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Abstract

In this thesis we study two models of random trees. The first model is an equilibrium
statistical mechanical model of trees where the action is given by a sum over the
vertices and depends only on their degrees. We consider two classes of such trees:
caterpillars which are trees with the property that all vertices of degree greater than
one form a simple path, and planar trees, which are often referred to as branched
polymers. The purpose of this study is to characterize the phase structure of the
models with a special emphasis on describing a phase where a vertex of infinite degree
emerges in the thermodynamic limit. We show that both classes of trees exhibit two
phases, an elongated phase and a condensed phase. We prove convergence of the finite
volume Gibbs measures to a measure on the set of infinite trees. In the elongated
phase the measure is concentrated on the set of trees with exactly one path from a
given vertex to infinity and in the condensed phase it is concentrated on the set of
trees with exactly one vertex of infinite degree. We conclude the discussion of each
class by calculating the Hausdorff and spectral dimension in both phases.

The second model we consider is a new model of growing random trees, referred
to as the vertex splitting model. In each time step, the trees are grown by selecting a
vertex and splitting it into two vertices which are joined by a new edge. The model
reduces, in special cases, to the preferential attachment model, Ford’s alpha model
for phylogenetic trees and its generalization the alpha—gamma model. We develop a
mean field theory for the vertex degree distribution, prove that the mean field theory
is exact in some special cases and check that it agrees with numerical simulations in
general. We construct certain correlation functions which enable us to calculate the
Hausdorff dimension of the trees. The Hausdorff dimension depends on the parameters
of the model and can vary from one to infinity. We study correlations between degrees
of neighbouring vertices and compare the result to graphs where no correlations are
present. We conclude by showing how the vertex splitting model is related to other

models of random trees and provide new results on the alpha model.

vii



Agrip (in Icelandic)

Vid rannsokum tvo likon af slembitrjam. Fyrra likanid er safnedlisfraedilikan trjaa
bar sem orkan er gefin med summu yfir hniita og er einungis hao stigi peirra. Vid
skodum tvo sofn trjda: margfetiur, sem eru tré med pann eiginleika ad allir hnutar
af stigi heerra en einn mynda einfaldan veg og sléttutré. Tilgangur rannséknarinnar
er ad lysa mismunandi f6sum likansins og sérstok dhersla er 16g0 4 a0 lysa fasa par
sem hnitur af 6endanlegu stigi verdur til begar steerd trjanna stefnir 4 6endanlegt.
Vid synum ad baedi séfnin hafa tvo fasa sem vid kollum langan fasa og péttan fasa.
Vio sénnum ad Gibbs malin, 4 endanlegum mengjum trjaa, eru samleitin og stefna
4 mal 4 mengi 6endanlegra trjaa. I langa fasanum hefur malid stod 4 mengi trjaa
sem innihalda nakvaemlega einn veg fra gefnum hnutpunkti at { 6endanlegt en i bétta
fasanum hefur méalid stod 4 mengi trja sem innihalda nadkvaemlega einn hnatpunkt af
oendanlegu stigi. Vid ljukum umradunni um hvort safn fyrir sig med pvi ad reikna
Hausdorff- og litrofsvidd beggja fasa.

Sidara likanid sem vid skodum er nytt likan af vaxandi slembitrjam sem vid nefnum
hnataskiptingalikanid. 1 hverju timaskrefi, vaxa tréin med peim haetti ad hnatpunktur
er valinn af handahofi og honum skipt i tvo hnuta sem tengdir eru med nyjum legg.
Likanid inniheldur sem sértilfelli viohengilikanid, alfalikan Fords af préun tegunda og
alhafingu bess alfa gammalikanid. Vid reiknum hnutastigsdreifingu i storum trjam
med medalsviosfraedi, sonnum réttmaeti medalsvidsfraedinnar i sértilfellum en stydjum
almenna tilvikid med tolvuhermunum. Vid smidum akvedin fylgnifoll sem gera okkur
kleift a0 reikna Hausdorffvidd trjanna. Hausdorffviddin er had stikum likansins og
getur tekid 6ll gildi 4 bilinu einn upp 1 6endanlegt. Vid reiknum fylgni milli hnitastigs
neestu nagranna og berum saman vido net par sem engin fylgni er til stadar. Vid
ljukum ritgerdinni med pvi ad bera hnutaskiptingalikanid saman vid 6nnur likén af

slembitrjdm og sénnum m.a. nyjar nidurstédur um alphalikan Fords.
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Introduction

1.1 Background

Random graphs are used in many branches of science to describe relationships be-
tween various entities and to model physical objects. The former case includes social
networks [2], phylogenetic trees [5,43,45], the world-wide web [3] and much more. The
latter case includes discrete objects such as macromolecules [33] and branched poly-
mers [2]. The graphs can also serve as a mathematical tool to approximate continuous
objects, an example of this being triangulations of manifolds in quantum gravity, see
e.g. [8].

Random trees are random graphs which have, for example, been used to model
family trees and evolving populations [46], phylogenetic trees [5,43,45], fragmenta-
tion and coagulation processes [16] and more. Trees are also of theoretical impor-
tance in the research of more general random graphs. Planar trees, for instance,
encode information on folded RNA molecules through their connection with planar
arch structures [33] and labelled trees are important in the study of the statistics of
planar maps and their scaling limits [56,57] via Schaeffer’s bijection [61]. Planar maps
are a prominent tool in one approach to quantum gravity. A simple special case of
Schaeffer’s bijection is given in [39] between generic trees and 2D causal dynamical
triangulations [11].

In this thesis we study two types of models of random trees. In Part I we consider
an equilibrium statistical mechanical model of two different classes of trees where the

action is given by a sum over the vertices of a tree and depends only on their degrees.
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The first class of trees we consider are so called caterpillars which are trees with the
property that all vertices of degree greater than one form a simple path. The second
class we consider contains all planar trees, which are often referred to as branched
polymers. The purpose of this study is to give a complete characterization of the
phase structure of the models with a special emphasis on describing a phase where
vertices of infinite degree emerge in the thermodynamic limit. The main motivation
is to solve the model of branched polymers and the model of caterpillars is a step
towards that solution. Both models have been analysed extensively before; although
the caterpillar model has usually been studied in a different context.

The equilibrium statistical mechanical model of branched polymers was introduced
by Meir and Moon in 1978 [58] under the name simply generated trees. They derived
the asymptotic behaviour of the finite volume partition function under certain as-
sumptions on the parameters of the model. The model, as considered in the present
context, was first studied by Ambjgrn et al. in the late 1980’s in the papers [6,7].
In 1996, Bialas and Burda calculated the critical exponents in the model and de-
scribed its phase structure [18]. They argued that the model exhibits two phases in
the thermodynamic limit: a fluid (elongated, generic) phase where the trees are of a
large diameter and have vertices of finite degree and a condensed (crumpled) phase
where the trees are short and bushy with exactly one vertex of infinite degree. In
2007, Durhuus, Jonsson and Wheater gave a complete characterization of the fluid
phase, referred to as generic trees, by showing that the Gibbs measures converge to a
measure concentrated on the set of trees with exactly one path to infinity with finite
critical Galton—Watson outgrowths [38]. They furthermore proved that the trees
have a Hausdorff dimension dy = 2 and a spectral dimension d, = 4/3 with respect
to the infinite volume measure. The main goal of Part I in this thesis is to establish
analogous results for the condensed phase. Preliminary results in this direction were
obtained by the author in [64].

One of the motivations for the study of the branched polymer model is that a
similar phase structure is seen for more general classes of graphs in models of simplicial
gravity [1,9]. In these models the elongated phase is effectively described by trees [10]
and it has been established by numerical methods that in the condensed phase a single
large simplex appears whose size increases linearly with the graph volume [27,48]. A
closely related phenomenon of condensation also appears in dynamical systems such
as the zero range process [40].

In 1997, Bialas et al. proposed [23] that the same mechanism is behind the phase

transition in the different models and the so—called constrained mean field model was
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introduced in order to capture this feature. The authors followed up on the idea in
a series of papers [17,19-22] where the model was studied under the name balls in
bozes or backgammon model. The model consists of placing N balls into M boxes and
assigning a weight to each box depending only on the number of balls it contains. This
model is closely related to the equilibrium statistical mechanical model of caterpillars.
In [20] the critical exponents of the balls in boxes model were calculated and the two
phases characterized. The distribution of the box occupancy number was derived and
it was argued that in the condensed phase exactly one box contains a large number
of balls which increases linearly with the system size.

The model of caterpillars was studied by the author, in collaboration with Pordur
Jonsson, in a recent paper [52]. Our original motivation for studying the model was
that, despite its simplicity, it was predicted to have the same phase structure as the
more complicated model of branched polymers. The caterpillar model was solved by
proving convergence of the Gibbs measures to a measure on infinite graphs and a
complete characterization of the limiting measure was provided in both phases. We
believe this to be the first rigorous treatment of the condensed phase in models of the
above type and it guided us towards a solution of the condensed phase in the model
of branched polymers. A model of random combs, equivalent to the caterpillar model

was studied in [36] where analogous results were obtained for the limiting measure.

In Part IT we consider a new model of randomly growing planar trees referred to as
the vertez splitting model. This work is based on and extends the paper [32] which is
a joint work of the author with Francois David, Mark Dukes and Pordur Jonsson. We
will describe the model informally here, a precise definition will be given in Part II.
The parameters of the model are nonnegative weights w; ; and a probability measure
is generated on the set of finite trees by the following growth rule. Start from an

initial tree Tp. Select a vertex in T of degree k with a probability weight

k+1
k +

Wy = 5 E Wn, k4+2—n
n=1

and “split” the vertex into two new vertices of degree i and j with a probability
weight w; j, see Fig. 1.1. The numbers wj, are referred to as splitting weights and
the numbers w; ; are referred to as partitioning weights. This process is repeated
indefinitely. In most cases we will put an upper bound, D, on the degrees of vertices
by choosing wpy1,1 = wi,p4+1 = 0 such that vertices of degree D41 are not. produced

by the process. The model originates from a slightly different model of growing planar
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Figure 1.1: The splitting operation.

trees, introduced in 2008 by David, Hagendorf and Wiese in connection with RNA
folding [33]. We will describe this relationship in a few words but refer to [33] for a

more detailed explanation.

A completely folded (planar) RNA molecule is represented by a system of non
intersecting arches which connect sites 1,...,n on a line in such a way that no more
sites can be connected without crossing arches. The sites represent the bases in the
molecule and the arches represent the pairing of bases. These structures are in one
to one correspondence with planar trees having vertices of two types: a grey vertex
and a white vertex decorated with an arrow. The faces of the arches correspond to
the vertices of the tree and the arches correspond to the edges of the tree. If a face is
adjacent to an unpaired base the colour of the corresponding vertex is white and an
arrow points from the vertex to the unpaired base, otherwise the vertex is grey, see
Fig. 1.2.

The model of the RNA folding process in [33] is defined by starting with a strand of
n unpaired sites and depositing arches uniformly at random to the sites such that no
arches cross. This is repeated until no more arches can be added. The arch deposition
model can equivalently be described by the following growth process. Start with an
empty strand at time zero and in each time step add a site to the strand, its location

chosen uniformly at random, and pair the new site if it is possible without crossing

1 2 3 4 5 6 7 8 9 10 11

Figure 1.2: The connection between arch structures and decorated trees.
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arches. By viewing the evolution of the corresponding tree one finds that it changes
in one of two ways: a grey vertex turns white and is decorated with an arrow (the
new site is not paired) or an additional arrow is placed on a white vertex which is
then split into two grey vertices connected by a new edge which is orthogonal to the
two arrows (the new site is paired), see Fig. 1.3. The splitting of the white vertices in
the above growth process is essentially the same operation as in the vertex splitting
model. In the RNA model the splitting weights are fixed by the dynamics of the arch
deposition process.

The vertex splitting model has very general growth rules and includes other pre-
viously studied random tree models. It becomes a special case of the preferential
attachment growth model, also referred to as random recursive trees, (see e.g. [2,31])
when we take w; = 0 unless j or k is equal to 1. It also has, as a limiting case,
Ford’s alpha model of phylogenetic trees [43] and its generalization, the alpha-gamma
model [28].

Our main motivation is to develop general tools to study the properties of models
of random tree growth. In particular we are motivated by the issues of unification
and of universality: Is there a general tree growth process which can encompass the
different models which are known at the moment? How many different universality
classes, i.e. continuous tree models with different scaling properties (exponents and
correlation functions), exist in this framework? The results presented here are a first
step in this direction.

1.2 Outline

Chapter 2 of Part I is based on the paper [52], written in collaboration with Pérour
Jonsson. We solve the equilibrium statistical mechanical model of caterpillars by
proving convergence of the Gibbs measures to a measure on infinite graphs and give
a complete characterization of the limiting measure. We show that in the fluid phase

Figure 1.3: A step in the RNA growth process.
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the measure is concentrated on the set of caterpillars having infinite length and that
in the condensed phase it is concentrated on the set of caterpillars which are of finite
length and have precisely one vertex of infinite degree. We conclude Chapter 2 by
calculating the Hausdorff dimension and spectral dimension of the caterpillars in both
phases and at the phase transition.

In Chapter 3 of Part I we study the equilibrium statistical mechanical model of
branched polymers. This work is based on the paper [53] (in preparation) written
in collaboration with Pérour Jonsson. We generalize the definition of planar trees
in [35] to allow for vertices of infinite degree and define a new metric on this set
of planar trees. This new metric space is compact and the subset of finite trees is
dense. We use similar techniques as for the caterpillar model to prove convergence
of the Gibbs measures in both phases with respect to this metric. We prove that in
the condensed phase the limiting measure is concentrated on the set of trees of finite
diameter with precisely one vertex of infinite degree and that the rest of the tree is
distributed as a subcritical Galton—Watson process with mean offspring probability
m < 1. Furthermore, we prove that in finite trees the degree of the large vertex grows
linearly with the system size, N, as (1 — m)N with probability arbitrarily close to
one, confirming the result stated in [26] . We conclude by calculating the spectral
dimension of the infinite measure in the condensed phase. In [29] it was claimed,
on the basis of scaling arguments, that the spectral dimension is ds = 2. We prove,
however, that if the spectral dimension exists it depends continuously on a parameter
of the model and can take any value greater than two. In fact, it takes the same

values as the spectral dimension of the condensed phase in the caterpillar model.

Part II is based on and extends the paper [32], written in collaboration with
Francois David, Mark Dukes and Porour Jonsson. We first give the precise definition
of the vertex splitting model. We then study the special case where the splitting
probability weights are linear with the initial vertex degree ¢ and focus on the vertex
degree distribution. In Chapter 6 we write exact recurrence equations for the general
local vertex degree probability distributions. Using the Perron-Frobenius theorem [62]
we show that the single vertex degree probability distribution p = {px} (px is the
density of vertices with a given degree k) has a well defined limit as the size of the
tree goes to infinity which is independent of the initial tree. We furthermore show
that p = {pi} is given by an eigensystem equation of the form Bp = Ap, where B is
a matrix depending on the weights of the model. The proof depends on the matrix
B being diagonalizable. Similar techniques have been used to find the asymptotic

degree distribution in random recursive trees [49].
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In Section 6.4 we relax the condition of linearity on the splitting weights w;. We
argue that mean field theory is still valid and that the degree probability distribution
p is still given by the same linear eigensystem equation as in the linear case. We give
good numerical evidence of the validity of these mean field equations for D = 3 trees.
For infinite D and linear and uniform splitting probabilities we can still calculate the
vertex degree distribution in closed form using mean field theory. This is done in
section 6.5, where we show that it agrees with numerical simulations. The vertex

degree distribution is found to fall off factorially in this case.

In Chapter 7 we study probabilities associated to the local subtree structure of the
tree, as seen from any vertex, and as a function of its creation time s. More precisely,
we are able to write recursion relations for the probability pi(¢1,- - ,;s) that the
vertex created at time s is of degree k, with the k subtrees with fixed respective sizes
ly,-+- 0. These subtree structure probabilities are related to the radius of the tree
and their scaling properties allow us to extract the Hausdorff dimension of the trees.
Using a natural scaling hypothesis, we show that the Hausdorff dimension dg is given
by the solution of an eigensystem equation of the form Cw = wy/dy w, where C is a
matrix which is a function of the weights of the model. We use a Perron-Frobenius
argument to prove that this eigensystem equation has a unique physical solution. We
establish bounds on the Hausdorff dimension and show that it can vary continuously

with the splitting weights between 1 and +oo.

In Chapter 8 we study the correlations between the degrees of neighbouring ver-
tices. This amounts to studying the density p;; of links with vertices of degrees 7
and j. We write general equations for these correlations in the linear splitting weight
case. In the simple case of D = 3 trees these correlations are calculated explicitly, and
compared with numerical simulations. In Section 8.3 we extend our results for the
case of non linear splitting weights, assuming mean field theory. We show that there
is a very good agreement between our analytical results and numerical simulations.
We conclude by discussing the amount of assortative mixing in the vertex splitting
model i.e. whether vertices of high degree prefer to be neighours of vertices of high
degree or to be neighbours of vertices of low degree. For recent research on assortative

mixing in networks we refer to [54,59,67].

In the final chapter we discuss in more detail the relationship between our model
and other models of random trees, in particular the alpha model of phylogenetic trees.
We prove convergence of the finite volume measures generated by the growth rules of
the alpha model and calculate the annealed Hausdorff dimension. This work is based

on and extends the paper [65] by the author.
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1.3 Definitions

In this section we collect together the basic definitions and notation which are used

in the following chapters.

1.3.1 Graphs

A graph G is composed of a vertex set V(G) and an edge set F(G) which consists of
unordered pairs {v,w} where v,w € V and v # w . In the following we will always
single out a vertex in V called the root of the graph and denote it by . The number
of elements in a set A is denoted by |A|. We define |G| = |E| and call it the volume of
the graph G. Two vertices v,w € V are called neighbours if {v,w} € E. The number
of neighbours of a vertex v € V is called the degree or order of v and is denoted by
oc(v) or simply o(v) if it is clear to which graph the vertex belongs. A common
constraint on graphs is that all vertices have finite degree in which case the graph is
said to be locally finite. However, here we sometimes allow the possibility that graphs
have vertices of infinite degree.

A finite path v in a graph G is a finite sequence

’}/Z(’UQ,’Ul,Ug,...,’Un) (1.1)

where vg,...,v, € V and v;_1 and v; are neighbours for all i = 1,...,n. We call n
the length of the path v and define |y| = n. The vertices vy and v,, are called the
endpoints of ~. If vy = v, then the path is called a cycle. We say that a graph G
is connected if for every two vertices v,w € V, there exists a path between v and w.
The graph distance dg between any two vertices v,w € V in a connected graph G is
defined by

de(v,w) =min{|]y| : v a path with endpoints v and w} (1.2)

and dg(v,v) =0 for all v € V.

A graph is called a tree if it contains no cycles. In this thesis we restrict our
attention to connected trees, which are the objects of the models presented. We
will put the additional condition of planarity on the trees under consideration, which
means in words that the edges incident on a given vertex are ordered. This statement

is ambiguous if the vertex has an infinite degree and therefore we give a proper

ISome authors refer to these graphs as “simple graphs” and allow general graphs to have “self
links” and “multi links”.
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definition in Chapter 3. The condition of planarity is not essential in the models we
consider, but is rather a convention, and in some cases it is motivated by the nature
of the model. By convention we assume, unless otherwise stated, that the trees have
a root, of degree one. We denote the set of all connected, rooted planar trees, finite
or infinite, by T" and the set of all finite, connected, rooted planar trees by IV. The
set of connected, rooted planar trees with N edges will be denoted by I' ;. In trees,

we denote the unique shortest path between vertices v and w by (v, w).

1.3.2 Random graphs

Let Gy be some subset of the set of graphs with N edges and let G be the set of all
finite and infinite graphs of the same type. We will not be precise for the moment
about how G is constructed. A random graph is defined by a probability distribution
vy on Gy. Usually the distribution vy is either (a) constructed explicitly for a given
N or (b) defined in a recursive way from vy_1, commonly by a growth process.

The models in Part T are of type (a). They are defined by a set of nonnegative

numbers wy, wo, . . ., called branching weights, and a probability is assigned to a graph
G € Gy by
1
v (G) = I woe) (1.3)
N
veV(G)
where

IN = Z H Wo ., (V) (1.4)

G'eGN vEV(GY)

is a normalization factor which is called the finite volume partition function. These
models are referred to as equilibrium statistical mechanical models and vy is called
the Gibbs measure. We say that the model has a local action, since the energy of
a given graph is the sum over the independent energies of individual vertices in the
graph.

The models in Part IT are of type (b). They are defined by a growth rule, and the
probability of a graph G € Gy is given by

(@) = > wna(GPE —G) (1.5)
G'eGN-1

where P(G' — G) is the probability of growing the graph G from G’ according to the
growth rule.

In both the above cases we study properties of the graphs when N — oo. In
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some cases it is possible to show that the measures vy, viewed as measures on G,
converge in a weak sense, to a measure v which is concentrated on the set of infinite
graphs. This is referred to as taking the infinite volume limit. In other cases one
can only study convergence of some observables (or their expectation values), such
as the vertex degrees, the graph diameter etc. In order to define the notion of weak

convergence we assign a metric d to the set G. The statement
UN — V (1.6)

in a weak sense as N — oo means that

/gfdz/N—>/gfdz/ (1.7)

as N — oo for all bounded functions f which are continuous in the metric d. The
problem of taking the infinite volume limit involves, among other things, defining the

set G properly and defining a suitable metric on G.

