertiesof degree 1 (besides the root) will be referred to as leaves. Denote the set of rooted,planar trees on n leaves by Tn and in a tree τ denote the number of leaves by l(τ).The model is de�ned by probability distributions πα,n on Tn, for n ≥ 1 and 0 ≤ α ≤ 1,onstruted in the following reursive way by a growth rule.
• Assign probability one to the unique trees in T1 and T2.
• Given πα,n for some n ≥ 2, πα,n+1 is generated by �rst seleting a tree τ ∈ Tnaording to πα,n.
• Next an individual edge (a, b) is seleted from τ with probability α/(n − α) if
a and b are internal verties and with probability (1 − α)/(n − α) if one is aninternal vertex and the other a leaf.

• The edge (a, b) is removed from τ and two new verties c and d are introduedalong with the edges (a, c), (c, b) and (c, d). Equal probability is assigned to leftand right branhing of the new edge (c, d).One an think about this proedure as grafting a new edge to an existing edge in τ ,see Fig. 9.1.The alpha model is equivalent to a slightly modi�ed version of the vertex splittingmodel with the following hoie of weights. Consider the ase D = 3 and hoose
w1 = 1 − 3α

2
, w3,2 =

α

2
and w3,1 = ∞. (9.1)

dc

b

a
α

1 − α

d
c

a

b

Figure 9.1: The grafting proess. Left: The edge (a, b) is seleted with probability weight
1 − α. Right: The edge (a, b) is seleted with probability weight α. The seleted edge isremoved, two new verties c and d and three new edges are added as shown in the �gure.The root is indiated by irled vertex.



9.1 The alpha model 131We modify the model by assigning a weight α
2 (instead of w1) to splitting the root.As the tree grows large it beomes very improbable to split the root and thereforewe expet this to play no role in the alulation of asymptoti properties suh as thevertex degree distribution and the Hausdor� dimension. The relation between thegrafting proess of the alpha model and the above splitting operations is desribed inFig. 9.2. Note from Equation (9.1) that for 2/3 < α ≤ 1, w1 beomes negative whihmeans that the vertex splitting desription breaks down. However, even though w1is a negative weight, the total probability of the proess whih involves w1 splittings(see Fig. 9.2, top) is still nonnegative sine w2,1 + w3,2 > 0.The alpha model is also related to the models of generi aterpillars and generitrees, whih were disussed in Part I. The ase α = 1 orresponds to the generiaterpillars obtained by hoosing the branhing weights w1 = w3 = 1 and w2 = 0.In the ase α = 1/2 the growth proess does not distinguish between leaves andinternal edges and therefore it generates the uniform measure on binary trees. Thisorresponds to generi trees de�ned by the branhing weights w1 = w3 = 1 and

w2 = 0. We know from Part I that in the generi phase of both of these models, the�nite volume measures onverge to measures onentrated on the set of trees withpreisely one in�nite spine having �nite outgrowths. It is therefore reasonable toonjeture that the same applies in the alpha model, at least for 1/2 ≤ α ≤ 1. In thenext setion we will prove that this is indeed true, and holds for 0 < α ≤ 1.
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Attaching to an internal edge

Attaching to a leaf

w3,12,1  3,2
w    + w

1 − α

αFigure 9.2: The relation between the alpha model and the vertex splitting model explained.Sine w1,3 = ∞ a vertex of degree 2 splits immediately, with probability one, to a vertex ofdegree 1 and a vertex of degree 3 and the intermediate state is not realized.
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τ0

τ2τ1

Figure 9.3: An example of a tree τ0 whih has a root indiated by a irled vertex. Thetree τ0 branhes at the nearest neighbour of the root to two subtrees, τ1 to the left and τ2to the right as is indiated by the dotted lines.9.1.1 Convergene of the �nite volume measuresThe alpha model has a property alledMarkovian self-similarity [43℄ whih is essentialin the indutive proof of the theorem in this setion. Markovian self-similarity meansthat there exists a funtion qα(·, ·), whih is alled the �rst split distribution, suhthat for every �nite tree τ0 whih branhes at the nearest neighbour of the root to aleft tree τ1 and a right tree τ2 (see Fig. 9.3) the following holds
πα,l(τ0)(τ0) = qα(l(τ1), l(τ2))πα,l(τ1)(τ1)πα,l(τ2)(τ2). (9.2)In words, this says that qα(n1, n2) is the probability of a tree branhing to subtreesof sizes n1 and n2. Furthermore, given that the subtrees are of these sizes they aredistributed independently by πα,n1 and πα,n2 . The funtion qα is expliitly known [43℄and is given by

qα(n1, n2) =
n!Γα(n1)Γα(n2)

n1!n2!Γα(n)

(
α

2
+

(1 − 2α)n1n2

n(n− 1)

) (9.3)where n = n1 + n2,
Γα(n) = (n− 1 − α)(n− 2 − α) · · · (2 − α)(1 − α), and Γα(1) = 1. (9.4)Using this property we an prove the following theorem.Theorem 9.1.1 Let 0 < α ≤ 1. The measures πα,n, viewed as probability measureson Γ, onverge weakly, as n −→ ∞, with respet to the metri d de�ned in (3.4)1, toa probability measure πα on the set of in�nite trees. The measure πα is onentrated1Sine the degree of verties is ≤ 3 it is equivalent to work with the standard metri used in [65℄.It is de�ned as in (3.4), replaing LR with BR.



9.1 The alpha model 133on the set of trees with exatly one in�nite rooted spine having �nite outgrowths whihare independently distributed by
µα(τ) =

αΓα(l(τ))

l(τ)!
πα,l(τ)(τ). (9.5)The probabilities of right and left branhing of outgrowths are equal.Proof Let T (R) be the set of rooted, binary trees of height R. To prove the existeneof πα, it is su�ient to show that for any R ≥ 1 and any τ0 ∈ T (R) the sequene

πα,n({τ |BR(τ) = τ0}) ≡ π(R)
α,n(τ0) (9.6)onverges to a limit π(R)

α (τ0) as n −→ ∞, .f. Setion 1.3.2. We show this by indutionon R. For R = 1 this is trivial sine B1(τ) ∈ T (1) for all τ . Now assume that for some
R and all τ ∈ T (R), π(R)

α,n(τ) onverges as n −→ ∞. Choose a tree τ0 ∈ T (R+1) andwithout loss of generality, assume it branhes at the nearest neighbour of the root toa left tree τ1 ∈ T (R) and a right tree τ2 ∈ T (S) (see Fig. 9.3) where S ≤ R. Then, byEquation (9.3),
π(R+1)

α,n (τ0) =
∑

n1+n2=n

qα(n1, n2)π
(R)
α,n1

(τ1)π
(R)
α,n2

(τ2)

=
n!

Γα(n)

(α

2

∑

n1+n2=n

Γα(n1)Γα(n2)

n1!n2!
π(R)

α,n1
(τ1)π

(R)
α,n2

(τ2)

+
1 − 2α

n(n− 1)

∑

n1+n2=n

Γα(n1)Γα(n2)

(n1 − 1)!(n2 − 1)!
π(R)

α,n1
(τ1)π

(R)
α,n2

(τ2)
)

.(9.7)If S < R then π
(R)
α,n2(τ2) = 0 when n2 > l(τ2) and it is obvious from the indutionhypothesis that π(R+1)
α,n (τ0) onverges. Therefore assume that S = R.Note that in (9.7) it always holds that either n1 ≤ n− 1 and n2 ≤ n or n2 ≤ n− 1and n1 ≤ n. Therefore we have the upper bound
π(R+1)

α,n (τ0) ≤
n!

Γα(n)

∑

n1+n2=n

Γα(n1)Γα(n2)

n1!n2!
.Terms in the sums in (9.7) for whih n1 ≥ n

2 and n2 > A or n2 ≥ n
2 and n1 > Awhere A > 1 is some onstant are therefore bounded from above by
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2n!