We will use repeatedly the following result about weak convergence of probability
measures which is stated in [35] and derived e.g. in [24]. If vy is a sequence of
probability measures on a metric space (G,d) and U is a family of both open and
closed subsets of G such that

(i) any finite intersection of sets in U are in U,

(ii) any open subset of G may be written as a finite or a countable union of sets

from U and

(iii) the sequence vy (A), converges as N — oo for all sets A € U,

then the sequence vy converges weakly provided it is tight, i.e. for any € > 0 there

exists a compact subset C' of G such that
vn(G\C) <e forall N. (1.8)

The last condition of tightness is automatically fulfilled if the metric space is compact,

which is the case in all applications in this thesis.
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1.3.3 Random walks on graphs and the spectral dimension

A simple random walk on a graph G is a path w together with a probability weight

|w|—1

II (eatw)™ (1.9)

t=0

where w; denotes the (¢ 4+ 1)-st vertex of w. We think about the random walk as a
process where at time ¢ a walker, located at w;, moves to one of its neighbours with

probabilities (o (w;)) "

We begin by defining the spectral dimension of a graph which is loosely speaking,
the dimension experienced by a random walker travelling on the graph. Let ps(t) be
the probability that a simple random walk which begins at the root in G, is located
at the root at time t. The spectral dimension of the graph G is defined as d, provided
that

pa(t) =< t=4:/? (1.10)
where we write f(t) < ¢ 7 if
log (f(t))
— o, 1.11
A e gl (1.11)

If pg(t) falls off faster than any power of ¢ then we say that d; = co. This definition
only makes sense on infinite graphs since on finite graphs, the return probability is
asymptotically a positive constant. It is straightforward to verify that the spectral
dimension of a connected, locally finite graph is independent of the choice of a root.
The spectral dimension of the d dimensional hyper cubic lattice Z¢ is d, = d in which
case it agrees with our usual notion of dimension. For general graphs the spectral
dimension need not be an integer and furthermore it might not exist. The spectral
dimension can also be defined on a continuous manifold in which case it is the rate of

decay of the heat kernel at coinciding points.

For an infinite random graph (G, v), where v is a probability distribution on some
class of graphs G, one can define the spectral dimension in different ways. First of all
the graphs can have, v almost surely, a spectral dimension ds defined as above. The
statement that an event F happens v almost surely means that v(E) = 1. Secondly

we define the annealed spectral dimension as dy provided that

(pa(t)), = t=%/2. (1.12)
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where (-), denotes expectation value with respect to v. These definitions need not
agree and in this thesis we encounter examples where d; exists and is finite, whereas

ds is almost surely infinite.

The return probabilities are most conveniently analysed through their generating

functions. In the following discussion, assume that the graph G is a tree. Define

o0

Qa(x) =Y pa(t)(1 —z)"2. (1.13)

=0
The generating function variable z is defined in this way for notational convenience
in later calculations. Note that since the graph G is a tree only integer exponents
appear on 1 — x. Let p}(t) be the probability that a random walk which leaves the
root at time zero and walks ¢ steps, returns to the root for the first time. Define the

generating function

Pa(z) =Y p&(t)(1 —2)"2. (1.14)

By decomposing a walk which returns to the root into the first return walk, the second

return walk etc. we find the relation

1

eyt (1.15)

Qa(r) = (Pa(x))"
n=0

Let n be the smallest nonnegative integer for which Q(Tn) (z), the n—th derivative of

Q(z), diverges as x — 0. If
(—1)"QU) (&) =z~ (1.16)
for some « € [0, 1) then clearly
ds =2(1 —a+n), (1.17)

if ds exists. For random graphs, the same relation holds between the singular be-
haviour of (Q(Tn)(x)>l, as © — 0 and the annealed spectral dimension. All statements
about the spectral dimension of graphs in the following chapters are made under the

assumption that it exists.
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1.3.4 Hausdorff dimension

Another notion of dimension for graphs is the Hausdorff dimension which is defined
in terms of how the volume of a ball scales with its radius. For a graph G = (V, E),
denote by Br(G) the subgraph of G which has a vertex set

Ve(G) ={veV |da(v,7) < R} (1.18)

and an edge set
{{v,w} € E |v,w € Vr(G),v # w}. (1.19)

We call Bg(G) the ball of radius R centered on the root r. The Hausdorff dimension
of the graph G is defined as dy provided that

|Br(G)| < R (1.20)

As for the spectral dimension, this definition only makes sense on an infinite graph.
On a connected, locally finite graph, dy is independent of the choice of a root. On
the hyper—cubic lattice Z? it holds that dyy = d but in general dj is not an integer.
The Hausdorff dimension can also be defined in different ways for random graphs.
First of all the graphs might have, v almost surely, a Hausdorff dimension dy as de-
fined above and secondly we define the annealed Hausdorff dimension as dg provided
that
(| BR(G)[)y = R (1.21)
The Hausdorff dimension and the spectral dimension do not necessarily agree, but

under certain conditions the inequality

<ds;<d 1.22
1+dyg — s =0 ( )
holds [30]. For trees which satisfy certain regularity conditions, the left inequality is

saturated [13], i.e.
2dy

- 1+dy’

(1.23)

S

Examples of random trees which satisfy (1.23) are the uniform spanning tree on Z?2
(dg = 8/5 and ds = 16/13) [14] and generic trees (dg = 2 and ds = 4/3) [38].
Examples of random trees which satisfy (1.22) but not necessarily (1.23) are the
random combs studied in [37].

It is beyond the scope of this thesis to discuss the relations (1.22) and (1.23) in
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detail. However, we will see that most of the random tree models we study have
Hausdorff and spectral dimensions which satisfy (1.23). An exception to this is the
condensed phase of the equilibrium statistical mechanical models.

There is another definition of the Hausdorff dimension which applies when one
considers finite, randomly growing graphs. Let vy, N = 1,2,... be probability dis-
tributions on a set of graphs G, concentrated on graphs of volume N, and defined
from vy_1 by a growth rule. The Hausdorff dimension is usually defined in terms of
how the average value of some typical distance in the graph (the maximum distance
between vertices, the mean distance of vertices from the root, etc.) scales in relation
to the volume of the graph as it grows. More precisely, we define the radius of the

graph G by
1
e = 5 ¥ der0) o) (124

Then we define the Hausdorff dimension as dg if
(R)uy,aeg ~ NYH (1.25)

as N — oo. By f(z) ~ g(x) as  — oo we mean that the limit of the ratio of
f(z) and g(x) is a positive constant. This definition of dy should be independent of
the choice of a root r. If the measures vy converge to a measure v concentrated on
infinite graphs, the definition is expected to coincide with the previous one in (1.21)
provided that v is concentrated on sufficiently regular graphs. We will see examples

of random tree models where this is the case.
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Condensation in tree models






Caterpillars with a local

action

In this chapter we consider an equilibrium statistical mechanical model of a certain
class of trees which are referred to as caterpillars. We start by defining the set of
caterpillars of a finite volume and introduce a Gibbs measure on this set, which is
constructed from a local action. We analyse the model by the use of generating
functions and show that there exist two phases, an elongated phase and a condensed
phase. The asymptotic behaviour of the finite volume partition function is established
in both phases and at the critical line separating the phases. We prove convergence
of the finite volume measures to a measure on the set of infinite caterpillars and
characterize it. The Hausdorff and spectral dimensions are then calculated, with
respect to the infinite volume measure, in both phases and on the critical line. We
conclude by briefly discussing a model which generalizes the caterpillar model and
brings us one step closer to the model of branched polymers which is the subject of

the next chapter.

2.1 Caterpillars

A finite caterpillar is a finite graph which consists of a linear graph, which we call the
spine, to which leaves (i.e. individual links) are attached. We mark the end vertices

of the linear graph by r; and ro and call r; the root of the caterpillar. Both these

17
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S S S S
1 1 2 3 4 9

Figure 2.1: An example of a finite caterpillar graph.

vertices have order one by definition. Furthermore, we will view the caterpillars as
planar graphs so we distinguish between left leaves and right leaves, see Fig. 2.1. The
assumption of planarity is not essential. We denote the set of all caterpillars with N
edges by Cy. For a caterpillar 7 € Cy, denote the graph distance between r; and 7o
by ¢(7) and call it the length of the caterpillar. For a caterpillar of length ¢ we denote
the vertices on the spine between r1 and r9 by s1,...,8¢_1.

Let wy,, n = 1,2,..., be a sequence of nonnegative numbers which will be called

weight factors or branching weights. The weight of a caterpillar 7 € C is defined as

w(r) = I wo (2.1)

i€V (r)\{ri,r2}

We define the finite volume partition function by

Iy =Y w(r) (2.2)

T7€CN

and a probability distribution on C'y by
(2.3)

The weight factors w,,, or alternatively the measures vy, define what we call a cater-
pillar ensemble. The object of this chapter is to study the caterpillar ensemble for
different classes of weights w,, and give a complete and rigorous categorization of
different phases of the model.

Since the probability of a given caterpillar only depends on the order of its vertices,
an equivalent way of defining this ensemble is the following. If 7 € Cy consider the
finite sequence ¢(7) = (0(s1),0(s2),...,0(se—1)) and assign to it the probability

Un(e(T)) = vn(T) (o(si) — 1). (2.4)
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The product factor in (2.4) accounts for the number of different caterpillars which
correspond to the same sequence ¢(7). Define the set Cy = {¢(7) | 7 € Cy}. Tt is
clear that (Cy,vy) is equivalent to (Cy,7y) in the sense that vy (7) only depends

on ¢(7). This allows us to extend the notion of finite caterpillars to infinite ones:

C = {(bi)i:f ‘ kb€ {2,3,...} U {oo}} (2.5)

where k& = 2 corresponds to the unique caterpillar of length ¢ = 1. Note that an
element in C' which has infinite terms and/or infinite length has no counterpart in
Cy for any N. We denote the subset of finite caterpillars in C' by C".

In the following sections we study the limit of the measures vy as N — oo. In
order to deal properly with convergence questions we need to define a topology on C.

For a caterpillar a = (a1, as,...) € C' we define the sequence
BR(a) = (min{a1, R}, min{az, R}, ..., min{amin{e(a)—1,r}, R})- (2.6)

We then define a metric d on C by

d(a,b) = inf {% Br(a) = BR(b)} (2.7)

for any a,b € C. Tt is straightforward to show that this definition satisfies the axioms

for a metric. We now state and prove a few properties of the metric space (C‘, cf)

Proposition 2.1.1 The metric space (C~', ) is compact.

Proof Take a sequence (¢, )nen in C. Note that for every R the set {Br(b) | be C}
is finite. Therefore there exists a subsequence (¢, )ien such that Bg(cy,,) is constant
in ¢ and it can be chosen such that Bi(cnj) = By(cp,) for all i < j. Thus, there is a

unique caterpillar ¢ € C such that Bz(c) = B;(cp,;) for all i and ¢,,, — ¢ as i — oc.

O
Denote the open ball in C centered on ¢ and with radius r by
B.(co) = {ce C | d(co,c) <} (2.8)

Proposition 2.1.2 For v > 0 and ¢y € C, the ball B, (co) is both open and closed.
Moreover, if ¢y € B,.(co) then B, (c1) = By(co).
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Proof It is easy to see that open balls are closed since the positive values of d form a
discrete set but the parameter r is continuous. To prove the second statement choose
ac € By(co) and a co € B,.(¢1). Clearly, BR(cl) = BR(CO) and BR(cl) = BR(CQ) for
all R < 1/r so Br(co) = Bgr(cz) for all R < 1/r. Therefore

~ . 1
d(CQ, CQ) S inf {E

BR(CQ)ZBR(C()),R<1/T+1} <r (29)

and thus ¢y € B, (co) which shows that B,.(c1) C B,(cp). With the same argument
one shows that B,(co) C B, (c1) and therefore the equality is established.

O
Proposition 2.1.3 The set C' of finite caterpillars is a countable dense subset of C.

Proof The set C’ is clearly countable since it is a countable union of finite sets. To
prove that it is dense in C' take a ¢ € C. The sequence (Bn(c)) is in ¢’ and
neN

converges to c.

2.2 Critical point and the different phases

Define the finite volume partition function with fixed distance £ between r; and ro as

Ine= Y w(r). (2.10)

TeCN L(T)=L

It is useful to work with the generating functions

2(¢) =Y Zn¢N (2.11)
N=1
and -
9(2) =Y wpi12" (2.12)
n=0

with radii of convergence (o and p, respectively, both of which we assume to be

nonzero. Define also

Zi(Q) =Y ZnucN. (2.13)
N=1
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i —1
= ® O)
Z(0) Y2 i wig1 Ze-1 ()
Figure 2.2: An illustration of the recursion (2.15).
Then it is clear that -
2(¢) = Zu(0): (2.14)
=1
We have the recursion relation
Z4(¢) = (g’ (w10) Ze-1(Q), (2.15)
for any ¢ > 2, see Fig. 2.2. Using the above equation and Z;(¢) = ¢ gives
) -1
Z(Q) = C(Cy (wlc)) (2.16)
and by (2.14)
¢
Z() = —> 2.17
R (247
From (2.17) we see that (p is the smallest solution of the equation
¢g'(wiC) =1 (2.18)

on the interval (0, p/wy) if such a solution exists. If it does not exist then (o = p/wy.

If (o < p/w; then g is analytic at w1y and we say that we have a generic ensemble.
This has been called the elongated or fluid phase by other authors [20]. If (o = p/w1

we have a nongeneric ensemble. Notice that if p = oo then the ensemble is always

generic. For nongeneric ensembles we therefore have finite p. In that case we can

always choose p = 1 by scaling the weights w,, — w,p” . This scaling does not

affect the probabilities (2.3).

Now consider weight factors with p = 1 and let w; be a free parameter. The
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genericity condition is then w%g’(l) > 1, ie. wy < w. where

[e}

we=g'(1) =Y (n—1w, (2.19)

n=2
is a critical value for wy. If w; = w, we have a nongeneric ensemble which we refer
to as critical and if w; > w. we have a nongeneric ensemble which we refer to as
suberitical. This phase has been called the condensed phase in the literature [20]. In
the following subsection we determine the asymptotic behavior as N — oo of the

finite volume partition functions Zy for the different phases.

2.2.1 The generic phase

Let w, be weight factors with wy # 0 and w,, # 0 for some n > 2 which lead to a

generic ensemble.

Lemma 2.2.1 Under the stated assumptions on the weight factors, the asymptotic
behaviour of Zn is given by
1

_ N 1
N = g'(w1o) + Cow1g"(w1Co)CO (L+OoN=) (2.20)

if the integers n > 0 for which w,4+1 # 0 have no common divisors greater than 1.
Otherwise, if their greatest common divisor is d > 2, then
d

_ e »
e g'(wio) + Coung”(wlgo)co (1+O0(N7) (2.21)

if N=1 mod d, and Zn = 0 otherwise.

The proof of this Lemma is standard, cf. [42], where the corresponding result for

generic trees is established. We include it here for completeness.

Proof First assume that gcd{n|n > 0,w,41 # 0} = 1. The function

f(¢) =1 - (g (wiC) (2.22)

has a zero at {p. The multiplicity of the zero is 1 since it is easily seen that f'((p) # 0.
We therefore see that Z has a simple pole at {y and since ged{n|n > 0, w,4+1 # 0} =1
there is no other pole on the circle |(| = {y. By Taylor expanding ¢'(w1() around
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w1y we get

_ 1 ¢ B
2= g'(w1o) + Gowig” (wilp) (Co - C) 0 =¢). (2.23)
Now define
h(¢) = Z(¢) - ! ( ¢ ) (2.24)
g'(w1o) + Gowrg” (w1Co) \ o — ¢

and denote its radius of convergence by R. The function h has no poles for |¢| < (o
and therefore R > (5. We conclude that for any ¢ > 0 the coefficients of h cannot
grow faster than

1 n
GHn(@) =0 (F+e) (2.25)
for n large. Therefore,
N
1 ¢ 1

Zn = M —— —|—O<——|—e) : 2.26
M g wico) + Gowrg” (wio) <] (Co - C) R (2.26)

The result follows by straightforward calculation of [¢V] (CO€C> and noticing that
O N /N) > O(1/R + €)™ (2.27)

for € small enough.

Now assume that d = ged{n|n > 1,w,+1 # 0} > 2. Then the function g is of the
form g(z) = §(z¢) and therefore Z has d simple poles (o, (1,...,C4—1 on the circle
|¢| = Co, which are the d’th roots of (¢. We then define

B d—1 1 C
Moo ; 9'(w1Gi) + Gwrg” (W) (Ci - C) (228

which is analytic with radius of convergence R > (5. We then get with the same

argument as above that

1

N = g (wiG) + Gwig"(wiG) ™

M&

GNa+oW™)

1 d—1

= —N+1
 Gog' (wio) + Guwig” (wio) ZC TA+O(NTY) (2.29)

=O

where the latter equality follows from (;¢'(w1(;) = Cog’ (w1¢p) and
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Cg"(wiG) = 9" (wio) fori = 0,...,d—1. The last sum equals d(; ¥ ™ if N—1 =0

mod d but is zero otherwise. This completes the proof.

2.2.2 The subcritical phase

We take p = 1 and w; > w, so that we are in the subcritical phase. We study a

concrete model of weights w;, i > 2 where
w; =i P(14 0(1)) (2.30)

and let wy; be a free parameter in the specified range. Figure 2.3 shows the phase
diagram of the caterpillars. A necessary condition for being in the subcritical phase

is 3 > 2 since otherwise w. = co.

Lemma 2.2.2 For the weights given in (2.30) and wy > w. we have

1
Iy = ——— N8N (1 1 2.31
N (wl _wc)g wy ( +O( )) ( )
as N — oo.
Proof We can write N
In=> Zny. (2.32)
(=1

Critical |
: Subcritical

Figure 2.3: A diagram showing the different phases of the caterpillars.
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Define a sequence of functions fxn on the positive integers by

fn() =wy NN Zy = wi NPT

{—1
> [T + Dwn,g2. (2.33)

Nito AN =N—ti=1
We begin by showing that

imfa () =

—g(f—l) (wl)ezf(f)- (2.34)

There is at least one index ¢ in the sum defining fn(¢) such that N; > %. If
there is another index j # 4 such that N; > A where A > 1 is a constant then we get
an upper bound on that contribution to fx(¢) of the form

{—1
e Ny +1
14 1ar—1 2 1
wy fwy NN - 1) > 75HN+1)wN+2
Ni+...4N;_1=N—¢ (Nl +2)
NIZJX_II
Na2>A
Oty X Y T
= 2+ Dwn, 42 + Dwy, 42
(N + 10— 2)5 < Ne_1>0 No>A
<

DOwt™ " (Ny+ 1)wN2+2 (2.35)
N>>A

where C'(¢) and D(¢) are numbers which only depend on ¢. The last expression goes

to zero as A — oo since ¢'(1) is finite. The remaining contribution to fxn(¢) is

-1 -1
witwy! N7y > [TV + w2

k=1 Ni+..Ny_1=N—¢(i=1

n=0
w ¢
- (%)
A—o0 w1

which proves (2.34).

Note that fx(¢) =0 if £ > N and therefore it is clear that fy(¢) is summable for
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every N. We also see that f({) is summable since wy; > w,.. For £ < N

-1
In(0) = wi N > LTIV + D, 42

Ni4..4Ne_1=N—ti=1

01
_ _ Ny +1
< Cw NN e-1) > 127 (Ni + Dwn,+2
Nit AN =N—t i=2
N> ZZ—f
AN ¢
1 NP-L(N -1
< ol (w_) V=1 gy (w_) (2.36)
wg \ Wi (12/:15 + 2) w1

where C' and C’ are positive constants. The first inequality in (2.36) is obtained by
observing that at least one of the indices IN; must be larger than % and in the
second one we used the definition of w.. It follows that the sequence (fn)3_; is

dominated by a summable function and we can calculate the limit

im NNt = lim 3 = 3 2;. .
Jim (w M wy N Z) Ngw;ma ;f(f) s

This completes the proof.

From the above lemma we obtain the following result

AN wi\? fwe!
lim 220 —(p—1)(1-2 (-) (2.38)
Z We w1

which indicates that with probability 1 the caterpillar has finite length which is expo-
nentially distributed with a parameter w./w;. If the length of an infinite caterpillar
is £ < oo it is clear that it has one or more vertices of infinite order. The inequal-
ity (2.35) shows that there can be at most one vertex of infinite order in the limit
N — oo. We will state this observation more precisely in the next section when we

prove the convergence of the measures y.

2.2.3 The critical line

We take p =1 and w; = w, so that we are on the critical line and choose the weights

as in (2.30) where 8 > 2. We make the extra assumption that the generating function
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Z is analytic in a domain

D(A,¢,¢0) ={¢ : [¢] <o+ A,¢/2 <Arg(¢ —Co) <27 —¢/2,( # (o} (2.39)
for some A > 0 and some angle ¢ € (0,7/2), and that
Z(¢) ~ (G —¢* 7 (2.40)

as ( — (o on D(A,¢,(p). This condition allows one to deduce the asymptotic
behaviour of Zy, the coefficients of Z, see [42, Section VI. 3 pages 389-392] for a
detailed explanation. The above condition on the weights is not empty. For example,

the explicit choice

,n>3 (2.41)

wy =1, we=0 and w, =

where I'y(n) = (n—1—-v)(n—2—-7%)---2—-9)1—7), n>2and I, (1) = 1 yields
wy ~n P and

_ ¢

1= =(1=9)f)
which satisfies the above conditions for (o = 1, any A > 0 and any ¢ € (0,7/2).

We will encounter this particular choice of weights again at the end of Part II. A

Z()

(2.42)

straightforward application of [42, Corollary VI. 1] gives the following lemma

Lemma 2.2.3 Choose branching weights as in (2.30) with wi; = w,, such that Z is
analytic in a domain D(A, ¢, (o) for some A > 0,0 € (0,7/2) and obeys

Z(0) ~ (G =) (2.43)
as ¢ — (o on D(A, ¢,(). Then
Zn ~ NP=3¢N. (2.44)

as N — o0o.

2.3 Convergence of the finite volume measures

In this section we prove that the measures vy converge weakly as N — oo to a

measure 7 and we give a complete description of 7 for different phases of the model.
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Theorem 2.3.1 For the generic and nongeneric branching weights in Lemmas 2.2.1

2.2.3, the measures Uy converge weakly as N — oo to a probability measure U
concentrated on the set of infinite caterpillars. If wy < w,, U is concentrated on the
set of caterpillars of infinite length and the degrees of the vertices s1,ss,... on the

spine are independently distributed by
¢(n) = Co(n — Dwy(wi()" ">, n>2. (2.45)

If wi > we, U is concentrated on the set of caterpillars of finite length with exactly

one vertex of infinite degree. The length of the spine is distributed by

() = (¢ - 1) (1 - ﬂ)Q (ﬁ)é (2.46)

We w1

All the vertices between 1 and ro are equally likely to be of infinite degree and the

degree of the others are independently distributed by '

6(n) = —(n — 1)wn. (2.47)

We

Proof We define a family of sets
U={Bi(c)|keN, ceC}. (2.48)

From the properties of the metric space (C, &) the family U clearly satisfies (i)
and (ii) in Section 1.3.2 and since (C’,J) is compact, tightness is automatically ful-
filled. It therefore only remains to prove property (iii). Choose a k € N and a
c = (c1,¢2,...,C0)-1) € C' and define A = B% (¢). Denote the set of indices
i < min{k, ¢(c) — 1} for which ¢; < k by I and the set of indices ¢ < min{k, {(c) — 1}
such that ¢; > k by I. We consider seperately the following cases.

wy < we: In this case we are in the generic phase so wi1(y < p and Zy ~ QO’N
cf. Lemma 2.2.1. We assume that ¢(c¢) > k and if this conditions is not fulfilled we

get a simple special case of the calculations below. The set A is then given by
A={beC|bj=cifiel,b;>kificT, ((b)>k}. (2.49)

Denote the number of elements in I by K. Now, order the indices in I in increasing

order and for a given caterpillar in A let N;, 1 <14 < K be the term in the caterpillar

"We use the same notation for the degree distribution as in the case w1 < we.
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corresponding to the i th index in 1. We can then write

K
on(A) = Zy' W > Zn [J(Vi = Dwy,wy' (2.50)
Nyt +Ng+M=N+k—co =1
N>k, Vj
where
Wo = 1_[((:z - 1)wciwfi*2 and co = Z ci. (2.51)
icl i€l

First consider the contribution to the sum in (2.50) from terms for which N; >
(N +k—co)/(K+1) for some i =1,...,K. It can be estimated from above by

C'sup{(N; — NHwn;, w1 §0 Ni—2 | N; > (N+k—co)/(K+1)} (2.52)

where C' is a number independent of N. This clearly converges to zero as N — oo
since w1(y < p. The remaining contribution to the sum is from terms where M >
(N +k—co)/(K+1). We then find that

oo K
A) — ¢ [ (e = Dwe, (wito) 2<Z(z’—1>wi(w1<o>”> (2.53)
iel 1=k

as N — oo. It is clear from the above calculations and the formula (2.53) that o

has the stated properties.

wy = w,: In this case w1y = p =1 and Zy ~ N'B’3C0_N where 3 > 2, cf. Lemma
2.2.3. We proceed as in the generic case up to Equation (2.52) which is replaced by
the estimate

Csup{Zy' G NV (Ni = Dww, | Ni > (N +k — o) /(K + 1)} ~ N7 (2.54)

which converges to zero as N — oo since > 2. We then continue and get the result
(2.53) as above.

wy > we: In this case w1y =1 and Zn ~ N*'B“go*N cf. Lemma 2.2.2 where g > 2.
First assume that ¢(c) > k as in the previous cases. Then Equation (2.50) ap-
plies. However, the upper bound (2.52) no longer converges to zero. We there-

fore consider the contribution from terms for which two different numbers ni,ns €
{N1,...,Ng, M} obey ng > (N +k —cp)/(K + 1) and ny > J for some positive
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number J > k. As in (2.35), this contribution is estimated from above by

cy i (2.55)

i>J

where C' is a positive number independent of N and J. This converges to zero as

J — oo since 3 > 2. The only remaining contribution to oy (A) is

K

AN WO(Z Z ﬁ -—1wNw{V -2

Nyt +Ng+M=N+k—co
k<N;<J, j#i, M<J
N; >k

K

+ Z H —1wNw{V 2)

Ni+-+Ng+M=N+k—co Jj=1
k<N;<J, Vj

J J K—1
—_— WOC hr2khco <K(w1 - wc)2 Z Zan ( Z(TL - 1)wn)

n=1 n==k

— G H - Dw (Z(n — 1)wn)K71 <K(w1 —we)+ Y (n— 1)wn>,
el n=k n—rk

(2.56)

Now assume that ¢(c) < k. Then with precisely the same calculation (with no Zys

factor) one gets

oo

v (A) — O T (e - D, ( S (n- 1)wn)K_1K(w1 — w,)? (2.57)

i€l n==k

as N — oco. From (2.57) one sees that U is concentrated on the set of caterpillars
of finite length with the stated length distribution . The estimate (2.55) shows that
there appears precisely one vertex of infinite degree on the spine and one can deduce
the distribution of the degree of the others from (2.57).
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2.4 Dimensions of the different phases

The generic phase is very simple and it is one dimensional for any sensible notion of
dimension. The same applies on the critical line when ¢”(1) < co. We state this in

the following theorem.

Theorem 2.4.1 For the generic branching weights in Lemma 2.2.1 and the critical

branching weights in Lemma 2.2.8 with 3 > 3, it holds that

ds =dy =1 (2.58)

and
dy =dy =1 (2.59)

almost surely.

Proof We start by considering the Hausdorff dimension. For an infinitely long ran-
dom caterpillar ¢ € (C,7), let (X,(c)), be a sequence of random variables corre-
sponding to the number of leaves attached to the vertices si,ss,... of c. Define
Sr(c) = Zil Xi(c). Then |Br(c)| = Sr—1(c) + R. From (2.45) it is clear that

(IBrl)s = (Gog" (wi¢o) = 2)(R—1) + R. (2.60)

Since ¢’ (w1(p) < oo it follows from (1.21) that the annealed Hausdorff dimension is

dg = 1. By the strong law of large numbers
|Br(c)l/R — Cog"(wilo) =1 < o0 (2.61)

almost surely as R — oo which shows that dy = 1 almost surely.

Next we find the spectral dimension by establishing bounds on the return probabil-
ity generating function. Let ¢ be an infinitely long caterpillar with the corresponding
return and first return generating functions Q.(x) and P.(z). We get an upper bound
on Q.(z) by throwing away all the leaves from the spine. Then, by the monotonicity
results of [37] we find that

Qe(z) < 2 1/? (2.62)

which shows that d; > 1 and d, > 1 almost surely. To get a lower bound on Q.(x) we

use a slight modification of Lemma 7 in [38] which is the following. For all integers
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R>1land0<z <1,

1
1——1 — 2 — z|Bg(c)]. (2.63)
We then get, using (1.15),

Q) 2

(2.64)

and by Jensen’s inequality

1

(Qe(x))5 > ﬁ Lo+ x<|BR|>ﬁ.

(2.65)

Choose R = [z71/2]. We find, using (2.60) and (2.65), that d, < 1. Using (2.64) and
the fact that |Br(c)| ~ R almost surely shows that ds < 1 almost surely.

O

Next we consider a point on the critical line where g”(1) = co. We see straight away
from (2.60) that the annealed Hausdorff dimension is infinite in this case and Equation
(2.65) provides no useful bound on the annealed spectral dimension. However we can

obtain almost sure results on the dimensions.

Theorem 2.4.2 For the critical branching weights in Lemma 2.2.3 with 2 < 5 < 3,
it holds that )

dg = —— 2.66

) (2.66)

almost surely.

Proof To make the notation more compact define v = § — 2. We prove a stronger
statement, namely that there exist constants C; and C5 and for v—almost all cater-
pillars ¢ a constant R, > 0 such that

Ci(log(R) "' R)'" < |Br(e)| < (M(R)R)'" (2.67)

for all R > R.. Here, A\(R) can by any positive function with the property that

=1
Rz::l B < (2.68)
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In particular we can choose A(R) = (log(R))" for any n > 1 which is sufficient to
obtain the desired result. Let (X, (c)), be the sequence of random variables defined
in the proof of Theorem 2.4.1. Since 1/4 > 1 it is clearly sufficient to prove the
inequalities (2.67) for Sg(c). Begin with the lower bound. Take x,6 > 0. Using
Markov’s inequality and the independence of the X;’s we get

P(Sp(c) <x) = B (50 > ) < o (B (e0X))"
= " (Gg'(e™?)

R

Taylor expanding ¢’'(e~?) around 1 yields
g ) =g 1) -1 -e")g" (¢ (2.69)

for some number ¢ € (e7%,1). Since g” is increasing, it holds that ¢” (&) > g”(e™?).
Estimating ¢”(e~?) by an integral and using (og’(1) = 1 yields

Cog'(e_e) <1-C(1- e ) < e~ Cll—e™%)7 _ —C67(1+0(9)) (2.70)

where C' is a constant. Now choose k = K (log(R))™*/YR'7 and § = 1/x. Then, for
R large enough

P(Sg(c) < K(log(R)) ™Y/ 7RY7) < Cye™CK "los(l) — 0y p=CK™" (2.71)

where ('3 is a positive constant. Choosing K = C7 small enough we see that
> P(Sr(c) < Ci(log(R)™/7RY") < o0 (2.72)
R=1

and therefore, by the Borel-Cantelli lemma, there exists a constant R. such that
Sr(c) > Cy(log(R))~Y/Y R almost surely for all R > R...

The upper bound follows from [41, Theorem 2] which states, for our purposes,
that the probability of the event

Sr(c) > ag, for infinitely many R (2.73)
is zero if the sum

Z P(Xk > ar) (2.74)
R=0
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converges, where apr is a positive sequence with the property that ag/R — oo as
R — oco. Now
P(Xk 2 aR) § C4a§7 (275)

for a suitable constant Cy. Choosing ar = (A(R)R)'/"7, where A(R) has the properties

stated above, completes the proof.

O

Theorem 2.4.3 For the critical branching weights in Lemma 2.2.3 with 2 < § < 3,
it holds that )

ds = —— 2.76

o (2.76)

almost surely.

Proof Let ¢ be an infinitely long caterpillar. Equation (2.64) provides a lower bound
on Q.(z) and Equation (6) in [38] provides an upper bound such that
1 2

c <R+———.
T ot aBa) = W BT )

(2.77)

Using (2.67) for a suitable choice of A(R) we get r—almost surely the inequality

1 2
<Q.z)<R
== + 2 +a(A(R)R)V/(B-2) — Qc(z) < R+ 201 (log(R) 1 R) /72

(2.78)

for all R > R, and R, large enough. Choosing R = [x_g%?] we find that there are

numbers K;(c) and Kz(c) such that 7 almost surely

B—2 B—2 B—2 B—2

Ei(e)M([z™ 57 ]) "t 51 < Qe@) < Ka(c)log(fa™ 7 ])a 1. (2.79)

This yields the desired result.

O

Theorem 2.3.1 implies that the Hausdorff dimension dy of a random caterpillar
in the subcritical phase is almost surely infinite since with probability one there is a
ball of finite radius which contains infinitely many vertices. The annealed Hausdorff
dimension is infinite by the same argument. Similarly, the spectral dimension is almost
surely infinite because a random walk which hits the infinite order vertex returns to

the root with probability 0. From the analysis below one can easily check that the
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return probability on a randomly chosen subcritical caterpillar 7, p,(t), decays faster

than any power of t.

In the remainder of this section we show that, although the spectral dimension is

almost surely infinite, the annealed spectral dimension is finite.

Theorem 2.4.4 For subcritical caterpillars defined by the weight factors given in
(2.30) with wy > w, it holds that

dy =2(3—1). (2.80)

Proof We will refer to the unique vertex of infinite order as the trap. If the walk
hits the trap it returns to the root with probability zero. Therefore, the part of
the caterpillar beyond the trap is irrelevant for the random walk. When finding the
spectral dimension it is therefore natural to consider the probability that the trap is
at a distance ¢ from the root instead of considering the probability of the total length

of the caterpillar given in (2.46).

For a caterpillar of a given length, all the vertices between r; and 7o are equally
likely to be of infinite order so the probability that the trap is at a distance ¢ from

root is given by
_ - Y(k) _ AWATA
p(t) = k;ﬂ = (1- w—1> (w—1> . (2.81)

From now on we will disregard the part of the caterpillar beyond the trap. Let By
be the set of caterpillars with distance ¢ between root and trap and which have one
vertex of order k and all other vertices of order no greater than k, with the exception
of the trap of course. Let a(k) be the probability that a given vertex on the spine

between the root and the trap has order no greater than k. Then
k
a(k) =Y é(q). (2.82)
q=2
The probability that at least one of these vertices has order k£ and all the others have

order no greater than k is then

c(k,0) = a(k)r —a(k — 1)L (2.83)
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The average return generating function for the subcritical caterpillars is then

e}

Q@)=Y pO Y ek t) 3 #({e|ce B} (a). (2.84)

(=1 k=2 TE€B &

For a given distance ¢ between root and trap we denote by M, the linear subgraph
which starts at the root and ends at the trap, see Fig. 2.4. The first return generating
function for My is given by

(L+vo)'+ (1 - o)
L+ Vo) = (1= V)"

see e.g. [37]. Now attach k — 2 links to each vertex of the graph M, except the root

Pus(a) =1 V& (2.85)

and the trap and denote the resulting graph by M j, see Fig. 2.5. Then M, is the
largest graph in the set By . Using the methods of [51] we find that the first return

generating function for My j, is

Par(o) = (145522 ) Puon(o) (2.56)
where (k_f)z 24 (k-1
xp(z) = 0+ %x)Q (2.87)

To find an upper bound on the spectral dimension of subcritical caterpillars we
establish a lower bound on the n-th derivative of the average return generating func-
tion. Let n be the smallest positive integer such that Q™) (z) diverges as z — 0. We
see in the following calculations that we have to choose n such that n+1 < 8 < n+2.
By (1.15) we find that (—1)"Q{™ > (=1)"P{™ for any r. Thus, by differentiating

(2.84) n times and throwing away every term in the sum over ¢ except the ¢ = 2 term,

Figure 2.4: The graph M,. The root is denoted by a circled vertex and the trap by an
asterisk.
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we get the lower bound
w w > (n)
—1"(”)x>—1"<1——c>—c k)P (x). 2.88
(0"Q" ) 2 (-1 (1- ) S5 S o0, (o (2.88)
We easily find that
1—x
2.
PM2I¢($) 2+ (k — 2)1} ( 89)
and show by induction that
(n) oy (B—2)"""k
P = (-1 ! . 2.
i () = (Sl G (2.90)
Then, by (2.47) and (2.90),
n > (n) n! o= (k—2)" kB (k - 1)
qb P a: = —
kZZQ Mz.k we £ 2+ (k—2)x)nt!
oo, nt+l-p
> Cxﬁ—"—Q/ I — (2.91)
« (24y)H

where C' > 0 is a constant. If 3 < n + 2 the last integral is convergent when z — 0

but if 3 = n + 2 it diverges logarithmically. In both cases we get an upper bound for

the annealed spectral dimension d, < 2(8 — 1).

To find a lower bound on the spectral dimension of subcritical caterpillars we

establish an upper bound on the n-th derivative of the average return generating

function. First note that 1 > a(k) = a(k — 1) + ¢(k) and therefore

ek, 6) = (a(k) —a(k—1))

(a(k)* "2 + a(k)*a(k = 1) + ... + a(k)a(k = 1) + a(k -

IN

P(R)(€ —1).

Figure 2.5: The graph M .

1)6—2)

(2.92)
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Now consider a caterpillar 7 € By j, and the graph M,. Denote the vertices on the
spine of M, between the root and the trap by s1,s2,...,s¢_1. One can obtain the
graph 7 from M, by attaching m,(s;) links to s;, i =1,...,£—1 where 0 < m,(s;) <
k — 2. Using the methods of [51] we can write

Q@)= Y Ko(a,w)Wi, @)(1—a)I/? (2.93)

on M,

where the sum is over all random walks w on M, which begin and end at the root,

|w|—1 -1
mr(we)
Ko(nw) = melwr) " |
) t];[l <1+ 5 ) and (2.94)
wi€{s1,...,80-1}
Jw|—1
Wi, (w) =[] (olw)™ (2.95)
t=0

The i—th derivative of the function K, (z,w) can be estimated as

(qg%KmMSHWWﬁ%;%W

(2.96)
where H is a polynomial with positive coefficients. From the relation (1.15) and the
explicit formula (2.85) one can easily see that (—1) Q(z) (0) is a positive polynomial
in ¢ of degree 2i + 1. Therefore, differentiating (2.93) n times and using the estimate
(2.96) we get the upper bound

(—1)"Q® (& SZ —2)2)) (2.97)

where the S; are positive polynomials in ¢. Differentiating (2.84) n times w.r.t. = and
using the estimates (2.92) and (2.97) we finally obtain

()" (x ;ZP 8—1Z2¢ —Q)QW (2.98)

The sum over ¢ is convergent since .S; is a polynomial in ¢ and p(¢) decays exponen-
tially. The sum over k is estimated from above by an integral as in (2.91) which yields
a lower bound on the annealed spectral dimension dy > 2(3 — 1). This proves (2.80).

O
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2.5 Generalization of the caterpillar model

The caterpillar model can be generalized to more complicated tree models by replacing
the leaves on the spine by trees with vertices of orders bounded by K, the caterpillars
correspond to K = 1. We will not go into details of the calculations for this model,
however using a similar analysis as for the caterpillars, one obtains two phases: a fluid
phase (generic) and a condensed phase (nongeneric), separated by a critical value of

wi given by
K
we(K) = g'(1) = > wn. (2.99)
n=2

In the fluid phase, the finite volume probability measures converge to a measure
concentrated on trees with an infinite spine with critical Galton Watson? outgrowths
analogous to the generic trees in [38]. In the condensed phase the measures converge

to trees with spine of a finite length ¢ distributed by

b, K) = (0 —1) (1 - w:l&())Q (wC(K))e. (2.100)

w1

Exactly one of the vertices on the spine has infinite degree and the order of other

vertices is independently distributed by

o(k, K) = (k- Dwp, k> 2. (2.101)

we(K)

The distribution of the distance between the root and the vertex of infinite degree is

p(6,K) = <1 - wC(K)) <wC(K)>“. (2.102)

given by

w1 w1

The outgrowths from the spine are independent subcritical Galton—Watson trees with

offspring probabilities

— -, 0<n<K-L (2.103)
EnZI Wn

As N — oo one finds that the size of the large vertex is approximately (1 —m(K))N
with high probability, where m(K) < 1 is the mean offspring probability of the
Galton—Watson process. What makes the calculations easy in the condensed phase in

the above models is the fact that the large vertex which emerges as N — oo has to

2Galton-Watson processes are defined in Section 3.2.
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stay on the spine due to the restriction on the order of the vertices in the outgrowths.
When the cutoff on the vertex orders is removed (K = co) one obtains the tree model
which is studied in the next chapter (with the difference that there are two marked
vertices in the present model). In this case it is more difficult to locate the large
vertex and one has to use other methods in the calculations. It is tempting to simply
let K — oo in the above formulas to characterize the K = oo model, on the other
hand it is not clear that interchanging the K — oo and N — oo limits is allowed.
However the analysis in the next chapter shows that the above characterization of
the condensed phase holds and one arrives at the same formulas as one would get by

simply taking K — oco.



Planar trees with a local

action

In this chapter we study an equilibrium statistical mechanical model of planar trees
with a local action. We start by defining the set of planar trees and endow it with
a metric. We then introduce the model and show that it exhibits two phases, an
elongated and a condensed phase. The main results are the proof of the asymptotic
behaviour of the finite volume partition function in the condensed phase. This result
is used to prove convergence of the finite volume measures to a measure on infinite
trees. We conclude by calculating the annealed spectral dimension, with respect to

the infinite volume measure, in the condensed phase.

3.1 Planar trees

In this section we define rooted planar trees and construct a metric on the set of all
rooted planar trees. The definition resembles the one given in [35], however here we
also allow vertices of infinite degree. We include vertices of infinite degree since they
appear in the condensed phase of the random tree model in Section 3.3. In words,
the planarity condition means that edges incident on a vertex are ordered. When
the degree of a vertex is infinite one has many different possibilities of ordering the
links and therefore the planarity condition must by carefully defined. The definitions

below take care of this point, the vertices are allowed to have at most countably

41
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infinite degree and the edges are given the simplest possible ordering.

We start by introducing a sequence of pairwise disjoint, countable sets (Dg)r>0
with the properties that if D = () then Dg = 0 for all S > R. The sets Dg and D1
are defined to have only a single element. The set Dgr will eventually denote the set
of vertices at a distance R from the root. To introduce the edges and the planarity

condition, we define orderings on each of the sets Dr and order preserving maps
¢R:DR—’DR—1; RZl (31)

which satisfy the following: For each vertex v € Dp_; such that |¢5'(v)| = oo, there

exists an order isomorphism

Py N — (;5}_%1(1))

where N has the standard ordering. If |¢5' (v)| < co we define the order isomorphism
Vo {1,2,...,]05 (v)]} — ¢z (v). One can show by induction on R that such
orderings on Dp can be defined and that they are well-orderings. Tt is clear that
given the ordered sets Dg, R > 0 and the order preserving maps ¢r, R > 1 with the
above properties, the maps v, are unique.