Γα(n)

∑

n1+n2=n
n1≥n/2,n2>A

Γα(n1)Γα(n2)

n1!n2!
≤ 2n!Γα([n/2])

Γα(n)[n/2]!

∞∑

n2=A

Γα(n2)

n2!

≤ C

∞∑

n2=A

Γα(n2)

n2!
−−−−→
A→∞

0 (9.8)where C is a onstant. The remaining ontribution to (9.7) is from terms where
n1 ≥ n

2 and n2 < A or n2 ≥ n
2 and n1 < A. Notie that the seond term in thatontribution to (9.7) will be of one order lower in n than the �rst term. Thereforeit is enough to show that the �rst term onverges as n −→ ∞ sine then the seondterm learly onverges to zero. The ontribution to the �rst term is

n!

Γα(n)

α

2

2∑

i=1

∑

n1+n2=n
nj≤A,j 6=i

Γα(n1)Γα(n2)

n1!n2!
π(R)

α,n1
(τ1)π

(R)
α,n2

(τ2)

−−−−→
n→∞

1

2

2∑

i=1
j 6=i

π(R)
α (τi)

A∑

m=1

αΓα(m)

m!
π(R)

α,m(τj)

−−−−→
A→∞

1

2

2∑

i=1
j 6=i

π(R)
α (τi)

∞∑

m=1

αΓα(m)

m!
π(R)

α,m(τj). (9.9)In the �rst step we used the indution hypothesis. This is the limit of π(R+1)
α,n (τ0) as

n −→ ∞. The fat that the sum in (9.8) onverges to zero as A −→ ∞ proves thatthe measure is onentrated on the set of trees with exatly one in�nite spine. Thelast sum in (9.9) shows that the distribution of the �nite outgrowths is given by µα.
�9.1.2 The annealed Hausdor� dimensionIn [43℄, Ford proves that for 0 < α ≤ 1, the expeted distane of a random leaf ina tree hosen from the alpha model with n leaves is O(nα). This means that theHausdor� dimension, as de�ned in (1.25), of the alpha model is dH = 1/α. Indeed,by plugging the weights (9.1) into Equation (7.44) we �nd that

dH =
w2,1 + 3w3,2

2w3,2
= 1/α (9.10)



9.1 The alpha model 135whih supports the validity of the formula (7.44). In this setion we use the resultsof Theorem 9.1.1 to prove that the annealed Hausdor� dimension with respet to themeasure πα equals 1/α whih demonstrates that the two de�nitions of the Hausdor�dimension, (1.21) and (1.25), agree for the alpha model.Theorem 9.1.2 For 0 < α ≤ 1, the annealed Hausdor� dimension with respet to
πα is

d̄H = 1/α. (9.11)Proof We need to analyse the large R behaviour of 〈|BR|〉πα
. Let τ be a �niteoutgrowth from the spine and take the unique vertex ommon to τ and the spine tobe the root of τ . It is learly su�ient to show that

〈|BR(τ)|〉µα
∼ R1/α−1 (9.12)as R −→ ∞ sine the outgrowths from the spine are i.i.d. De�ne the probabilitygenerating funtion

fR(z) =

2R−1
∑

i=1

µα({τ | |BR(τ)| = 2i− 1})z2i−1. (9.13)Consider the ontribution to (9.13) from trees on n leaves and de�ne
An,R(z) =

2R−1
∑

i=1

α
Γα(n)

n!
πα,n(τ | |BR| = 2i− 1)z2i−1 (9.14)and the orresponding generating funtion

GR(z, ζ) =

∞∑

n=1

An,R(z)ζn. (9.15)It then follows that
〈|BR|〉µα

= ∂zfR(z)|z=1 = ∂zGR(z, 1)|z=1. (9.16)Using the Markovian self�similarity property of the alpha model we an derive thefollowing reursion
A1,R(z) = αz (9.17)



136 Chapter 9 Relation to other models of random treesand for n ≥ 2

An,R(z) = δR,1zα
Γα(n)

n!
+ z

2R−1
∑

i=2

α
Γα(n)

n!