Let T be the set of all pairs of sequences {(Do, D1, Da,...),(¢1, d2,...)} which
satisfy the above conditions. Define an equivalence relation ~ on T' by identifying
the elements {(Dy, D1,...), (¢1,¢2,...)} and {(D{, D4,...), (¢}, d5,...)} if and only
if for all R > 1 there exist order isomorphisms xr : D — D', such that ¢ =
XR_10 ¢RO X}_%l. Define T := f‘/ ~. If 7 € T we denote the equivalence class of 7 by
[7] and call it a rooted planar tree, cf. Section 1.3.1. As a graph, the tree has a vertex

set,
o0
V= U Dr
R=0

and an edge set
E={(v,¢r(v)) | ve Dr,R > 1}

which are independent of the representative {(Dg, D1, ...), (¢1,d2,...)} up to graph
isomorphisms. The single element in Dy is taken to be the root. In the following, all
properties of trees [7] € I' we are interested in are independent of representatives and
we write 7 instead of [7]. Rather than always specifying the sequences (Do, D1, D2, . ..)
and (¢1, ¢o,...), we will refer to the elements in I' with a single Greek letter, usually

7. We then write Dg(7), ¢r(-,7) etc. when we need more detailed information on .

Note that since the sets Dr, D', are well-ordered for all R > 1 the order isomor-
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¥u(3)
7/}1)<2) RN .

(1)

v

Towards root

Figure 3.1: The ordering of ¢5'(v).

phisms x in the above definition are unique. When we draw the trees in the plane we
use the convention that 1, (k) is the k-th vertex clockwise from the nearest neighbour
of v closest to the root. See Figure 3.1.

We define the left ball of graph radius R, Lr(7) as the subtree of Br(7) gen-
erated by subsets Es C Dg(Bg(7)), S = 1,...,R such that Ey = Dy(Br(7)),
Ey = D1(Bg(7)) and

Es ={p(i) |v€ FEs_1,i=1,2,...,min{R,o(v)} — 1} (3.2)

for S > 2, see Fig. 3.2. It is easy to check that for all 7 € T’

(R—1)F -1
< —r .
La(r)] < (33)
We define a metric d on I" by
1
d(71,72) = inf { I ‘ Lr(m) = Lgr(m2), R€ N} , 1,10 €T, (3.4)

The metric used in [35,38], in the study of the generic phase, is defined in the same

Figure 3.2: An example of the subgraphs Br(7) and Lr(7).
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way as d but the ball By is used instead of L. Trees which are different, close to the
root are always “far apart” in this metric and therefore it is only suitable to measure
distances between trees of a large diameter which have vertices of finite degree. In
the new metric d however, trees can be close to each other if they do not differ too
much close to the root.

Denote the open ball in T" centered at 7y and with radius r by
By(ro) ={r €l | d(r0,7) <r}. (3.5)

In the same way as in the previous chapter on the caterpillars we find that the metric

space (T',d) has the following properties.

Proposition 3.1.1 The metric space (T',d) is compact.

Proposition 3.1.2 For r > 0 and 79 € T', the ball B,(79) is both open and closed.
Moreover, if 11 € B,.(19) then By (11) = B, (10).

Proposition 3.1.83 The set I of finite trees is a countable dense subset of T.

3.2 The model

Let w,, n > 1 be a sequence of nonnegative numbers which we call branching weights.

For technical convenience we will always take
wi,ws > 0 and wy >0 for some n > 3. (3.6)

Define the finite volume partition function

ZN = Z H w[,(i). (37)

Tel'n €V (r)\{r}

Define a probability distribution vy on I'y by

I/N(’T) = Z;,l H W (4) - (38)
i€V (T)\{r}

The weights w,,, or alternatively the measures vy, define a tree ensemble. Note that

vy is not affected by a rescaling of the branching weights of the form w, — w,ab™
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Figure 3.3: A diagram explaining the recursion (3.11). The root is indicated by a circled
point.

where a,b > 0. We introduce the generating functions

Z(Q)=>_ Zn¢N (3.9)
N=1
and -
g(z) = Z W12 (3.10)
n=0

Then we have the standard relation

Z(¢) = ¢y(2(0)) (3.11)

which is explained in Fig. 3.3.

Denote the radius of convergence of Z(¢) and g(z) by (o and p respectively and
define Zy = Z((o). If Zp < p then we say that we have a generic (elongated, fluid)
ensemble of trees. Otherwise we say that we have a nongeneric ensemble. If p = oo
then we always have a generic ensemble. If p is finite then we fix p = 1 by scaling the

branching weights w,, — w,p" .

There is an interesting and useful relation between the tree ensemble (I'y,vn)
and trees generated by the so called Galton—Watson process. The process is defined
in the following way. We start with a single ancestor (in general there can be many)

which has n offsprings with probability p, where p,, are nonnegative numbers and

o0

> pn=1. (3.12)
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Each offspring then has n offsprings itself independently with the same probabilities
pr, and so on. For convenience we add a root r to the Galton—Watson trees by linking
a vertex of order one to the ancestor. The process generates a probability measure

on the set of all finite trees

pu(r) = H Do(i)—15 where 7€l (3.13)
eV (r)\{r}

We define a generating function for the offspring probabilities

f(z)= anz". (3.14)
n=0

Galton—Watson processes are usually divided into three categories depending on the
size of the first moment of the generating function m = f/(1). It is clear that m
represents the mean number of offsprings of each individual. If m > 1 the process
is said to be supercritical and the probability that it survives forever is positive. If
m = 1 the process is said to be critical and it dies out eventually with probability
one. If m < 1 the process is said to be subcritical and it dies out eventually with

probability one, much faster than in the critical case.

The probability distribution vy can be obtained from a Galton Watson process
with offspring probabilities

Pn = Cown1 25" (3.15)

by conditioning the trees to be of size N

vn(T) = . (3.16)

(3.17)

which we will show to be < 1 by (3.11). Generic trees are always critical and non-
generic trees can be either critical or subcritical. We will now analyse this in more
detail. As mentioned above p = oo is always generic. Let us start with a set of
branching weights w,, which give p = 1. At this stage the model can be either generic

or nongeneric. We fix the values of w, for n > 2 but for now we let w; be a free
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parameter of the model. Define

h(Z) = @. (3.18)

From (3.11) we see that h(Z) = 1/{(Z) for Z < Z,. Differentiating h we get

, z (2
W(Z) = 922) [zgg((z)) - 1} (3.19)
and again 2
" - g/, Z 2 /
w(2) =52 - Zn(2). (3.20)

The genericity condition can be interpreted as h having a quadratic minimum at

Z = Zy < 1, see Fig. 3.4. This means that m = 2 Z((ZZ;))) = 1 showing that the generic

phase corresponds to critical Galton—Watson trees. This shows that given a Zy < 1
and the branching weights w,,, n > 2, it must hold that w; = >°°(n — 2)w, 25"

n=2

We can therefore make any model with p = 1 generic by choosing
oo
wy < Z(n — 2w, = w, (3.21)
n=2

where w, is a critical value for w; which depends on w,, for n > 3. It is interesting
to note that the critical value is independent of ws. Also note that if w. = oo, i.e. if
g'(z) diverges as z — 1, we always have a generic ensemble.

The next possible scenario is that h has a quadratic minimum at Z = Z; = 1. This

happens when w; = w, or in other words when m = % = 1. This is a nongeneric

W(Z) MEZ) nZ)

Figure 3.4: The three possible scenarios. (a) Generic, critical, w1 < we.
(b) Nongeneric, critical, w1 = w.. (¢) Nongeneric, subcritical, w1 > we.
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Critical |
: Subcritical

Figure 3.5: A diagram showing the possible phases of the trees. The critical line is deter-
mined by the equation wi = we.

ensemble which still corresponds to critical Galton—Watson trees.
Finally, by choosing wy > w., h has no quadratic minimum and m = % <1. In
this case the trees are nongeneric and correspond to subcritical Galton—Watson trees.

We will refer to this phase as the subcritical nongeneric phase or the condensed phase.

3.3 Subcritical nongeneric trees

In this section we examine the subcritical nongeneric phase and determine the asymp-
totic behaviour of Zn. We fix a number § and for n > 2 we fix the branching weights
such that

w, =n P(140(1), n>2 (3.22)

and for now w; is a free parameter. In this case p = 1. If § < 2 then ¢'(1) = oo and
therefore we are in the generic phase for all values of wy. If § > 2 we can have any
one of the three cases discussed in the previous section depending on the value of w1,
see Fig. 3.5. Now choose 8 > 2 and w; > w, such that

<1, (3.23)

meaning we are in the nongeneric, subcritical phase. Then Zy = p = 1 and we see

from (3.11) that
1

m .

The main result of this section is the following.

Go = (3.24)
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Theorem 3.3.1 For the branching weights (3.22) which satisfy (3.23) it holds that
Zn =1 -m) NPV (1+0(1)). (3.25)

To determine the large N behaviour of Zy we split it into the following sum
Zn =21 N+ EN (3.26)

where Z; n is the contribution to Zy from trees which have exactly 1 vertex of
maximum degree and F is the contribution to Zy from trees which have > 2 vertices
of maximum degree. The plan is to estimate these two terms separately and show that
for large N the main contribution is from Z; y. It will follow from the proof that large
trees, of size N, are most likely to have exactly one large vertex which is approximately
of degree (1 —m)N. This will be stated more precisely in Section 3.4. The arguments
used in the proof of Theorem 3.3.1 rely on a “truncation method” and some classical
results from probability theory. We begin the proof by defining truncated versions
of the generating functions introduced in the previous section. Then we introduce
notation from probability theory and state a few lemmas. In Subsection 3.3.1 we
analyse the asymptotic behaviour of Z; y and in Subsection 3.3.2 we do the same for
En.

For the truncation method, we will need the following definitions. Let L; y be the
finite volume partition function for trees of N edges which have all vertices of degree

< ¢ and define the functions

Li(¢)=>_ Lin¢N (3.27)
N=1
and .
li(2) = wnprz" (3.28)
n=0
We have the standard relation
Li(¢) = Cli(Li(C)) (3.29)

obtained in the same way as (3.11).
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Let Y; ;. n be the finite volume partition function for trees of N edges which have
all vertices of degree < i and one marked (not weighted) vertex of degree one at

distance j from the root. Define

Y5i(Q) =Y Vianch (3.30)

N=1

and .
Vi(Q) =D Y540 (3.31)

j=1

With generating function arguments we find that
V3i(C) = CLIL(C)Vy-14(C) (3.32)
for j > 2, see Fig. 3.6. Using Y1 ;(¢) = ¢ this yields
’ i1
1a(6) = ¢(¢tLicn) . (3.33)

and by summing over j we get

¢

Yi(¢) = 1= 0L Q) (3.34)
Yia(€)
® e X = § k wyiq
. k=0
J

Figure 3.6: A diagram explaining (3.33). The marked vertex is indicated by ®. The
balloons which include the “< ¢” are trees which have vertices of degree at most i. If the
degree of the nearest neighbour to the root is k + 1, there are k different ways of placing the
marked vertex onto a balloon.
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It will be useful to formulate our problem in the language of probability theory.

Define the probability generating functions

filz) = 7 and f(z):M. (3.35)

Let Xl(i)7 XQ(i), ... beii.d. random variables which have a probability generating func-
tion f;(2) i.e.

: (D) f0<k<i-—1,
P(X = k) = Wwe+1/4i(1) 1 =1 =17 (3.36)
/ 0 ifk>i—1,
and let X;, Xs,... be i.i.d. random variables which have a probability generating
function f(z). Define
m; =E(X\"), o? =Var(x\"),  SY=x{"+. . +xy (3.37)
and
Sy =X +...+XxN. (338)

Note that m = E(X;) and from (3.23) we know that m < 1. Clearly m; — m as
i — 00. We need the following lemmas, the first three deal with convergence rates

in the weak law of large numbers.

Lemma 3.3.2 For any € > 0 and any s < 8 — 2 it holds that

lim N°P (‘SWN —m|> e> =0. (3.39)

N—o0

Proof Tt is clear that E(|X,|*) < oo for all ¢ < §—1. The result then follows directly
from [60, Theorem 28, pg. 286].

The next Lemma is a classical result of Bennett [15].

Lemma 3.3.3 (Bennelt’s inequality) If W1, Wa, ... are independent random vari-
ables, E(W;) = 0, Var(W;) = o3, and W; < b a.s. for every j, where b and ow are

positive numbers, then for any e > 0

15 5L R (R TR | s
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with N )
€ €

Lemma 3.3.4 If i = O(N7) where v < 1 then for any ¢ > 0 small enough the
following holds

()
P (S% —m; > e) <exp{—CeN'}. (3.42)

where C' is a positive constant.
Proof This follows directly from Bennett’s inequality with W; = X](-i) — m;. Then
ow = o; and we can take b = 7 since X](-i) < 4 almost surely. Now assume that
i =O(N7). Then

n=eO(N'"). (3.43)

If 8> 3 then 0; < 0o and A = O(N7) and the result follows. If 2 < 5 < 3 then

O(i3=8 if 5<3
D L (3.44)
O(log(i)) ifp=3
so A — oo as N — oo which completes the proof.
O

In the following we will use Lagrange’s inversion formula repeatedly [66, pg. 167]. We
understand [2"]{f(z)} as the coefficient of z™ in the Taylor expansion of f about
z=0.

Lemma 3.3.5 (Lagrange’s inversion formula) If h(z) is a formal power series in z
and L; satisfies (3.29) then

1

[CYHALAO} = TR (2)() Y } - (3.45)

Applying the above to the function h(z) = 27 we get
MLV} = N} (3.46)

The following lemma will be helpful. We omit the proof since it is trivial.
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Figure 3.7: An illustration of Equation (3.47). The balloons which include the “< ¢ are
trees which have vertices of degree at most 7. There is thus precisely one vertex of maximum
degree i + 1.

Lemma 3.3.6 If X >0 and Y are random variables then for any e > 0
PIX+Y|<e)>P(X <e/2)P([Y] <€/2)
and

P(X+Y|>e) <P(Y]|>e/2) +P(X > ¢/2).

3.3.1 Calculation of Z; y

Using the lemmas in the previous subsection we are ready to study the asymptotic

behaviour of Z; . It is easy to see that

N-1
ZiN = Z Wi [CNTH{VI(OLi(Q)'} (3.47)
i=0

as is explained in Fig. 3.7. Combining Equations (3.29) and (3.34) one can use the

Lagrange inversion formula (3.45) for the function

Lt
to get
(ML)} = %[ZN_j_l]{ (W)j S T fgz(z)@))?)mz) N}'



54 Chapter 3 Planar trees with a local action

Note that the left hand side is increasing in ¢ and therefore of course also the right

hand side. This fact will be used repeatedly in the proof of Lemma 3.3.8. Define the

functions
fi,l(z) = % (349)
and 20 (1) — 61)?
fale) = PHE) ()~ () 550

(bi(z) — 2i(2))* £/ (1)
It is easy to check that all derivatives of the functions are positive for 0 < z < 1 and
that f;1(1) = fi2(1) = 1. We then define X and X2 to be random variables
having f;1 and f; 2, respectively, as probability generating functions. We will need

the following lemma

Lemma 3.3.7 If i = O(N) as N — oo then for any ¢ >0

1. P(XO0D > eN) < C1N?77,

3-03 ]
92 ﬁ%(l)P (X(i,Q) > GN) < (Cy { f:)fg(N) :;g 7: 27

where C1 and Cy are positive numbers which in general depend on € and 3.

Proof We use a weighted version of Chebyshev’s inequality which states that if X is
a random variable and ¢(z) > 0 for > 0 is monotonically increasing and E(¢(X))
exists then

P(X| > 1) < 222 (3.51)

First we prove case (1). Choose ¢(x) = 21?1 where |-] denotes the floor function. It
is clear that ffq)(l) < oo for all n and therefore E(¢(X 1)) < co. One can check

that as ¢ — oo
E(p(X D)) = 0670 (1)) = 0~ HA+2), (3.52)

If i = O(N) as N — oo then by the Chebyshev inequality there exists a positive

constant C' such that

N-BHBI42 28
(eN) 5] =Cmr

P (X(“) > eN) <C (3.53)
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In the proof of case (2) first consider the case when 2 < 8 < 3. Then

e’]’v(l)z{ ON*™) 53, (3.54)

O(log(N)) if g =3,

as N — oo which proves the claim. If § > 3 then ¢};(1) is finite when N — oo and

the proof is exactly the same as in case (1).

We are now ready to prove the main result of this subsection.

Lemma 3.3.8
Zin =1 =m) NG (14 o(1)). (3.55)

Proof In this proof we let C,C1,Cs, ... denote positive numbers independent of N

whose values may differ between equations. Define

Gulab) = g VN Y wN_n[z”1{eN_n_1<z>N

a<n<b

N-—n Zzé%’—n—l(z)
) (ew_n_m — el ua () O aa(e) = zﬁsv_n_xz))?) }

(3.56)

Tt follows that
NP7 v = Gn(0,N —1). (3.57)

Now choose an € > 0 small enough and a « such that 2/3 < v < 1 and split the above

expression into four terms

NP ' Zin = GN(O,[(m—e)N])+Gn([(m — )N | +1,[(m+e)N])
+ Gn([(m+e)N|+1,[N-NY])+Gn(IN-N"]+1,N —1).
(3.58)

We show that as N — oo and ¢ — 0 the second term has a positive limit but the

other terms converge to zero. To make the notation more compact define

Ny=N-|m+eN|-1 and N_=N-|[(m—eN]. (3.59)
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The first term in (3.58) can be estimated from above by
Gn (0, [(m—€e)N])

()" B3R {107 (it + G o))}

n=0
Sy 4+ XD Cyl;(1) _ (1Sy + XIV:2)

< - — .

_03P<‘ N m|>e€|+ N P N m| > €
(3.60)

By Lemma 3.3.6 we have for i = 1,2,
X (Ni) .

]P’<‘SN+T ‘>e)<P(‘——m >6/2)+]P)(X(N”L)>NE/2). (3.61)

This, combined with Equation (3.54) and Lemmas 3.3.2 and 3.3.7, shows that the two
terms in (3.60) go to zero as N — oo.

The third term in (3.58) is estimated from above by

B-1
GN([(m+e)N|+1,[N=N"|) < (m>

[N-N7]

< Y e (e + e |

n=|(m+e)N]+1

N1
< O3NA-MB-Dp (‘LX() _ m‘ > e>
- N

(N.2)
+ CyNU=DE=D=vp (1)P <‘SN% - m‘ > e) . (3.62)

Since v > 2/ it holds that (1—v)(8—1) < f—2and (1—v)(8—1)—v < —3. Then
by (3.54), (3.61) and Lemmas 3.3.2 and 3.3.7 we see that last two terms converge to
zero as N — oo.

To estimate the fourth term of (3.58) from the above we first note that

0

N O} = M {8—wlci<o} < XMz (3.63)
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and thus

Gn(a,b) <wiltg(1)' =NV NP Z WN_n(N —n)[z"] {EN_n_l(z)N} . (3.64)

a<n<b
Using this for IV large enough and e small enough we get

N-1

GN(IN-N7J+1,N-1) < &N > " {fv- v (&)}
n=|N—-N7|+1

(S](VNLNN”)

IA

ClNﬁ]P) —mN_LN_N” 2 6)

< C1NPexp (—CoeN'™7) (3.65)

where in the last step we used Lemma 3.3.4. The last expression converges to zero as
N — oo since v < 1.
Finally we show that the second term in (3.58) has a nonzero contribution as

N — 0. By (3.22) we can choose n large enough such that
(1—en " <w, <1+ en .

We then get the upper bound

B—1
<hqw—am+Lquwnsa+ma(—J

L(m+e)N]

v n N
. <£N(1)—£’N(1) n=L(m§NJ+1[ a2 f(2)Y )

- (In(1) = € (1))2 Ny > (2" { fn2(2) f(2)V} )

n=[(m—e)N|+1

N\ AL 1 Uy (1)
< (1+e)g(1) (N—+) (gN(1) — 7 TN —N&v(l))”\h)
(491 —(m+e)~?
1—m

(3.66)

as N — oo by (3.54). In a similar way we get the lower bound
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Gn([(m—e)N|+1,[(m+e)N|) > (1 —e€)g(1) (ﬂ)ﬁ_l (€N+(1))N

N_ g(1)
< ) L(mim oy "
x| ————— [N 1(2) fn (2)
Ive ) =, (D) N
o) L(m+e)N| )
+ +/ Z {fN+! fN+ N}
(In, (1) — £N+(1))2N* n:L(m—e)NJ+1

(3.67)

By (3.54) the second term converges to zero as N — oco. Looking at the first term
we find that

(1-9e() (NN (1-90-(m-0)"
v, (1) =y, (D) (K> _> —m (3.68)
as N — oo and
RO L& !
- - — Wnt1 | = s\ vV _
( 9(1) ) 9(1) z]; nt (1+OW=") 1 (3.69)

as N — oo since 8 > 2. Finally we have for N large enough

[(m+e)N| S(N+) + X (N1

S N Svea() (2 )N}:PQNT_m

n= [(mfe)NjJrl

)

S(N+) + X (V1)
>P ( -, [ <¢/2

S](VN+) (N4,1)
> — < +> <
> P (|2 —my, | < /4| P(X0D < Neja)

X
>1-——5 | (1-CN?*F) (3.70)
N (e/4)

where in the second last step we used Lemma 3.3.6 and in the last step we used
Chebyshev’s inequality and Lemma 3.3.7. It is clear from (3.44) that 012\,+/N — 0

as N — oo and therefore the last expression converges to 1.
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From the above estimates (3.60), (3.62) and (3.65 3.70) we find that

(L-a(t—(m—e)’

il TR
1 1— 1-A
< limsupNﬁCévleLN < (L+e)( (m +¢)) .

N—o00 1—m

Since this holds for all € > 0 small enough, the limit exists and
lim N Zyn=(1—m)™"” (3.71)
N—o00

which completes the proof.

3.3.2 An estimate of Ey

We now estimate Ey, the remaining contribution to Zy. Note that £,11(¢) — £;(¢)
is the grand canonical partition function for trees which have at least one vertex of
degree i + 1 and no vertex of degree greater than i + 1. Consider a tree which has
at least 2 vertices of max degree 7 + 1. Denote the two max degree vertices closest
to the root and second closest to the root by s; and ss respectively. They are not
necessarily unique but for the following purpose we can choose any we like. Denote

the path from the root to sy by (r,s2). We can write

(b)

Figure 3.8: (a) The case when s; ¢ (r,s2). At least two balloons attached to the vertex
of degree j 4+ 1 (excluding the rooted one) indicated in the figure have to have at least one
vertex of degree ¢+ 1, namely s1 and s2. (b) The case when s1 € (r, s2). At least one balloon
attached to the vertex s; (excluding the rooted one) has to have at least one vertex of degree
i+ 1, namely s2.
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Ey = ) <§_:w7+1[N Z() i+1(¢) = Li(Q)" Li(¢Y ™"
; 7=0

n=2

s1 and sg in here

\_/

+w ¢ (n Liv1(¢) = Li(O)" Li(Q) )
n=1

S1 so in here

(3.72)

The outermost sum is over all possible max degrees. The first term in the brackets
takes care of the case when s1 ¢ (r, s2). Then j + 1 is the degree of the vertex where
(r,s1) and (r, s2) start to differ. At least two of the subtrees attached to this vertex
(excluding the rooted one) have to have at least one vertex of degree i+ 1. See Figure
3.8 (a). The second term in the brackets takes care of the case when s; € (7, s2).
At least one of the subtrees attached to s (excluding the rooted one) has to have at

least one vertex of degree i + 1. See Figure 3.8 (b).

Lemma 3.3.9

wH_lN

[CV{Lis1(0) = Li(Q)} < [N CLi1 ()} (3.73)

Proof Use the Lagrange inversion theorem to obtain

CNHL Q) ~ £} = @)Y — a2V}
= %[ZNI]{(&H(Z)—&(Z)) > fi+1(Z)lei(Z)N2}
Ni+Na=N-1

< wip [PV {lia ()N

Now use the Lagrange inversion theorem the opposite way to obtain the result.

Lemma 3.3.10

N-1

Ey <2N? 3wl (VY QL (P} (3.74)
=0
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Proof First note that

Z() 1(0) — LO)" L)

n=2

= Liv1(¢Y = Li(¢) = j(Lis1(Q) = Li(OLi(CY
= (Lit1(Q) = Li(Q)) ( > Lina (O L) —jﬁi(C)j_l)

Jitje=j—1
< G(Lira(Q) = Li(Q)) (Liga (O = Li(¢) )
= J(Lia(Q) = Li(Q)* D Lin(OMLi(Q)”
Jitje=j—2

< GG = D(Lia(Q) = Li(€) Liya(¢) 2

N
<.

It is also clear that the above inequality holds inside [¢(V] {-} brackets. Therefore the

sum over j in (3.72) is estimated from above by

ij-i-l { () (i) (Li+1(6) = Li(Q))" ﬁi(C)jn}

n=2

NH{YHO(Lis1(¢) = Li())* 4 (Liy1(C))} -

Now use Lemma 3.3.9 to get

[V (Li1(¢) = Li(O)* (Liva (6)) }
= > [ CMHYHOE (Lavr (O} [CVHL1(C) = L} [EV H{ L1 (O) —

N1+N2+Ns

< ;;1N2 Yo MO (Lo (O IC {CLi1 ()} [CV] {¢Lin

Ni+N2+Nz=N
- w—JN [CHENQE (Lia ()i (O}

Observe that
L (Lin1()Lir1 () _ Clir1(Lit1(Q))

i T Lia(Q)
where the last equality follows from (3.29). Combining the above results we get the

—1 (3.75)

estimate

Li(Q)}

©)'}
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i—1 J .
> wialch] {M) > (i) (Lir1(Q) — L£i(0)" ﬁi@)f’—"}
7=0 n

=2

< Wl NV TV (QLia (O}

We get precisely the same estimate for the term in the second line in (3.72) (the
calculations are even simpler) except that it is of order N smaller and the result

follows.
O
The above lemma gives us the following result
Lemma 3.3.11
NONEy —0  as N — . (3.76)
Proof By Lemma 3.3.10
e
NOG BN <2NPEG Y win [T QL (O (3.77)
i=0

The sum on the right hand side has the same form as Z; y with 3 replaced by 24,
cf. Equation (3.47). Equation (3.55), which describes the asymptotic behaviour of
Z1.n, can therefore be applied to show that the right hand side is o(N2~7). Since

£ > 2, this converges to zero as N — oc.

Combining Lemmas 3.3.8 and 3.3.11 completes the proof of Theorem 3.3.1.

3.3.3 Generalization of Zy

For technical reasons which are relevant in the next section, we need to generalize the
sequence Zy in the following way. In a tree 7, denote the unique nearest neighbour
to the root r by s. Define

R
Z](v) = Z Wo(s)+R—1 H We (i) - (378)
Tel'n 1€V (T)\{r,s}
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In analogy with (3.9) and (3.10), define the generating functions

Z(CR) =Y 2PN (3.79)
N=1
and .
gr(2) = Y wnyrz". (3.80)
n=0

Clearly Zy = Z](\,l),Z(Q = Z(¢,1) and g(2) = g1(2). With the same arguments as
for (3.11) we find the relation

Z(¢, R) = Cgr(Z(0)): (3.81)

Let Zy,r = Z(Co, R). The following lemma is a generalization of Theorem 3.3.1.

Lemma 3.3.12 For the branching weights (3.22) which satisfy (3.23) it holds that

(1
2 _ (1 et F’gR(—g))> A-m) NG N (14+0(1).  (382)
Proof We write

Z\B) = Zﬁ@ +E® (3.83)

in analogy with (3.26). One can show with the same methods as in the previous
subsection that limy_, s E](\,R)/ZN = 0. Therefore we focus on the term Z{fj”\),, the
contribution from trees for which there is exactly one vertex of maximum degree. We
split this term into the case when the maximum degree vertex is the next neighbour

of the root and when it is not. We can then write

N-1 N—2
Zi0 = Y wirl™H{CLAO + Y win [V {CE R (LML)}
i=0 =0
(3.84)
where we defined .
f@R(Z) = Z wn+Rz". (385)
n=0
Let )
Z?,—i—l
h(z) = (3.86)
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and
_ EQ,R(Z)ZHQ
") = T ) — @) (3.87)

Using the Lagrange inversion formula for the functions A and k£ we find that

et =B (G - T Y e

and

Ny Loy . , A iZN—i—Q (i +2)¢ g(2)
U AEOOLC) = = ]{(Ei(z)(&(z)_zmz))

i e;,R(Z) e
+ T (&(2)(&(2) — zg;@»))&( ) }

(3.89)

We now use exactly the same arguments as in the proof of Lemma 3.3.8 to evaluate
the asymptotic behaviour of (3.84). One can show that the contribution from the
second term in the curly brackets in (3.88) and (3.89) is negligible. Then one can
show that for any € > 0

iminf N1z C O (1= (m— P 9r(1)
liminf NP6 Zy y 2 (1 =€) (1 = (m —¢)) (1+g(1)_g/(1))

and
I N1z < (1+e)(1—(m+e)' ™" (1+ 9r() )
111 Ssup ~ € —{m € — | -
Nooso 0 BN 9(1) —g'(1)

Since this holds for all € > 0 the result follows.

3.4 Properties of the finite volume measures

In this section we study some properties of the measures vy for the three different
scenarios discussed in Section 3.2. We let m denote the mean offspring probability
defined in (3.17). The three cases are the generic, critical case (wy < we, m = 1),
the nongeneric, critical case (wy = w., m = 1) and the nongeneric, subcritical case

(w1 > we, m < 1).
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All results stated for generic trees are already known [38] but are rederived here
in a slightly different way. In the generic case, Equation (3.11) can be solved for
Z(() close to the critical point {y and one can then find the asymptotic behaviour of
Zn, the coefficients of Z((), see [58, Theorem 3.1] 1. In the nongeneric critical case,
the function Z(¢) has the same critical behaviour as in the generic case as long as
g’ (1) < oo, see |50, Lemma A.2]. With the same arguments as in [42,50] one gets the

following result for Z](VR).

Lemma 3.4.1 Under the stated assumption on the branching weights (3.6) and as-
suming that m = 1 and ¢"(Zo) < oo it holds that

9(2o)

(B) _  [_N=0) - ~3/2 —N
N = 27Tg”(ZO)C0gR(ZO)N G (I+o(1)). (3.90)
In particular [50, 58]
= ﬂ —-3/2—N
IN =\ grgrizgy N G0 (LFold): (3.91)

An analogous result for the asymptotic behaviour of Zy, for a special choice of

branching weights corresponding to nongeneric, critical trees with ¢”(1) = oo, is

stated in [42, VI.18 and VI.19, page 407]. A generalization to ZJ(VR) is straightforward

and is given in the next lemma.

Lemma 3.4.2 For the nongeneric, critical branching weights defined by (3.22), with
2 < B <3 and wy = w, the following holds

ZJY = Chgh(ON"7TG N (1+0(1)) (3.92)
where C > 0 is a constant.

We now prove that the measures vy converge for a certain type of asymptotic

behaviour of ZJ(\,R) and characterize their limit.
Theorem 3.4.3 If

ZJ(\,R) =C (1 —m+ Cogr(Z0)) NG N (1 +0(1)) (3.93)

See also [42, Theorem VI.6, page 404 |.
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where C' is a positive constant and § > 1, then the measures vy converge weakly, as

N — o0, to a probability measure v which has the following properties:

e If m = 1, v is concentrated on the set of trees with exactly one infinite spine
having finite, independent, critical Galton—Watson outgrowths defined by the
offspring probabilities in (3.15). The numbersi and j of left and right outgrowths

from a vertex on the spine are independently distributed by
. 1 it
i, 4) = —Cowitjr2Zy - (3.94)

e If m < 1, v is concentrated on the set of trees with exactly one vertex of infinite
degree which we denote by t. The length ¢ of the path (r,t) is distributed by

P(0) = (1 —m)m*~ L. (3.95)

The outgrowths from the path (r,t) are finite, independent, subcritical Galton—
Watson trees defined by the offspring probabilities in (3.15). The numbers i and
J of left and right outgrowths from a vertex v € (r,t),v # t are independently
distributed by (5.94).

Proof First we prove existence of v. Since the metric space (I, d) has the properties
stated in Propositions (3.1.2-3.1.3) it is enough, as was explained in Section 1.3.2, to
show that for any k& € N and 7" € I” the probabilities

VN (B% (T')) (3.96)
converge as N — oo. The ball in (3.96) can be written as

Bi(")={r €Tl | Lr(t) =70} (3.97)

1
E

for some R where 79 = Lg(7’). Denote the number of vertices in 7y of degree R by
S and the number of vertices in 7y at distance R from the root by T'. It is clear that
S+T >0.

We can now write

vy ({7 €T | Lr(r) =70}) =
s S+T

Zy W > 125 1] 2zv, (399

N1+..A+N5+T:N7‘T0|+T+S i=1 j=S+1
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Figure 3.9: An example of the set (3.97) where R = 4, S = 2 and 7' = 3. When conditioning
on trees of size N one attaches the weights Z](\,Ij), i=1...8and Zn;,j=5+1...54+T as
indicated in the figure.

where

Wy = I wo (3.99)

veV (10)\{r}
a(v),[(rv)[#R

is the weight of the tree 7y (apart from the vertices which are explicitly excluded), and
|(r,v)| denotes the length of the path (r,v), see Fig. 3.9. For one of the indices k in
each term of the above sum it holds that Ny > % Consider the contribution
from terms for which N,, > A for some other index n # k and A > 0. The indices n
and k can belong to either one of the sets {1,...,S} or {S+1,...,5+ T}, in total
four possibilities. First assume that S > 2 and n,k € {1,...,S}. Using (3.93), this

contribution can be estimated from above by

S S+T
R) -N; R) -N; N
C1 Y Zn8? 3 2@ 112806 11 2w
N1+...+N5+T=N—‘TO|+T+S 1=2 J=5+1
N12%7 Ny>A
5 S S+T
(S+T)N ) (R) ~N; N;
§C2( > Iava I 2va”
N—lnl+T+S) o & i ien
No>A
<3252 ST Nyt <A

No>A

where Cq, Cy, C5 and Cy are positive numbers independent of N and A. Exactly
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the same upper bound is obtained, up to a constant, for the other possible values of
k and n. The last expression goes to zero as A — oo since § > 1. The remaining
contribution to the probability (3.98) is then

S+T S S+T
1 (R)
> 23wy )3 120 11 2,
k=1 Ni+...4Nstr=N—|ro|+T+S i=1 j=S+1
Nn<A, n#k

A S—1 A T
—— WG T <S(1 —m + Gogn(Zo)) (Z Z,(f“)cz?) (Z Zn<8>
. s iy
ofgee) (e) )
n=1

n=1

s W 5T (5(1 —m+ Cogr(20)Z5 1 20 + TZ&RZOT*) . (3.100)

A—o00

This completes the proof of the existence of v. We now characterize v separately for

the cases m =1 and m < 1.

m = 1: Let Ar be the set of all trees which have a path (r,sg) of length R, exactly
one possibly infinite tree attached to sg and all other trees attached to (r, sg) finite,
see Fig. 3.10. Using (3.100) one finds that

v(AR) =1 (3.101)

for all R and therefore by taking R to infinity one finds that v is concentrated on trees
with exactly one spine having finite outgrowths. The distribution of the outgrowths
follows from (3.100).

m < 1: Let Ap, be the set of all trees which have a path (r,t) of length ¢ where
o(t) > R. Furthermore, the trees attached to ¢ in the the R th, R+1 st, ... position

O All finite trees
@ ,,,,,
, Sk

@ All trees

R

Figure 3.10: An illustration of the set Ag.
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All finite trees

All trees

Figure 3.11: An illustration of the set Ag ..

clockwise from (r,t) are possibly infinite but all other outgrowths from (r, t) are finite,
see Fig. 3.11. Using (3.100) one finds that

V(ARy) = (1 —m+ M) mt L (3.102)
’ 9(1)

The sets Ar ¢ are decreasing in R so taking R to infinity in (3.102) one finds, by the

monotone convergence theorem, that the probability of exactly one vertex having an

infinite degree and being at a distance ¢ from the root is (1 —m)m‘~!. Summing this

over ¢ gives 1 which shows that the measure is concentrated on trees with exactly one

vertex of infinite degree. The distribution of the outgrowths follows from (3.100).
O
Theorem 3.4.4 Theorem 3.4.3 applies to the generic, critical ensemble in Lemma

3.4.1, the nongeneric, critical ensemble in Lemma 3.4.2 and the nongeneric, subcrit-
ical ensembles defined by (3.22) and (3.23).

Proof This follows from Lemmas 3.3.12, 3.4.1 and 3.4.2 since (3.93) holds with

3/2 generic, and nongeneric critical with ¢”(1) < oo
0=4 B/(B-1) nongeneric critical with 2 < 8 < 3 (3.103)
16} nongeneric subcritical.

O

The next result concerns the size of the large vertex, in finite trees, which arises
in the nongeneric, subcritical phase.

Theorem 3.4.5 Consider the nongeneric branching weights defined by (3.22) and

(3.28). Let Cn . be the event that a tree in I'y has ezxactly one vertex of mazimum
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degree omax and (1 —m — €)N < omax < (1 —m +€)N. For any €, > 0 there exists
an Nog € N such that
vN (Cne) >1—0 (3.104)

for all N > Nj.

Proof This follows directly from the estimates (3.60), (3.62), (3.65 3.70) and (3.76).
U

3.5 The spectral dimension of subcritical trees

It is clear, as in the case of subcritical caterpillars, that the Hausdorff and spectral
dimensions of subcritical trees are almost surely infinite. However, it turns out that
the annealed spectral dimension is finite and in fact, it takes the same values as in
the case of the subcritical caterpillars. The main result of this section is the following

theorem.

Theorem 3.5.1 For any 3 > 2 the annealed spectral dimension of the subcritical

trees defined by (3.22) and (3.23) is
ds =2(8—1). (3.105)

We will prove separately a lower bound and an upper bound on d,. We first
present Faa di Bruno’s formula for the n—th derivative of a composite function (see

e.g. [12]) which will be used repeatedly.

Lemma 3.5.2 (Fad di Bruno’s formula) If f and g are n times differentiable func-

tions then

d" _ n! e tan = (9 @)\
o (9(@) = Z mf‘ et Ng(a:))H(f) . (3.106)

ie 1gi=n j=1

The following lemma will be needed to obtain the lower bound on d;.

Lemma 3.5.3 Let pu be a subcritical Galton—Watson measure on I' corresponding to
the offspring probabilities (3.15). For any n < 8 — 1 and any nonnegative integers
01,...,0k, kK <n such that 0 # 0 and 21;:1 ab, < n it holds that

a=1

k
<H ((—1>“P§a)(x))0a> < o0 (3.107)
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for all z € [0,1].

Proof The result is obvious for > 0 since the coefficients of Pp(x) are smaller than
one. First, take a fixed finite tree T' with root of degree one. Denote the degree of

the nearest neighbour of the root by N and the finite trees attached to that vertex

by Ti,...,Tn—1. Then from [38] we have the recursion
Pr(z) = ~—° (3.108)
x) = )
g St(z)
where

() =N — Z Pr,(z). (3.109)

Note that Sp(x) > 1, since Pr,(z) < 1 for all 7. By Faa di Bruno’s formula (with
f(z) =1/z, g(x) = Sp(z)) and using Sp(z) > 1 we find that

(—1)*PY (2) a4+ a1 (DS @)\

Sb_igi=b
_ . ; qj
N Z <q1+...+qb_1>b ! <(_1)J+1S§?)(J¢)> !
1
iy N @t ) J!
(3.110)
where (q;j‘ng) is the multinomial coefficient. Looking at the product from the first

sum we find that
- 1 j Pi
(=) - s (00, ) TS5
1l
=1 j=lpi+--+pN_1=¢; P1,-.-3PN—-1 iy 7!
(3.111)

Expanding the above products and keeping track of the factors in each term which

depend on the same outgrowth 73,9 =1,..., N — 1 we find that they are of the form

j p)
CH( )P U) (3.112)

where 22:1 joj < band C; is anumber independent of T; (the terms in the latter sum
in (3.110) are of the same form, if b is replaced by b —1). The equality 22:1 joj=b
holds only when p; = o; = ¢; in which case p, = 0 if a # 7 and C; = 1. The total
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contribution from such terms in (3.111) is therefore

N—-1 b j () 4;
> < Fr U) : (3.113)

i=1 j=1

Now choose numbers 6, ...,60; such that 6, # 0 and 22:1 af, < n. Define
0= ZZ=1 ab,. The following product of (3.110) over b has an upper bound

k bP(b) b N—1 &k jP(b)( )
() =)

(-1 >bP<b>< )

+CZZ > ﬁ]i[ +C

M=1a(M)1<i1<iz<-<ipyy <N-—1

b, ip

where Ea(M) is a sum over nonnegative integers ay ;, which satisfy either

k k—1
)Y by, <© or (i) Y by, =© (3.114)
b=1 =1

and C'is a number which only depends on k and (64, ..., 0;). Taking the u expectation
value of the above inequality and using the fact that the subtrees T;, i =1,..., N —1
are identically and independently distributed and distributed as T itself, yields

k bp(w Eol e p® o\
(=) ) (=) )

o & any 2 /& (1P @)\
iRl

p=1 \b=1 u
and thus
(=g
C ) ey M/ ko (~1)PPY (x) ab’p C
e 122%45)11 I\ —s—] )+
( )g()JM:lo((M) p=1 \b=1
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2] [[2| — 3] — [ 114 o=4

- ]
2] ERER 0=3

%J 0=2

]

L e=1

Figure 3.12: A sequence (01,02, ...,0y) is represented by a Young tableau where 0; repre-
sents the number of rows of size i. The size of a tableau is © and the number of elements in
the top row (grey boxes) is the value of k. The tableaux are first ordered by © and then by
k if possible. Tableaux with the same values of © and k are incomparable.

Note, that M < © < n < 3—1 and thus g™ (1) < co. Therefore, for z > 0, the right
hand side of (3.115) is finite. To show that the left hand side is finite at z = 0 we
proceed by induction on the sequences (01,0s,...,0;). We define a partial ordering

on the set of such sequences in the following way (see also Fig. 3.12). Sequences
(01,...,0) and (0,...,0)) obey (0,...,0,) < (61,...,0) if and only if

L k

4 k
(i) Y iby <> i6;  or (i) Y i = i and <k
i=1

i=1 i=1 i=1

For the smallest values, k = 1 and ©® = 1, we find with the same calculations as above
that

(=Pp(x)), < (3.116)

1—-m

Next assume that (3.107) holds for for all sequences (07,05, ...,0),) which are less
than a given sequence (61,0s,...,60;) with k,© < n. Then, by (3.114), all the terms
on the right hand side of (3.115) are finite and therefore the left hand side is finite
for all « € [0, 1]. This shows that (3.107) holds for the sequence (61,02, ...,60k).