∑

n1+n2=n

qα(n1, n2)

×
∑

j+k=i

1≤j,k≤2R−2

πα,n1(|BR−1| = 2j − 1)πα,n2(|BR−1| = 2k − 1)z2j−1z2k−1

= δR,1zα
Γα(n)

n!
+ z
(1

2

∑

n1+n2=n

An1,R−1(z)An2,R−1(z)

+
1 − 2α

α

1

n(n− 1)

∑

n1+n2=n

n1An1,R−1n2An2,R−1

)

.Writing the above reursion in terms of the generating funtion GR one �nds
G1(z, ζ) = z

∞∑

n=1

α
Γα(n)

n!
ζn = z (1 − (1 − ζ)

α
) (9.18)and for R > 1

GR(z, ζ) = z

(

αζ +
1

2
(GR−1(z, ζ))

2
+

1 − 2α

α

∫ ζ

0

∫ ζ′

0

(∂ζ′′GR−1(z, ζ
′′))

2
dζ′′dζ′

)

.(9.19)It is straightforward to verify that for all R
GR(1, ζ) = 1 − (1 − ζ)α. (9.20)De�ne VR(ζ) = ∂zGR(z, ζ)|z=1. Di�erentiating the reursion (9.19) with respet to zand putting z = 1 one then gets
V1(ζ) = 1 − (1 − ζ)α (9.21)and for R > 1

VR(ζ) = (1−(1−ζ)α) (1 + VR−1(ζ))+2(1−2α)

∫ ζ

0

∫ ζ′

0

(1−ζ′′)α−1∂ζ′′VR−1(ζ
′′)dζ′′dζ′.(9.22)Di�erentiating (9.22) twie one �nds that

V ′′
R+1 = α(1−α)(1− ζ)α−2(1+VR)+2(1−α)(1− ζ)α−1V ′

R +(1− (1− ζ)α)V ′′
R (9.23)



9.1 The alpha model 137and the initial onditions
VR(0) = 0 and V ′

R(0) = α for all R (9.24)follow from (9.21) and (9.22). De�ne the generating funtion
Qx(ζ) =

∞∑

R=1

VR(ζ)xR. (9.25)From (9.23) we get the di�erential equation
((

1

x
− 1

)

(1 − ζ)−α + 1

)

(1− ζ)2Q′′
x − 2(1−α)(1 − ζ)Q′

x −α(1− α)Qx =
α(1 − α)

1 − x(9.26)with initial onditions
Qx(0) = 0 and Q′

x(0) =
αx

1 − x
. (9.27)Let y(ζ) = −(1− ζ)α( 1

x −1)−1 and de�ne Px(y(ζ)) = Qx(ζ). Then Px(y) satis�es thedi�erential equation
α

1 − α
y(y − 1)P ′′

x + (y + 1)P ′
x − Px =

1

1 − x
(9.28)with initial onditions

Px

(
x

x− 1

)

= 0 and P ′
x

(
x

x− 1

)

= 1 (9.29)whih is equivalent to (9.26) and (9.27). Equation (9.28) is an inhomogeneous, hy-pergeometri di�erential equation whih has the general solution
Px(y) = C1(x) (y + 1) + C2(x)y

1/αF

(
2 − α

α
,
1 − α

α
,
α+ 1

α
; y

)

− 1

1 − x
, (9.30)where F is a hypergeometri funtion and C1(x), C2(x) are funtions independent of

y, see e.g. [25, Chapter 9, �10℄. Thus
Qx(1) = Px(0) = C1(x) −

1

1 − x
. (9.31)