3.5.1 A lower bound on d,

To find a lower bound on d, we study an upper bound on a suitable derivative of the
average return probability generating function. Let M, be a linear graph of length ¢
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i.‘rTaT(.sl)—2($1')_.r"' : »TUT<52)—2(52)‘

14

Figure 3.13: A tree from By .

with the root at one end and a vertex of infinite degree (trap) on the other end. Let
By j; be the set of trees with distance ¢ between root and trap and such that at least
one vertex on the spine has degree k and all the other vertices have degree no greater
than k, cf. proof of Theorem 2.4.4 in Section 2.4. We can write

(Q-(2)), =3 D) ek, ) > v(r| 7€ Bei)Q-(a) (3.117)
4

=1 k=2 TE€B i
where
-1 -1
k)= > oG] - D oG] - (3.118)
1+j<k—2 i+j<k—3

In a tree in By j,, denote the root by r, the trap by ¢ and the vertices on the spine by
$1,82,...,80—1. Denote the outgrowths attached to s; by T'(s;), where i = 1,...,0—1
and denote the j-th outgrowth from s; by Tj(s;) where j = 1,...,0-(s;) — 2, see
Fig. 3.13. The first return probability generating function for T'(s;) (viewing s; as the
root) can be written in terms of the first return probability generating functions for

T;(s;) in the following way

1 or(si)—2

PT(Si)(x):T)_Z Z Pr; (s, (). (3.119)
T(Si =
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Now take a 7 € By . We can write

Qr(z) = Z K (z,w)Wa, (w)(1 — z)«1/2 (3.120)
ugnr]@r
where
Jw|—1 9
S | B v A I (e es) 3120
wi€{s1,....,80-1}
and ol
Wi, (@) = ] (oar (we) ™" (3.122)
t=0

Choose n such that n + 1 < 6 < n + 2. Differentiating n times we get

(—1)nQ$_n)(q;) _ Z Z WML] 1)”1K7(_n1)(1,‘,w) (—1)”2 dnz (1 B x)\w\/Q.

| | | ng
n! naframn i e ny! no!  dx
/,

(3.123)

Let w be a random walk and denote the subwalk of w which only travels on the
vertices s1,...,8—1 by w’. Denote the number of vertices in w’ by |w’| and the ¢—th

vertex in w’ by wj. Then

()" K ) -1) ;
m! - ) H ny  dame (2+(of(wé)—2)(1—PT<w;>(f”))>'

ni+-- +’ﬂ‘m/‘ =mt=1

By Faa di Bruno’s formula we get

B
p! dxP \ 2+ (O'T(w]{/) — 2)(1 — PT(W;)(J)))

2 qQ+-+aq
2+(UT(W£)_2)(1_PT(w;)(x)) Z < qi,---54p >

q1+2q2++pgp=p

20+ (w}) ~ 2) attap
(ormm 0 B 11

()
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Now, Pp(z) < 1—x. Also note that (x) is increasing in o (s;) and since o (s;) < k
fori=1,...,¢—1 we find that

2(k —2)
< —) 3.124
™) < = (8.124)
2(k —2) 2(k —2)
serve that ——— < = _ > > 4.
Observe that T =z = 1 for £ = 2, 3 and that T =z 1 for k > 4

Finally, note that (q;j'"' qq”) < pP. Combining these results and using (3.119) we get

53 qp

the upper bound

_1ym g (m) _ (1=0k,2) (1—0k,3)m
(O ) 2k=2)
m! - 24+ (k—=2)x

|w'| N

1
L 2 g

ni+-tn) =mit=1q1+2q2+-+niqn, =n¢ a=1 t

or@=2 [ (_1\apla) P
x ) ( o ) 11 D Pry iy (@)
!’ '
p1+”'+pa7-(m;)—2:qu pP1y--- 7pa7.(wt)—2 j=1 a.
(3.125)

Expanding the above products and keeping track of the factors in each term which
depend on the same outgrowth T;(s;), i =1,...,0—1,j=1,...,0.(s;) — 2, we find
that they are of the form

J

Ciy 11 ((—1)“P§‘.’23i)(fc))9a (3.126)
a=1

where >°""_, af, < n and Cj; is independent of Tj(s;). By Lemma 3.5.3, the expected
value of (3.126) over the outgrowths T}(s;) is finite, and since the total number of

terms in (3.125) is a polynomial in |w’| we find that

(OB @) < H(w) (%)u_wu_wm

where H (Jw|) is a polynomial with positive coefficients. From this inequality and the

(3.127)



3.5 The spectral dimension of subcritical trees 77

fact that (—1)"625\?[ (0) is a polynomial in ¢ of degree 27 + 1, it follows that

( ) n 2(/{; _ 2) (17516)2)(176)@,3)777,
-1)"Q" v < m(l) | ————— 12
(R Whresi £ 3 5nl0) (7 G375 (3.128
where S,,(¢), m = 0,...,n are polynomials with positive coefficients. From here we
proceed as below Equation (2.97) and find that d, > 2(3 — 1).

O

3.5.2 An upper bound on d,

To find an upper bound on ds we study a lower bound on a suitable derivative of the
average return probability generating function. The aim is to cut off the branches of
the finite outgrowths from the spine so that only single leaves are left. We then use
monotonicity results from [51] to compare return probability generating functions. As
before we choose n such that n +1 < § < n + 2. We begin by differentiating (3.129)

n times and throwing away every term in the sum over £ except the £ = 2 term

((0°Q0@) > 1-mmY ¥ 660 (C1Q0@) . (312)

,TEB:
k=2 i+j=k—2 »TESk

Let My ;. be the graph constructed by attaching k& — 2 leaves to the vertex s; in Ma,
cf. proof of Theorem 2.4.4 in Section 2.4 . Take a tree 7 € By ;. Denote the nearest
neighbours of s1, excluding r and ¢, by u1,...,ur_2. Denote the finite tree attached

to u; by U(u;), i =1,...,k — 2, and view u; as its root, see Fig. 3.14. We can write

Figure 3.14: A graph 7 € By .
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Q-(x) = Z Fr(z,0)War, , (w)(1 — x)‘w‘/z (3.130)
on May
where
|w|—1 1
Fr(r,w) = . 3.131
o= I S mo® (3.131)
th{ul,...,uk_Q}
Define
! jwl/2
H(z) = w}; (Fr(2,0)),, rep, , Wit (0) - (1= )2, (3.132)
on My j,
Differentiating once we easily find that
(~1)"H'(@) < ((-1)"Q\" (@) (3.133)
l/,TEBQJC

and using the methods of [51] we find that there exists a sequence &; converging to

zero as ¢ — oo on which

(~1)"QW1 (&) < (~1)"H'(&). (3.134)
Note that from the relation )
Q-(x) = 1T-P (1) (3.135)

one can show that (—1)"Q,(z) > (—1)"P-(z) for any 7. Thus, we finally have
(F1"QW(g)) > W=—mmd" ¥ sNV"PEL (&) (3136)
k=2 i+j=k—2

on a sequence &; converging to zero. We now proceed as in Equation (2.91) and find
that ds < 2(8 —1).



Discussion

We have studied an equilibrium statistical mechanical model of two classes of trees:
caterpillars and branched polymers. The two classes have identical phase structure,
an elongated phase and a condensed phase. We have proven convergence of the Gibbs
measures in both phases and on the critical line separating them. The main result
is a rigorous proof of the emergence of a vertex of infinite degree in the condensed
phase. The phenomenon of condensation seems to appear in more general models of

graphs and it would be interesting to prove analogous results in those cases.

In the caterpillar model, we calculated the Hausdorff and spectral dimensions in
the generic phase and on the critical line when ¢’ (1) < oo and found that they are
equal to one. In the generic phase of the branched polymer model, it holds that
dpy =2 and ds = 4/3, see [38]. The proof of this result relies only on the fact that the
infinite volume measure is concentrated on the set of trees with one infinite spine with
finite critical Galton—-Watson outgrowths and that ¢”’(1) < oco. Therefore, it follows
from Theorem 3.4.3 in the previous chapter that dg = 2 and ds = 4/3 on the critical
line when ¢”(1) < co. Note that the equality (1.23) holds in both cases discussed in
this paragraph.

We showed that on the critical line in the caterpillar model, when ¢”(1) = oo, the

Hausdorff and spectral dimensions are almost surely

1 2

with 2 < # < 3 where (3 is the exponent defining the subcritical branching weights

79
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wy, ~ n~P. The equality (1.23) holds in this case. No analogous results have been
proved for the critical line in the branched polymer model when ¢”(1) = co. However,

scaling arguments suggest that

_B-1
=5

where 2 < < 3, see [26,29], and one can check that the equality (1.23) holds. Note

that by Theorem 3.4.3, the infinite volume measure is still concentrated on the set

2(6-1)

du 26— 3

and ds = (4.2)

of trees with one infinite spine with critical Galton—Watson outgrowths. Therefore, a
possible way to prove (4.2) is to follow the arguments in [38], but taking into account
the different behaviour of critical Galton—-Watson processes having ¢”/(1) = co. Some
results on such Galton—Watson processes can be found in [63].

We have calculated the annealed spectral dimension in the condensed phase in both
the caterpillar and branched polymer models, and it takes the values d, = 2(8 — 1)
where 3 > 2. This is different from the value dy = 2 which was obtained in [29] using
scaling arguments. Furthermore, we argued that the annealed Hausdorff dimension is
infinite and therefore the inequality (1.22) holds since 2 < d, < oo, and d, can take

any value in this range.
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Random tree growth by

vertex splitting






The vertex splitting model

In this part of the thesis we consider a new model of randomly growing trees, referred
to as the vertex splitting model. We start by defining the model and then we examine
some properties of large trees. First, we study the distribution of the degrees of
vertices and show that it has a well defined limit as the size of the tree goes to
infinity, which is independent of the initial tree. Exact results are provided under
certain conditions on the parameters of the model and the general case is supported

by simulations.

Secondly, we derive the Hausdorff dimension of the trees by studying the scaling
of certain volume distribution functions. We establish bounds on the Hausdorff di-
mension and show that it can vary continuously with the splitting weights between 1

and +o00. The results we obtain are supported by simulations.

Next, we study the correlations between the degrees of neighbouring vertices. This
amounts to studying the density of edges which connect vertices of given degrees. We
show that there is a very good agreement between our analytical results and numerical
simulations. We conclude by discussing the amount of assortative mixing in the vertex
splitting model, i.e. whether vertices of high degree prefer to be neighours of vertices

of high degree or to be neighbours of vertices of low degree.

Finally, we discuss the relationship between our model and other models of random
trees, in particular the alpha model of phylogenetic trees. We prove convergence of the
finite volume measures generated by the growth rules of the alpha model and calculate

the annealed Hausdorff dimension with respect to the infinite volume measure.
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5.1 Definition of the model

Let I'(®) be the collection of all rooted planar trees for which every vertex has finite
degree at most D. Let I‘SVD) be those trees T € T'P) with |T| = N. Denote the
number of vertices of degree i in T' by n;(T). Let

0 W12 Wiz -0 Wip-1 W1D
w21 W22 W23 -+ W2 p-1 W2D
w31 W32 W33 - W3,D—1 0
M =
W41 Wa2 W43 0 0
LWD,1 WD,2 0 e 0 0 |

be a symmetric matrix with nonnegative entries that we call partitioning weights. We

define a collection of nonnegative numbers called splitting weights, wy,ws, ..., wp, by
; il
w; = Ejz_;wjﬂ'_;_g_j. (51)

We now define a growth rule for planar trees which we call vertez splitting. Given
atree T' € I‘g\j,j)

(i) Choose a vertex v of T' with probability w; /W (T) where i is the order of v and
D

W(T) = Y wm(T). (5.2)
j=1

(i) Partition the edges incident with v into two disjoint sets V and V' of adjacent

edges with probability
Wk, i+2—k
w; '

The set V contains k — 1 of the edges and V’ contains ¢ — (k — 1) of these edges,
k=1,...,i. For a given k, all such partitionings are taken to be equally likely.

(iii) Move all edges in V' from v to a new vertex v' and create an edge joining v to
v’. If v is the root, then the new vertex of order one is taken to be the root.

This vertex splitting operation is illustrated in Figure 5.1 (the root vertex is circled).

After the splitting operation, the degree of vertex v is k and the degree of vertex v’ is
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Figure 5.1: Illustration of the splitting process for i = 6 and k = 5.

i4+2—k. Since the maximum allowed vertex degree is D we define wp41,1 = wi,py1 =
0, i.e. we do not allow splittings of vertices of degree D that produce vertices of degree
D + 1. If the partitioning weights are chosen such that w; ; =0 fori # 1 or j # 1,
then the vertex splitting model is equivalent to the preferential attachment model
discussed in [31].

We will often think of the number of edges as time and denote it by ¢ assuming
we start with the single vertex tree at time ¢ = 0. In Chapters 7 and 8 we will find
it convenient to label the vertices according to their time of creation. In this case we

append the following to our rules:

(iv) The single root vertex (which is the only tree in I‘(()D)) is given the label 0. Let
a be the label of the vertex v chosen in (i) at time ¢. If v is further away from
the root than v’ in step (iii) then we let v keep the label a and give v the label
¢+ 1. Otherwise label v with £ + 1 and label v’ with a.

This book-keeping device has no effect on the dynamics of the model.
If the partitioning weights are chosen such that the splitting weights are linear,

w; =ai+b (5.3)

for some a and b, then the model is easier to analyse since the weight of a tree T e T'(P)

depends only on the size of the tree
W(T) = (2a+b)|T| + b. (5.4)

This is easily seen from the two constraints on the vertex degrees,

D
Zni(T) = [T|+1 and Y in(T) = 2IT|. (5.5)
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By abuse of notation, in this case we will write W(|T|) = W(T). We will also

sometimes restrict to uniform partitioning weights, i.e.

wi/("3Y) fori=1,...,k+1, ifk<D,
Wi kt2—i = (5.6)
wi/(5)  fori=2,...k, if k=D.



Vertex degree distribution

6.1 The case of linear splitting weights

Start from a finite tree T at time £y = |Tp| and perform vertex splitting according to

(D)
F€0+£1'

Let ¢ = £y 4 ¢1. The vertex splitting operation induces a probability measure vy on

the rules described in the previous chapter ¢; times. We then obtain a tree in

I‘ﬁD), which of course depends on the initial tree Tj. In this section we will drop Ty
from function arguments with the understanding that it is implied, unless otherwise
stated.

Let Py(m1,...,mp) be the probability that T" € I‘éD) has (n1(T),...,np(T)) =
(ma1,...,mp) according to the measure vy,. We wish to study the mean value of ny(T')
with respect to the measure vy. Denote this value by g .. We define the vertex degree
densities per =g /(¢ + 1) and with some conditions on the partitioning weights we

will prove the existence of the limit
lim per = pr
{— 00

and show that the pj satisfy a system of linear equations.

Let x = (1,...,2p) € R and define the probability generating function

He(x) = Z Py(ni,...,np)ay* -z’ (6.1)
nitetnp=C+1

87
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Proposition 6.1.1 The probability generating function He(X) satisfies the

recurrence
Pi(ny,....,n
M) = Y D) o gep g (62)
b4l Dimt Wi
for all £ > ly, where
c(x) = (ax),c(x),...,cp(x)) (6.3)
with
i i+1
ci(x) = 3 ij,i+2—j$j$i+2—j (6.4)
j=1

and V = (8/83&1, ceey 8/63:D) is the standard gradient operator.

Proof Any tree contributing to Hy4+1 can be obtained by splitting a vertex in a tree
with ¢ edges. This process can be divided into three steps:

(i) Choose a tree T' € I‘éD) with vertex degree distribution (n1,...,np) with prob-
ability Py(ni,...,np).

(ii) Select a vertex in T" of degree 7 with probability nw;/ 3 ; njw;.

(iii) Partition the edges incident to the chosen vertex into two sets V and V' of
adjacent edges with j — 1 and ¢ + 1 — j elements, respectively, with probability
iwjito—;/w; if j #i+42— j and with probability fw;4a—j/w; if j =i +2— j.
In the latter case there is a symmetry between V and V'’ which accounts for the
factor 1/2.

Multiplying together the probabilities in (i)—(iii) gives the probability of removing a
vertex of degree 7 and creating two new vertices of degree j and i+2—j. In terms of the
generating function this amounts to replacing 2" - - - 2% by x; ‘w10 ja - 2PP.
The probability is
Pi(ny,...,np) Wjive—j ifjFI+2-7,

n; X
o njwg

swjiy2—j otherwise.

The partial derivative 9/0zx; in V takes care of removing a vertex of degree i and

provides the factor n;. In ¢;(x), the factors xjz;12—; add two vertices of degree j
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and i 4+ 2 — j respectively and the appropriate weights are given. Now sum over all
possible partitionings in (iii), the dot product of c(x) and V accounts for the sum
over all vertex degrees, and finally sum over all vertex degree configurations in the
initial tree to obtain (6.2).

U
For linear weights (5.3), Equation (6.2) reduces to a much simpler recursion
Heg1(x) = Lc(x) VH(x) (6.5)
1(x) = W) ¢ .

by (5.4), where W(¢) = (2a+b){+b. The remainder of this subsection concerns linear
weights only. We have

Ny = Z Pg(nl,...,’l’LD)’l’Lk = 8ng(X)|x:1, (6.6)
ni+...+np=~+1

where 1 = (1,1,...,1). To get a recursion equation for 7y, differentiate both sides
of (6.5) with respect to z; and set x = 1 to find

D D
1 . _
Moy, = W ( Z Zwk,z‘+2—kné,i+ZwiaiakHé(X)|x=1> .

i=k—1 i=1

(6.7)

Since the weights are linear we can use the constraints in (5.5) to rewrite the last

term in (6.7) as

D
Zwiaiak'}'[g(x”x:l = (—wk—l-W(e))ﬁg,k. (6.8)

i=1

Inserting this into (6.7) we see that the equations close

D

1 . _ _

Tep1k = W<—wkﬁz,k+ E Zwk,i+2kn€,i>+n€,k~ (6.9)
i1

We can also write the recursion in terms of pyj and find

(+1 <N
(0 +2)pesik = W) (-wkﬂz,k + Y Zwk,iJerPE,i) + (L4 1)pei (6.10)
i=k—1
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The above equation can be put in the matrix form

Per1 = Acpy (6.11)
where
l+1 1
T
= .. Ay = —|I+——B
Py (pe1,pe2s---,pe.D) ¢ £+2< + W >,
(6.12)
I w2 2wig - (D — 2)’LU1,D_1 (D — 1)w17D 0 1
wa1 2w22 - (D—2wap-2 (D—1lwyp_1 Dwsp
0 2ws; - (D—-2wsp-3s (D—1lwsp_o Dwsp_:
B= : : : : — diag(w;)1<i<p
: (D—-2wp-11 (D—-1wp_12 Dwp_ 13
L 0 0 0 (D* 1)wD71 DUJD’Q

(6.13)

and I is the identity matrix.

If we denote the vertex degree densities of the initial tree Ty by p,, we can write

the densities for trees on ¢ edges which grow from the initial tree as

-1 -1
Py = (H Ai) P, = fé)_:-ll <H (I—|— WL(Z)B>> Pry- (6.14)

i=Lg =Ly

We will establish convergence of the right hand side by imposing some technical
restrictions on B. It turns out that the limiting distribution is independent of the

initial distribution p, . We begin with some necessary lemmas.

Lemma 6.1.2 If \ is an eigenvalue of B with corresponding eigenvector

e, = (6)\1, .. ~;e)\D), i.€.
BE)\ :)\6)\, (615)

then the following holds:

D D
/\ZeM = Zwie,\i and (6.16)
i=1 i=1
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D D
)\Zi@)\i = QZwieM. (617)
i=1 i=1

Proof We prove the second identity. The first identity is established by a similar
calculation. Multiply the i-th component of the eigenvalue equation (6.15) by i and

sum over ¢ to get

D D D D
A E ien; = — E twiex; + E { E kw; gro2—iexk
i=1 i=1

=1 k=i—1
D D k+1

= — Z tw;en; + Z k <Z Z'w@k_;,_g_i) exk- (6.18)
1=1 k=1 =1

Using w; ; = w;; we find that

k+1 k+1

. k+2
Zﬁwi,k+2—i =5 2 Wikt2i (6.19)
i=1 i—1

and this together with the definition of the splitting weights (5.1) proves the identity.

O
Lemma 6.1.3 If

1. wyy =w1 >0 fork=1,...,D (i.e. itis possible to produce vertices of degree
D) and

2. wi,pya—i > 0 for at least one i with 2 <1< D —1,

then wy is a positive, simple eigenvalue of B. All other eigenvalues of B have a
smaller real part. The corresponding eigenvector e,,, can be taken to have all entries

positive.

Proof We begin by choosing a number v > maxi<y<p {wr — kwy 2} and define P =
B + 4I. The matrix P has only nonnegative entries and the conditions (1) and (2)
on B guarantee that it is primitive, i.e. there is a number k such that all entries
of the matrix P* are positive. Therefore, by the Perron Frobenius theorem [62],
P has a simple positive eigenvalue  and all other eigenvalues of P have a smaller

modulus. The corresponding eigenvector e, can be taken to have all entries positive.
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We normalize the eigenvector such that

D
Zem =1 (6.20)
i=1

Shifting back to the matrix B we find that w = r — ~ is a simple real eigenvalue
of B with the largest real part and the corresponding eigenvector is e,, = e,. We see

right away from (6.16) and with the chosen normalization that

D
w = Zwiem. (6.21)
i=1

Since the weights are linear, Lemma 6.1.2 shows that w = ws.

O

Note that the first condition on the weights in the above lemma is natural since we
have fixed a maximal degree D and therefore we want to be able to produce vertices
of degree D. The second condition, however, does not seem to be necessary for the
results to hold but we still require it in order to use the Perron—Frobenius theorem for
primitive matrices. This condition is not very restrictive in the case of linear weights

since it holds for all ¢ and b except when aD + b = 0.

Lemma 6.1.4 Let A\ € C. Then

(Lo+1)wo

-1 if A= w2

1 1 Towz+D )

eé)fl 11 (1 + W(')/\) - O (6.22)
! 0 if Re(\) < wy

i=Llg

as ! — oo.