138 Chapter 9 Relation to other models of random treesWe use the initial onditions on Px to �nd C1(x) and get
C1(x) =

1

(αx − 2x + 1)F
`

2−α
α

, 2, 1+α
α

; 1 − x
´

+ (2 − α)x(2x − 1)F
`

2
α

, 2, 1+α
α

; 1 − x
´

×
(

2Γ
(

1
α

)2

Γ
(

2−α
α

)x
2α−1

α (1 − x)−1/α + (αx + 1)F

(
2 − α

α
, 2,

1 + α

α
; 1 − x

)

−(2 − α)xF

(
2

α
, 2,

1 + α

α
; 1 − x

))

=
2Γ
(

1
α

)2

Γ
(

2−α
α

) (1 − x)−1/α
(

1 +O((1 − x)1/α)
)

.This shows that
〈|BR|〉µα

= ∂zGR(z, 1)|z=1 = VR(1) ∼ R1/α−1 (9.32)and thus
d̄H = 1/α. (9.33)

�9.2 The alpha�gamma modelA generalization of the alpha model to a two parameter model of trees was introduedin [28℄ in the so alled alpha�gamma model. A new step was added to the growthproess, allowing links to be attahed to verties and thereby inreasing their degrees.The parameters of the models are positive numbers α and γ obeying 0 ≤ γ ≤ α ≤ 1and the growth rules are the following. Graft a new edge to either side of an internaledge with probability weight γ, to either side of a leaf with probability weight 1 − αand anywhere to a vertex of degree k ≥ 3 with probability weight (k − 2)α − γ.This growth proess generates a probability measure on trees with n leaves whih wewill denote by πα,γ,n. When α = γ we reover the alpha model i.e. πα,α,n = πα,n.The alpha�gamma model is Markovian self�similar [28℄ and we denote the �rst splitdistribution by qα,γ,n.The above growth rules an be obtained from the rules of the vertex splittingmodel as in the ase of the alpha model. The nonzero weights are then
w1 = 1 − 3α

2
, w3,1 = ∞, (9.34)
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wk,2 =

α

2
and wk+1,1 =

2((k − 2)α− γ)

k
for k ≥ 3. (9.35)In [28℄ it is remarked that for γ = 1−α the ontinuum limit of the alpha�gammamodel is equivalent to the stable tree of Duquesne and Le Gall [34℄ with parameter

1/α. The stable trees with parameter 1/α an be viewed as the ontinuum limit ofa size onditioned ritial Galton�Watson proess with o�spring probabilities de�nedby (3.22) with β = 1 + 1/α and w1 = wc.The alpha�gamma model also provides a onnetion between the vertex splittingmodel and the ritial line in the equilibrium statistial mehanial model of ater-pillars from Part I. As noted in [28℄, the hoie α = 1 and 0 < γ ≤ 1 yields a modelof growing aterpillars with a �rst split distribution
q1,γ(n1, . . . , nk) =







γΓγ(k − 1)/(k − 1)! if 2 ≤ k ≤ n− 1 and ni = n− k + 1,
nj = 1, i 6= j, for some i,

γΓγ(n− 1)/(n− 2)! if k = n and (n1, . . . , nk) = (1, . . . , 1),
0 otherwise. (9.36)It is straightforward to prove that π1,γ,n onverges weakly as n −→ ∞ to a measure

π1,γ whih is onentrated on the set of in�nitely long aterpillars and that the degrees
k on the spine are independently distributed by

γΓγ(k − 2)/(k − 2)!. (9.37)The measure π1,γ is the same measure as is obtained for the equilibrium statistialmehanial model of aterpillars with the branhing weights (2.41), and β = γ + 2.Theorems 2.4.2 and 2.4.3 therefore apply and we �nd that the Hausdor� dimension ofthe alpha-gamma model with α = 1 is π1,γ�almost surely dH = 1/γ and the spetraldimension is π1,γ�almost surely ds = 2/(1 + γ).We onlude this hapter by summarizing in a diagram the relation between themodels presented in the thesis.
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Figure 9.4: Relation between the models presented in the thesis. The vertex splittingmodel is represented by a ube. The left side of the ube ontains the preferential attahmentmodel. The front side of the ube is the limiting ase of the alpha�gamma model, and thespeial ase of the alpha-model is represented by a thik line on the front�right edge. Themodels of Part I interset the front�right edge in various plaes as indiated. ESM standsfor equilibrium statistial mehanis and �uto� models� refers to the models disussed inSetion 2.5 where K is the maximum vertex degree in the outgrowths .