Proof The result follows from the identity

0o+ 1t 1 / 1F(£+%)F(fo+%)
;:1 z'1=_t£<1+w—(i))\> N ;ilr(e_’_w%)r(go_’_%)- (6.23)
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Theorem 6.1.5 With the assumptions on B in Lemma 6.1.8 and the additional as-
sumption that B is diagonalizable, the limit as { — oo of the right hand side of

Equation (6.14) exists and is given by the eigenvector e,,, of B normalized such that

D
D euwsi=1. (6.24)
=1

Proof We use the normalization in (6.24) and expand p,, in the basis of eigenvectors
of B. Using the results of Lemmas 6.1.2 and 6.1.3 and that 7| satisfies the equations

in (5.5) we see that the expansion is of the form

waly + b
= E 6.25
P, w2(£0 + 1 Cuw, T+ ai€x; ( )
where \;, i =1,...,D — 1 are the eigenvalues of B with real part less than ws. The

result now follows from Lemma 6.1.4.

O

Theorem (6.1.5) shows that with the above conditions on B the limit of the vertex

degree densities exists, is independent of the initial tree and is given by
p = lim p, = ey,. (6.26)
£— 00

The limiting densities are therefore the unique positive solution to Equation (6.15),

i.e.

D

w LWk 42—

Pr = ——pp + E jmit2k (6.27)
w2 i—k—1 w2

6.2 Explicit solutions

We discuss three simple special cases.
1) When D = 3 we find that

0 211)173 0
B= w21 W22 — 211)3’1 311)372 . (628)
0 2’(1}371 0

If the weights satisfy the conditions in Lemma 6.1.3 it is easy to see that B is diag-
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onalizable. For linear splitting weights w; = ai 4+ b and uniform partitioning weights

the positive solution of (6.27) is

2
pL=p3 =7 and po = % (6.29)

for all values of ¢ and b as can easily be seen from the simple structure of B in this
case.

2) When D = 4, the splitting weights linear and the partitioning weights uniform

one can check that

0 2(2a+b)  3(B3a+b) 0
a+b —3(2a+b) 3Ba+b) 3

0 2(2a+b) —2(a+b) 2(4a+b)

0 0 1(3a+b) —1(4a+b)

(6.30)

When 4a 4+ b > 0 the weights satisfy the conditions in Lemma 6.1.3. The eigenvalues
of B are —:5(33a + 13b + va? — 78ab — 15b%), wy and 0. This shows that B is
diagonalizable except when a/b = 39 + 161/6. One can analyse these cases separately

using a basis of generalized eigenvectors and show that the right hand side of Equation

(6.14) still converges t0 €y, .

3) Fix a maximal degree D. Choose partitioning weights

wy; =wi=({G—-1)"" i=2,...,D,

1
wo p =wpp2 =D

and all other weights equal to zero. The splitting weights are then w; = 1 for ¢ =
1,...,D. These weights satisfy the conditions in Lemma 6.1.3. Note that if we take
the limit D — oo we get a special case of the preferential attachment model. The

nonzero matrix elements of B are
Bi+1,i = Bl,i = —Biﬂ‘ = Bg’l = BQ’D =1, 1<:i1< D. (631)

The characteristic polynomial of B is

po) = (~DP (1 =X (1= (1 +)"7) (6.32)
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which can easily be proved by induction. The roots of the characteristic polynomial
are A\ = 1 and A = exp(%”—f’i) —1,k=1,...,D —1 and they are all distinct which
shows that B is diagonalizable. The solution to (6.27) is

9D—k+0kp—1 _ g, |

ob-1_1

pr = k=1,...,D. (6.33)

6.3 Generality of results

It is not obvious how restrictive the condition that B must be diagonalizable is re-
garding the collection of weights one can consider. In the previous subsection we saw
that for D = 3 and D = 4 the condition was not very restrictive. Also we saw that for
every D there is at least one choice of weights which satisfies the conditions in Lemma
6.1.3 and yields a diagonalizable matrix B. We will now show that this guarantees
that almost all weights give a diagonalizable B.

Fix a maximal degree D. Let Bp be the set of matrices B which correspond to
partitioning weights that give linear splitting weights and satisfy the conditions in
Lemma 6.1.3. It is clear that if B, B’ € Bp then
tB+ (1—1t)B’ € Bp for all t € [0,1] and so Bp is convex. Let

Bj, = {B € Bp | B is diagonalizable} .

From the previous subsection we know that B, # (). Since Bp is convex and B, # ()
then by [47, Corollary 1|, B, is dense in Bp in the standard topology.

We believe that it is possible to extend the result of convergence of the right
hand side of (6.14) to all partitioning weights giving linear splitting weights, relaxing
both the condition of diagonalizability of B and condition (2) in Lemma 6.1.3. We
also believe, in view of simulations, that Equation (6.27) even describes correctly the
vertex degree distribution for non-linear splitting weights and for the case D = oc.

We will look at this more closely in the next two subsections.

6.4 Mean field equation for general weights

To generalize Equation (6.27) beyond the case of linear splitting weights we notice
that Lemmas 6.1.2 and 6.1.3 do not rely on the linearity of the weights except in the
conclusion of Lemma 6.1.3 where we show that w = wy. We therefore conjecture that

in general the limiting vertex degree densities are the unique positive solution to
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D
W Wk it2—k
_ SO tkik, 6.34
Pk w Pk +i_k_12 w Pis ( )

subject to the constraints
pp+...+pp=1 (6.35)

wip1 + ... +wppp = w. (6.36)

Recall that w is the unique simple positive eigenvalue of B defined in (6.13) with the
largest real part of all the eigenvalues and pg, K = 1,..., D are the components of the
associated eigenvector with the proper normalization.

The existence and uniqueness of a positive solution to (6.34) satisfying (6.35) and
(6.36) follows from the Perron—Frobenius argument in the proof of Lemma 2.2. In
order to distinguish (6.34) from (6.27) we refer to it as the mean field equation for
vertex degree densities. One can also arrive directly at this equation by assuming
that for large ¢ an equilibrium with small enough fluctuations is established, and then

performing the splitting procedure on this equilibrium.

The solution to the mean field equation for the D = 3 model and uniform parti-

tioning weights is

Ta—/a(a+2403+ 24)

P = 6(2a— 3 —1) (6.37)

w w
where o = — and 6= —3 . Note that from the constraints we have p1 = p3 and
w

w1 1
p2 = 1 — 2p3. This solution (and solutions in general) only depends on the ratio of

the weights. In Figure 6.1 we compare the above solution to simulations.

6.5 The D = oo model with linear weights

In this subsection we drop the assumption that there is an upper bound on the vertex
degrees but we still assume that all vertex degrees are finite. If we assume that
Equation (6.27) holds for D = oo, then it is possible to find an exact solution in

the case of linear splitting weights, w; = ai + b, and uniform partitioning weights.
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Figure 6.1: The value of p3 as given in (6.37) compared to results from simulations. Each
point is calculated from 20 trees with 10000 vertices.

Equation (6.27) becomes

(o ]
W 2 w;
=——pr+ - —pi. 6.38
Pk wQPk i:zk; H_leP ( )

Subtracting from this the same equation for py1 we find

w w 2 wy,_
Pk (1 + —k> — Pk+1 (1 + kH) =2 (6.39)
wWo wWo k wa

Let x = b/a. The recursion (6.39) has the solution

2 .
T—l) fz=—-land k=1
pr(z) = (6.40)

1 2817 (k + )
1+2 h ise.
C@) THT (h+32n) FH1+2n) otherwise,

where .
ey 2*5*95]%&(1)
2+

C(z) = (6.41)

is a normalization constant such that Ei pi = 1. Here, I, is the modified Bessel func-

tion of the first kind. The variable x can take values from —1 to oo. The asymptotic
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behaviour of py(z) for large k is

pr(z) = C(lx) %2’“*%*1*“’ <1 +0 <%>) : (6.42)

The special case x = oo corresponds to constant weights for which the solution is

pr(c0) = %ﬁ (6.43)

In Figure 6.2 we compare the above solutions to simulations for five different values
of z. The solid lines are y = k + 1 + 2z plotted against k for five different values of
x. The data points on the graph are calculated from simulations of 100 trees with
108 vertices. For a given k and z they are calculated from the degree densities of the

simulated trees pg gim.(z) by

T (k)T (k+ 3+ 2z)
2F1T (k + x)

y=C(z) Pr.sim. () (6.44)

with an obvious modification if x = —1.

Y 18

16

14

12 +

Figure 6.2: A comparison of Equation (6.40) to simulations.



Subtree structure probabilities

and the Hausdorff dimension

In this chapter we consider the model in which vertices are labelled with their time
of creation as explained in the definition of the splitting process (item (iv)). For
convenience we will start from the single vertex tree at time 0. We consider only
linear splitting weights w; = at+b but comment on generalizations in the last section.

We derive exact expressions for probabilities of particular subtree structures as
seen from the vertex created at a given time. By averaging over these probabilities and
assuming the existence of a scaling limit, we shall show how to extract the Hausdorff
dimension of the trees, as defined in (1.25), and derive bounds on this dimension. In

special cases we give an exact expression for the Hausdorff dimension.

7.1 Volume distribution functions

Consider a tree of ¢ edges generated with the splitting procedure starting from the

single vertex tree at time 0. To simplify the notation we define
W) =W(T)—w; = (2a+b)l—a (7.1)

where the last equality follows from the linearity of the weights. This is the total
weight of splitting a vertex in a tree T, excluding the root vertex (or any other leaf

in fact). Let pr(¢; s) be the probability that the vertex created at time s is the root.

99
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If s < ¢ we find that

1

Prss) = T T

W —1Dpr(l—1;s), (7.2)

since we can split any vertex except the root in order to get from a tree at time ¢ — 1
to a tree at time £. This contributes the factor pr(¢ — 1; s) to pr(¢; s). Similarly,
-1

! ZwlpR(é— 1;8), (7.3)

pR(& e) = W(Z— 1) +w; gt

since if we create a new root vertex at time ¢ the previous root vertex, labelled s in

(7.3) could have been created at any time before £. We depict these processes in Fig.

7.1.
W(—1)
571+w1 s
-
éfl—}—ulX; O

Figure 7.1: Diagrams representing equations (7.2) and (7.3).

If v is a vertex of order k in a tree T', then there is a unique edge e; incident on
v leading towards the root (unless v is the root). Let es, ..., e, be the other edges
incident on v. The largest subtree of 7" which contains the root and e; but none of
the links e; with ¢ > 2 will be called the left subtree (with respect to v). The maximal
subtrees which contain one e; with j # 1 and no other link e; will be called the right
subtrees (with respect to v). If kK = 1 then there are of course no right subtrees and if
v is the root then we view the left subtree as being empty. Let py(¢1,. .., ¢k; s) denote
the probability that the vertex created at time s has a left subtree of ¢; edges and
right subtrees of ¢, ..., {; edges, where ¢1+. ..+ = £. By the nature of the splitting
operation and because of the initial conditions, py(¢1, ¢2, . .., {x; ) is symmetric under
permutations of (¢a,..., ;). We will sometimes refer to the vertex created at time s

as the s-vertex.
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By the definition of the relabelling when we split we have
p1(¢;0) =0, (7.4)

because the vertex closer to the root gets a new label and therefore no leaf except the

root can have the maximal label. In the case s < £ we find the recursion

pi(l;s) = m {W(f — Dpi(f = 1;5)

D—1
. / /.
+ lei+1,1 Z pi( 1,---,61'75)4-5@111)1]
i=1 Ol =01

(7.5)

The first term in the square bracket corresponds to the case when we do not split the
vertex with label s. The second term corresponds to splitting the s-vertex which can
have any order up to D — 1. Finally the last term corresponds to the special case

when we have ¢ = 1 so the s-vertex is the root of the trivial tree, see Fig. 7.2.

S S

1
= ——— | W({—-1 ®
W(l—1)4w ( ( ) O
D-1 G \
. S \
+ E Wig1,1 E ® [ PO) )
i=1 L4 A l=-1 H // S

Figure 7.2: A diagram representing Equation (7.5).

For a general k£ > 2 and s < ¢ the recursion can be written

1
WE—1) +w |
k
[5k25511w1pR(€ —1;8) + ZW(& — Dpr(lry. oo ili— 1,00 0k )

i=1

Pe(lr, ..o U3 s)
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D
+Z(Z’+1_k)wk,i7k+2 Z pi( /17~-~a€;+17ka£27~-~7£k;8)}a
i=k e

(7.6)

see Fig. 7.3. The first term corresponds to the case when the s-vertex is the root

\\ 1
. SRR F T
) W(571)+w1<’€”1“’“1 G

D

+) (41— k)wyike 3

i=k Oty =01

Figure 7.3: A diagram representing Equation (7.6).

before the splitting in which case we have ¢; = 1 and & = 2. The second term
corresponds to the case when we split a vertex different from the s-vertex and the

last term arises when we split the s-vertex in the step from time £ — 1 to time /.
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Finally we have
(ol l) = L < (7.7)
Prl€1, ..., Lk, — W(g—l)-f—U)l .
=1 k D-1
Z Z wk,i7k+2pi(£17“wejfl;g,lv"'7£;+1—k’a£j+17"'a£k;s)v

1 k
T Wl-D+uw > ; Whi—k42 >

Ol =t—1

Figure 7.4: A diagram representing Equation (7.7).

the step from time £ —1 to time ¢ and we sum over all possible degrees of the s-vertex

and all ways of splitting it.

We define the following mean probabilities by averaging over the vertex labels in

(7.2-7.7)

¢
1
pr(f) = 11 ZPR(& s)
s=0

(7.8)



104 Chapter 7 Subtree structure probabilities and the Hausdorff dimension

and

4
1
pk(el,...,ek):mzpk(el,...,ek;s), (7.9)
s=0

where £ + ...+ ¢ = £. We refer to these functions as volume distribution functions.
From (7.8) we get a recursion for the volume distribution functions, going from time
ltol+1

prl+1) = ﬁ:::—;pR(f). (7.10)

For k = 1 we obtain from (7.4), (7.5) and (7.9)

3

p1(l+1) (711)
(+1 1 ol
- W) -+ e w; (0, ... L 2 .
(+2W(0) +w; [W(E)pl(@ + ; 1Wi41,1 ) ;ﬂ pi(ly, .., €) + 2600wr
- "
Finally, the general case for k > 2 is
pk(eh .. ,fk)
+1 1 k
- W) + w i—1 R P TR
C+2W(0) +w; {5“’5&1”%(4) + ; Wt — Dpi(ty, ... € k)

D
Y =kt Dwpikrz >, pillls o liprg lay e ) (7.12)
i=k

! U
by,

=£1—1
kD
YD wkickr2 > pilly, G O b g b, )
Jj=21i=k—1 Gt g
=Zj71

where (1 + ...+ ¢ = £+ 1 and we have made use of (7.6), (7.7) and (7.9).

Y

7.2 Geodesic distances and two point functions

One can reduce the above recursion formulas for the volume distribution functions
to simpler recursion formulas which suffice for the determination of the Hausdorff

dimension. Define the two-point functions

qki(€17€2) - Z Z pk( lla"'a ;qu 11/7"'762/)7 (713)

U ool =l £ A0 =l
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where k = 2,...,D and i = 1,...,k — 1. In total there are D(D — 1)/2 of these

functions. If we define

q1,0(€1, l2) = 84,000,001 (€1 + £2)

then qgi(¢1,¢2) is the probability that ¢ right trees of total volume ¢5 are attached to
a vertex of degree k in a tree of total volume ¢; + /5. By summing over the equations

in the previous section we get

qri(l1, l2)

(+1 1 [
0+2 W)+ wy

D
Z Wk, j+2—k ((j —i)q;i(lr — 1,€2) +iq; j—(kh—i) (€1, L2 — 1))
k1

+(W(€1 — 1)+ (k—i—1)(we — wg))%i(fl —1,45)
+(W(€2 — 1) + (’L — 1)(’[1)2 — wg))qki(ﬁl,ég — 1)

+0k200,1w1PR(l2) + 0i1 0051wk 1 o omeals ., 271)}
Ot .+l =t

(7.14)

with £1 4+ €9 = £+ 1. We see that the two-point functions satisfy an essentially closed
system of equations. The last two terms in (7.14) do not contribute to the scaling
limit which will be discussed in the next section.

The radius Ry defined in (1.24) can be extracted from these two point functions.
Let T be a tree of ¢ edges and chose a v € V(T) and an e € E(T). If we cut the
edge e at the vertex further away from v then the tree is split into two connected
components, a tree 77 which contains v and a tree T5 that does not contain v (see

Figure 7.5). Let ¢3(v; e) be the number of edges of T5. We have the simple result

Lemma 7.2.1

Z dr(v,w)or(w) = Z (202(vye) + 1). (7.15)

weV (T) c€E(T)

Proof For the tree T with ¢ edges, we may assign two labels to every edge in the
following way. Starting from v, we walk around the tree while always keeping the tree
to the left. Drop the labels 1 to 2¢ on the sides of edges as we pass them.

An example of such a walk and labelling is shown in Figure 7.6. Let us mention
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Figure 7.5: Cutting a tree along the edge e.

Figure 7.6: A tree and its labels.

that the initial direction from v is unimportant. In what follows we will denote these

new labels by Greek letters.

Given 1 < a < 3 < 2¢, define ¢,(a,3) to be 1 if o and  are labels of the
same edge, and zero otherwise. In the above example we have ¢,(6,9) = 1 whereas
$v(6,12) = 0. For any vertex w € T, let us define w(w) to be the smallest label of
the edges adjacent to w. In the example above w(w) = 6 and w(v) = 1. We now have

for any w € T

dr(v,w) = Z ol B) (7.16)

a,B: asw(w)<p

and it follows that

S dr(w,w)or(w) = Y bu(@B) = D du(a,B)(B-a).

weV (T) a,f,y:asy<p a,fra<lf
(7.17)
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If ¢(a, ) =1, i.e. if @ and § correspond to the two faces of the edge e, then
B—a=2/0(v;e)+1 (7.18)

and Equation (7.15) follows.

O

We now apply (7.15) by choosing for v the root r of the tree and averaging over all
trees obtained by the splitting process. We notice that the average number of links
giving the volume ¢5(r; €) is simply the number of vertices, £+ 1, times the proportion
of vertices which have a left tree (containing the root r) of 1 = ¢ — {5 edges and an
arbitrary number of right trees (with a total number of ¢5 edges). This proportion is
precisely given by

D

> er-1 (= b2, 0). (7.19)

k=1

Note that max{¢s(r;e) : e € T} = £ — 1. We therefore obtain

1

D
(Rr)y === > @6+ 1)) ager-1(l = b, 62). (7.20)

£5=0 k=1
Thus, if we know how the two point functions gi;(¢1,¢2) scale for large ¢, we know
how the radius of the tree scales with ¢ and we can compute the Hausdorff dimension
dy.
7.3 Scaling and the Hausdorff dimension
We assume that the following scaling holds for the two-point functions gx; with ¢ large

Gri(l1,l2) = 0P (@gi(2) + V()0 +O0(072)) (7.21)

where ¢ + 0y = {, x = {1 /¢ €]0,1] and where Ty;,7;, are some functions. It must

hold that @y; > 0 and we assume that the scaling exponent p satisfies
l<p<2 (7.22)

Note that for ¢ finite, the probabilities qx;(¢1,¢2) are of order £~! when ¢; is of order

1 and are of order 1 when /5 is of order 1. This implies that the scaling functions



108 Chapter 7 Subtree structure probabilities and the Hausdorff dimension

Wi(z) should scale when @ — 0 or z — 1, respectively, as
Tri(z) ~ 27 and  Wri(x) ~ (1 —2)77, (7.23)

Using this ansatz and (7.20) the mean radius scales as
1
(Ry(r)) ~ *7r C, C= / de (1 —2)w(x), w(x) = Zwm,l(m). (7.24)
0 k

Equations (7.23) and (7.22) ensure that the integral C' is convergent when p < 2.
Equation (1.25) then implies that the Hausdorff dimension of the tree is given by

2—p=—. (7.25)

For p = 2 we see that C is logarithmically divergent and this corresponds to an infinite
Hausdorff dimension. Inserting (7.21) into the recursion Equation (7.14) for the two

point functions and expanding in =1 gives

Whi — pwril " — 2l Wy + Vil T+ O(L7?)

1 w1 + 2wy — w3 ,_ -
T S e )
D
{ Z Wk, j4+2— k((]‘l)wﬂ"'wm (k—iy) + O~ ))

j=k—1

0 (waw + (—ws + (k=i = )z = wg))e™) (@i = €7 + Tl ™+ O(C?))
+£<w2(1 — ) +i(ws — wg)rl) (wki F70 + 0(572))} . (7.26)
where the ’ denotes differentiation with respect to  and we have dropped the function

argument x in an obvious way. The equation is trivially satisfied in zeroth order of

(=1, When we go to the next order we see that the following must hold

D
_ 1 N . Wi _
(2—-pJwr = 0y E Wk, j+2— k( —4)Wji + ij,j—(k—i)) - w—wmn
j=k—1 2
(7.27)

This eigenvalue equation may be rewritten as

Cw = w2(2-pw (7.28)



7.3 Scaling and the Hausdorff dimension 109

where C is a () x (}) matrix indexed by a pair of two indices ki with k > i, k =

2,...,D and w is a vector with two such indices. The matrix elements of C are
Crijn = Wijtra—k ((J = 1) 0in + 05 j—(k—s)) — WkOk;0in. (7.29)

We use the convention that w; ; = 0 if ¢ or j is less than 1 or greater than D. Thus,
wz(2 — p) is an eigenvalue of the matrix C and the associated eigenvector must have
components > 0. We now show that there is in general a unique solution to this

eigenvalue problem.

Since the only possibly negative elements of C are on the diagonal we can make
the matrix nonnegative by adding a positive multiple « of the identity to both sides
of (7.28) and choosing ~ large enough.