10ConlusionIn the seond part of the thesis we introdued a new model of growing random trees,referred to as the vertex splitting model. We analyzed some properties of large treessuh as the vertex degree distribution, orrelations between neighbouring verties andthe Hausdor� dimension. Rigorous results were presented in the ase of linear splittingweights wi = ai+ b and the ase of more general weights was studied by a mean �eldassumption whih was supported by simulations. It would be desirable to extend therigorous alulations for linear weights to the more general ase and thereby on�rmthe observed mean �eld behaviour.The study of the degree distribution involved proving onvergene of the expe-tation value of the relative number of verties of a given degree. It is possible tostrengthen the notion of onvergene by showing that the vertex degree densitiesonverge almost surely to their limits. This an presumably be done using resultson generalized Pólya urn models as is done in the ase of random reursive trees(preferential attahment) in [49℄.It is an interesting problem to establish weak onvergene of the �nite volumemeasures νℓ, generated by the vertex splitting proedure, to a measure on in�nitetrees. This was done in Setion 9.1 for the speial ase of the alpha model. It wasshown that the in�nite volume measure is onentrated on the set of trees onsistingof exatly one in�nite spine with outgrowths whih are �nite and i.i.d. Similar resultsare expeted to hold in the alpha�gamma model and a natural next step would be toexamine this in detail. The proof of Theorem 9.1.1 relied heavily on the Markovianself�similarity property of the alpha model, whih does not seem to be present in141



142 Chapter 10 Conlusiongeneral in the vertex splitting model. Therefore, a di�erent approah is required inthe vertex splitting model.If the onvergene of the measures is established, one an study properties of thein�nite volume measure, suh as the Hausdor� dimension and the spetral dimension.In Theorem 9.1.2, the annealed Hausdor� dimension of the alpha model was shown tobe d̄H = 1/α. In the ase of the alpha�gamma model with α = 1 it was shown, usinga onnetion to the aterpillar model from Part I, that dH = 1/γ and ds = 2/(1 + γ)almost surely. In this ase, Equation (1.23) relating dH and ds holds and it wouldbe interesting to examine whether the relation holds in general in the vertex splittingmodel. A �rst approah is to use Equation (7.28), for the Hausdor� dimension, andompare it to numerial alulations of the spetral dimension.Another notion of onvergene of graphs is the so�alled ontinuum limit or salinglimit, obtained by shrinking the edges of a graph while inreasing their number. Morepreisely, a graph GN of volume N is viewed as a metri spae with the graph metri
dGN

. Then, for a suitable onstant γ, an almost sure onvergene of (GN , N
−γdGN

)to a metri spae (G, d) is established in the Gromov�Hausdor� sense [44℄. The studyof onvergene in this approah and properties of the limiting objets has been anative area of researh in the past two deades, boosted by Aldous' de�nition of theontinuum random tree in 1991 [4℄. Sine then, muh work has been done on treesand planar maps. More details may be found in [55℄ and the referenes therein.In the speial ase of the alpha model and the alpha�gamma model, the ontinuumlimit has been onstruted ( [28,45℄ respetively) in the ontext of fragmentation pro-esses [16℄. It is shown that growth rules of the trees are in one-to-one orrespondenewith disloation measures of homogeneous fragmentation proesses. An interestingquestion is whether the same applies in the vertex splitting model. A promising toolto answer this question is the volume distribution funtion pk(n1, . . . , nk). A posi-tive answer would determine whether the vertex splitting model falls into the alreadyknown ategories of disloation measures for self-similar growing trees or if new lasseswould be disovered. The latter result would indiate a riher universality lass stru-ture of the vertex splitting model whih inludes other previously studied models asspeial ases.
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