If enough of the weights w; ; are nonzero (wq; > 0 for 2 <4 < D and w; 3 > 0 for
2 < j < D —1is for example sufficient) then one can check that the matrix C +~I is
primitive. Then, by the Perron—Frobenius theorem, it has a simple positive eigenvalue
of largest modulus and its corresponding eigenvector can be taken to have all entries
positive cf. Lemma 6.1.3. Therefore this largest positive eigenvalue gives the p we are

after.

7.3.1 An upper bound on the Hausdorff dimension

We can get an upper bound on p by a straightforward estimate from (7.27). The
off-diagonal terms in the sum are all nonnegative so we disregard them and get the

inequality

p < 2—(k%—%>, k=2,....D. (7.30)
w9 wa

Since 1 < p <2 and for k > 3

k+1
w = kwk’2+5 Z Wi k4+-2—i > kw;“g (731)

i=1
i£2, ik

the best we can get from this upper bound is when k& = 2 which yields
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wo2 — 2w 3

. 7.32
r wa 2 + 2w 3 ( )
Now, 2 — p = ﬁ and therefore, if wy 5 > 2w; 3, we obtain the upper bound
2
dy W22 + 2W13 (7.33)

W2 — 2W1 3

If wa 2 < 2wy 3 the upper bound in (7.32) gives no information about the Hausdorff
dimension. The condition wg 2 > 2w; 3 means that splittings of vertices of degree 2
which lengthen the tree are more frequent than the splittings of vertices of degree 2
which increase the branching of the tree. It is interesting to note that this condition
between “stretching” and branching of vertices of degree 2 is enough to provide a finite
Hausdorff dimension.

It is easy to verify that (7.33) is an equality if we choose the weights such that
w;j = 0if ¢ # 1 or j # 1 with the exception that wy > > 0. This condition means that
we only allow vertices to evolve by link attachment, except that we can split vertices
of degree 2. With this choice the matrix C is lower triangular and we can simply
read the eigenvalues from the diagonal. Note that C is not primitive in this case and
therefore we cannot use the Perron—Frobenius theorem to determine which eigenvalue
gives the scaling exponent. However, with these simple weights one can show explic-
itly that there is precisely one eigenvector with strictly positive components and the
corresponding eigenvalue is the one that saturates the inequality in (7.33). Also note
that with this choice we have set wp = 0 and since the weights are linear, w; = ai+0,
we have fixed a and b so that w; =1 — %. Therefore there is only one free parameter

which we can choose to be wy 2. Then we can write the Hausdorff dimension as

1-2/D
dy = .34
T 9wy, — (1-2/D) (7:34)
with )
5(1 — 2/D) < w2 < 1-— 2/D (735)

We see that for any D the Hausdorff dimension can vary continuously from 1 to

infinity.
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7.3.2 Explicit solutions and numerical results for D =3

When the maximal degree is D = 3, the splitting weights are taken to be linear

w; = ai + b and the partitioning weights uniform, it is easy to solve Equation (7.27)
for the Hausdorff dimension . Since the solution only depends on the ratio of the
weights there is only one independent variable and we choose it to be y := w3 /ws
where 0 < y < 2. The solution is

dy = 3(1+ 1+ 16y) (7.36)
8y
In Figure 7.7 we compare this equation to results from simulations. The agreement
of the simulations with the formula is good in the tested range 0.5 < y < 2. For smaller
values of y the Hausdorff dimension increases fast and one would have to simulate

very large trees to see the scaling.

35

25 B

dy

15 B

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 7.7: Equation (7.36) compared to simulations. The Hausdorff dimension, dg, is
plotted against y = ws/w2. The leftmost data point is calculated from 50 trees with 50000
vertices and the others are calculated from 50 trees with 10000 vertices.

7.3.3 General mean field argument

Our argument to compute the Hausdorff dimension relies on the recursion relations
for the substructure probabilities, studied in Section 7.2, which are valid only when
the splitting weights w; are linear functions of the vertex degree ¢ (w; = ai +b). In
this case the total probability weight W(T') for a given tree T depends only on its

size ¢ (number of edges) and mean field arguments can be made exact.
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In the general case where the w; ; are arbitrary and the w; are not linear with 1,
these recursion relations are no longer exact. We can use a mean field argument and
assume that they are still valid for large “typical” trees, provided that we replace in
these recursion relations the exact weights W (¢) + w1 = W(T) by their mean field
value for large trees

W) +wr — W) = wiligsr (7.37)

where 7,41 ; is the average number of i-vertices in a tree with £ edges, studied in
Section 6.1. From the mean field analysis of Section 6.4, we expect that these 7,41 ;

scale with ¢ as
ﬁl+1,j >~ Zp] (738)

with the vertex densities p; given by the mean field equations (6.34, 6.35, 6.36) as the
components of the eigenvector p associated to the largest eigenvalue w of the matrix

B. Thus the mean field approximation amounts to replacing

W) +w — W) =wl+--- (7.39)
in the recursion relations of the previous sections, in particular in the recursion relation
(7.14) for the two point function gg;.

With this assumption, we can repeat the scaling argument of Section 7.3, and we
end up with Equation (7.27), with the normalisation factor w% in the r.h.s. replaced

by the mean field normalisation factor %

D
1 N . Wk _
(2—p)wk = " Z Wi, j+2— k( J—i)wj —l—zwj’j,(k,i)) — ?wki . (7.40)
j=k—-1
This equation is still an eigenvalue equation of the form
Cw=w2-pw (7.41)

where C is the (g)) X (g)) matrix with coefficients given in (7.29).

If we denote by x the largest eigenvalue of this matrix C and if w is the largest
eigenvalue of B then the Perron Frobenius argument can be applied to show that x
is nonnegative and that the eigenvector w has nonnegative components, which is a

consistency requirement for the argument, since the wy; are rescaled probabilities. We
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end up with a mean field prediction for the Hausdorff dimension of the simple form

1 w
dy = —— = —. (7.42)
2—p X
General solution for D = 3
In the D = 3 case, the B and C matrices are
0 2w3,1 0 w22 — 2w3,1 211)3’2 w3, 2
B= w1 wy2—2ws; 3wsz|, C= w3 1 0 0
0 2’LU371 0 2 w3, 1 0 0
(7.43)

and we find

J (wa,2 — 2ws3 1) + /(w22 — 2ws31)? + 8ws 1 (wa,1 + w3 2) (7.44)
H = ) ’
(wa2 — 2ws 1) 4+ /(w22 — 2ws1)? + 16w 1w3 2

We have tested this formula when the partitioning weights w; ; are uniform. In this

dy

Figure 7.8: Equation (7.45) compared to simulations. Each data point is calculated from
50 trees with 10000 vertices.
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case

dy = O Va (a+24+240) (7.45)

a—y/a (a+1605)

where o = — and b= — . In Figure 7.8 we compare this equation to results from
w w

1

simulations. There is a good agreement for small values of « and (3, but the precision
of the numerics becomes poor for large values of o and 3. This is expected since in
this case, the trees will have a large Hausdorff dimension and one must go to very

large trees to see the scaling.



Correlation between degrees

of neigbouring vertices

Consider a tree of ¢ edges generated by the splitting procedure starting from the
single vertex tree at time 0. We are interested in determining the density of edges
which have endpoints of degrees j and k in the limit when ¢ — co. We define this
density in the following way. Distribute arrows uniformly at random to each edge of
a tree and let p;; denote the average density of edges which have an arrow pointing
from a vertex of degree j to a vertex of degree k. A knowledge of the pj; allows
us to determine whether vertices of high degree prefer to be neighbours of vertices
of high degree, in which case the tree is said to show assortative mizing, or whether
they prefer to be neighbours of vertices of low degree, in which case the tree is said
to show disassortative mizing. For instance, social networks often show assortative

mixing whereas biological and technical networks tend to be disassortative [59].

First note that the degree distribution of an endpoint of a randomly chosen edge

in a graph is proportional to kpi rather than p;. We therefore define the densities

Pk = o
20 ipi

for general graphs, and in the case of trees ) .ip; = 2. The amount of assortative

(8.1)

mixing in a general graph is quantified by a correlation coefficient r which compares

the densities p;; to densities in graphs where no correlations are present, i.e. when

115
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pjk = p;jpr- The correlation coefficient is defined as

G = D0 = D — pipe) (52)

S (= 12— (2L (- Dpe)

where the denominator is chosen such that r € [—1,1] [59]. When r is negative the
graphs are disassortative and when r is positive they are assortative. Note that r =0
for graphs for which p;, = p;pr and such graphs are in general not connected since
p1,1 # 0 if py # 0. However, this does not hold in the other direction; for instance,
the preferential attachment model with linear attachment weights and D = oo has
r =0 [59].

For convenience we first calculate the density of edges which have endpoints of
degrees j and k such that the vertex of degree j is the one closer to the root. This
density will be denoted by pjr. It holds that pi, = 0 for all k, in general pji # pi;
and

_ Pkt Py

Pik 5 (8.3)

In the following sections we calculate p;;, using a scaling argument and compare
the results in the case D = 3 to results from simulations. We conclude the chapter by
discussing the amount of assortative mixing in the vertex splitting model. The model
is disassortative for the range of parameters we consider except in the special case of

the preferential attachment model with linear splitting weights for which » = 0.

8.1 Calculation of pj;,

To arrive at the densities p;;, we use the same labelling techniques as in Chapter 7.

To begin with, let us assume that the splitting weights are linear. Define
Pik(ly, - O a5 b,y s)

as the probability that a vertex created at time s is of degree k and has ¢7,...,¢/_,
right trees and that the vertex to its left is of degree j with an ¢] left tree and
5.+, l5_; right trees (excluding the right tree which contains s). Note that it is
symmetric under permutations of both (£3,...,¢;_;) and (¢7,...,¢; ) and

O+l 0+, = (-1
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We derive recursion equations for p;i, (¢, ..., 0" ;07 ... 0" _:s) and all nontriv-
jk17 yj—10%1> 'y Yk—1

ial equations are explained in Figures 8.1-8.5. To make the notation more compact

we will write for ¢ < j
Cij="li....l;, and |l ;| =0li+...+{;.

We can write the following recursions for going from time ¢ — 1 to time ¢. Note that
s < Lin (8.4), (8.6) and (8.8).

Pkl 1;8) =

k-1
1
. r w éé’fl e//i— é;’fl E;, Py
W(ef1)+w1(zzl e B
+ Opowipr(f —1;8) + (51415k1w1)~
(8.4)
puc(f,fk—l;e) =
-1 D
~ 1" )
W +w1 0 21 71 wk Jit2—k Z pli(£17i+1—k7£17k—1’s)'
s=01 161 iqp1—kl=05 -1
(8.5)
pin(li; 138) =
1 -
. W (€5 — Dpja (€151, 05 — 1, by jo1;
W(e—l)erl(Z:1 (¢ = Dpj (61, Ligr,j-138)
+ (5 — Dwjipi—1(615-1;5)
D 2w = =
,i+2— /
+ Z A ] + J Z Z Z it (G-, 01ip1—5,ni1,j-138),
i=j—1 p=1n= P+1\Z1 it1—j1=¢,—1
D
, i —j 4+ Dwjipo—; ;
+ (rDZ( : i_)lj = > p“(el’”“j’éé’j‘“s))’
i=j \21,1‘,+1—j\:l/1*1
8.6)
pjl(éll,j—l;‘g) =0 (8.7)
pik(l1 1l ks s) =
1 =
m(ZW(W NGNS NSRSt

i=1
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k-1

+ ZW(ZEI — Dpjr (011 01, 6 — 1,04 15 8)
=1

+ (= Dwirpjsr—2(01 -1, 6 k15 9)

D 2w ji—2 j—1
J,i+2—3 / 7 / Ll .
+ E -1 E E E pik(él,n—hél,i+1—j,£n+1,j—1,él,k—h3)

i=j-1 p=In=pHlgy 4y jl=t],—1

D
. i—7+1 .
+ (-1 E -1 i [ Wiit2—i E Pik (C1,i41—5, 0o j— 1301 k1 8)),

101 i41—51=€]—1

(8.8)
; “ \\\ | P
: = W -1
© ) W —1) 4w (lzzl (=1
+ Spow; @ O + 0pdpws @ )
s s
Figure 8.1: Illustration of Equation (8.4).
4 Y
© 1
1 -1 D
W —1)4w Z v ( Sk _ ~Z
5=0 i=k—1 Ot lipr =0 —1

Figure 8.2: Illustration of Equation (8.5).
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D
1 g
pjk(é/l,jfl;é/l/,kfl;é) = mz Z Wi, i4+2—k

X Z pji(éll,j—ﬁlel,n—hZl,iJrlfkyeZ-&-l,k—l; 5)~ (8~9)

101, it1—rl=0}—1

D j—2 j-1
2Wjita-j
+ - 4
= i—1 _ -
i=j—1 p=1n=p+l ¢ 4l j=0,—1

D ..
. t—j5+1
+ (]71)272,71 Wjita—j Z

i=j OtoAbip =1

Figure 8.3: Illustration of Equation (8.6).
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j-1

1 !

k—1
D DLUGESRY
i=1

D

j=2 j-1
D DN S5 SREED JIC

i=j—1 P=ln=p+l fiq 4l =t -1

D . .
. i—j+1 .
+ (j—1) E T Wit E ®©—

i=j Oteetlipr—g=t) -1

Figure 8.4: Illustration of Equation (8.8).
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Figure 8.5: Tllustration of Equation (8.9).

In deriving Equations (8.6) and (8.8) and the corresponding figures, note that the
index p is introduced in the second last diagram in each figure. The reason for this is
the following: even though pj1 (€1, ..., ¢ _;;s) and pj(€y, ..., 05 1307, .. ., €} 1;s) are
symmetric under permutations of (¢5,...,¢;_;) it does matter where the edge going
from s towards the root, is located. Therefore, we group together the balloons counter-
clockwise from s towards the rooted balloon and we group together the balloons
clockwise from s towards the rooted balloon, one of the groups is possibly empty. If
the total number of balloons in the groups is ¢ — 2 then there are i — 1 such possible
configurations. In the equations we therefore divide by ¢ — 1 and sum over all the
configurations which contribute to the configuration on the left of the equality sign.
The index p in the sum is the location of s clockwise from the rooted balloon. Note
that p can be no larger than j — 2 since if it were larger, there would be no space for
the balloons inside the dotted circle. Note that the balloons inside the dotted circle
are always drawn clockwise from the vertex s. To count the possibility that they are

counter-clockwise from s we multiply by 2.

Now average over the label s as before and get the following recursion, going from
time ¢ to £ + 1
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Finally we define the densities p;;(£) by averaging out the volume dependence of



8.1 Calculation of pj;, 123

the average probabilities

’ /] "
pik(l) = E pik(ly, o O by )
Ol =1

and similarly we denote the vertex degree density by

pi(l) = pej = > pillr,. . t),

Lo l5=C

cf. Section 6.1. We have the following recursion for the densities

pik(l+1) =
(41 1 .
T2 W0t (lwa — wj — wi + 2w1 — w2)pj(£) + (J — Dwjkpjtr—2(£)
D D
] - ]- Z Wy,i42— ]pzk Z Wk, i+2—kPji f)
i=j—1 i=k—1

+ 0100 o—1w1pr(f) + 5j15eow1}

for 4,7 > 1. Now assume that pjp(¢) = pjr + 7j¢~1 + O(£~2) and that a similar

expansion holds for p;(¢). Expanding the above recursion in £~ gives

QW — W
pik Al O = (1—wel+ow2)) x

wy
s — 2wy —
{ (1 4 Y w’“er i w2€‘1) (pik + il + 0(£72))
2
1 D
+ [(.7' — Dwjk(pjrr—2+ 0 M) + G—1) > wiira—y (pix +0L"))
i=j—1

;j: Wiiva—k (pji + O™ ))”

i 1

This equation is trivially satisfied in zeroth order of /~'. When we go to the next

order we get the following equation for the limits of the densities
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D
Wy + Wk . Wy k - Wj,i+2—j
) - _J F,. —12E -1 —htred .
pik o P+ = D2 =iz + () )igl ol
D w
ki+2—k
Hh—1) Y ;}72%. (8.10)
1=k—1

We can also arrive directly at this equation by assuming that for large ¢ an equi-
librium with small enough fluctuations is established, and then perform the splitting
procedure on this equilibrium. With the same methods, it is possible to derive an
equation like (8.10) for the density pj, j, ... jn of linear paths of length R — 1 directed
towards the root containing vertices of degrees ji,...,Jg. This would allow us to

investigate how the correlations fall of with distance R.

Existence of solutions to Equation (8.10) can be established by the Perron—Frobenius
argument as in the previous sections. In the following subsections we will find an ex-
plicit solution for linear weights and discuss generalizations for non linear weights.

In both cases we compare the results with simulations.

8.2 Solution in the simplest case

When D = 3, the splitting weights are linear and the partitioning weights uniform,
we know that p; = p3 = 2/7 and py = 3/7, see Chapter 6. Let y = ws/wy. Then the

solutions to Equation (8.10) are

_ 4B -y) _ 10
p21 = 71— 2y) P31 = 7011 — 2y)’
49?2 — 12y + 105 2(—8y% + 18y + 63)
P22 = ) P32 = 5 8 11)
72y + 7)(11 — 2y) 72y +7)(11 — 2y) (8.
2(—4y? + 20y + 21) 8(3y — 14)
P23 = P33 =

T2y +T7)(11 —2y)’ T2y +7)(2y — 11)°
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Note that the following sum rules hold for the solutions

p2r+psn = ;1 = 2/7

p2+ps2 = p2 = 3/7

p2stpss = ps = 2/7, (8.12)
p21+pa2+pz = p2 = 3/7
p31+p32+p33 = 2p3 = 4/7.

These relations show that there are only two independent link densities. We plot po

and pa9 in Figure 8.6 and compare to simulations.

0.2 - B

Figure 8.6: Two independent solutions given in (8.11) plotted against y = ws/w2 and
compared to simulations. The two leftmost data points on each line come from simulations
of 50 trees with 50000 vertices. The other data points come from simulations of 50 trees
with 10000 vertices.

8.3 Results for non—linear weights

We can generalize Equation (8.10) to a mean field equation, valid for arbitrary weights,
by replacing ws, where it appears in a denominator, with w as we did with the equation
for vertex degree densities in Chapter 6. For D = 3 and uniform partitioning weights

the two independent densities p2; and pso are given by

B+06)(Ta—1)
20— F—1)(3a+20+~+6)

p21 = % ( (8.13)
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P21

Figure 8.7: A solution for the density p21 plotted as a function of 3 for a few values of .
Each datapoint is calculated from simulations of 100 trees with 10000 vertices.

16
p2 = < (284 @28y — 17705 By + 3564 a® + 18l + 161a 8%~ — 873~ + 11979 o2 3°

—2259a® — 39a°B — 207’y + 6516 a?3* — 5205 a°B — 1419 a* By + 996 a3°

—5994 a* — 892 a*B%y + 1543 a?B° — 18 a” — 668 a®B* + 324 a®v + 909 3%~
—2600a”B8% — 975 0>8% + 222 aB% — 1533 o> B2y + 10206 o B2 — 11799 o* B

—5300 B — 1521 a° By + 1899 a? 3%~ + 1059 8% + 1269 a° B + 324002 3

+756 B> + 4860 a3 + 6 3%y — 11703 o* 8% + 172827 By — 162 o’ + 486a 3%~

+18 8"y + 1530 af” + 6240 By — 7720° 8%y — 90° +248%y) /((Ba+26+7+6)

x (11&2+25a6+5av+357+12a+4[32) (—a+'v)(1—2a+5)(7a+2ﬂ+7)2)

where a = %, 0= ws and v = \/a (a4 24 8+ 24). These solutions are compared
w1 w1
to simulations in Figures 8.7 and 8.8. The other densities are obtained by using the

sum rules (8.12).

8.4 The correlation coefficient

We have calculated the correlation coefficient r in the case of linear splitting weights

and D = 3. There are two independent parameters which we take to be
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0.7

P22

Figure 8.8: A solution for the density p2o plotted as a function of 3 for a few values of .
Each data point is calculated from simulations of 100 trees with 10000 vertices.

y =ws/ws € [0,2] and z = wa 2/wy € [0,1]. We find that

_1823—4222y—2722—4zy2+1322y—96y+4y2
(32—5)32z+2y—12)(62—2y—9)

(8.14)

T =

and we plot r in Fig. 8.9 as a function of y and z.

The trees show disassortative mixing except when y = z = 0 in which case r = 0.

SRR
RO

Figure 8.9: The correlation coefficient r plotted as a function of y = ws /w2 and z = w2 /w2
in the case of D = 3 and linear splitting weights.
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This corresponds to the special case of the preferential attachment model. We have
checked that for D = 4, the preferential attachment model again has r = 0. It would
be interesting to check whether this holds for all values of D. In practise, the question
of assortative mixing is more relevant for large D and it would be desirable to obtain

such general results.



Relation to other models of

random trees

In this chapter we discuss how the vertex splitting model is related to other models
of random trees. It has already been noted that the preferential attachment model is
a special case which corresponds to choosing the only nonzero weights to be wy ;1 =
wik, 2 < k < D. In the following sections we introduce the alpha model and its
generalization, the alpha—gamma model. We demonstrate how they arise as a certain
limiting case of the vertex splitting model and discuss how they are connected to the
tree models from Part I. We analyse some properties of these models and provide

results which support some of the scaling assumptions from the previous chapters.

9.1 The alpha model

The alpha model is a one parameter model of growing, rooted, binary trees which
was introduced by D. Ford in [43] as a model of phylogenetic trees. Below, we will
state the growth rules of the alpha model and explain how it is related to both the
vertex splitting model and the generic phases of the models from Part I. We prove
that the finite volume measures generated by the growth rules converge to a measure
on infinite graphs, and we calculate the annealed Hausdorff dimension with respect
to the infinite volume measure as defined in Equation (1.21). It turns out that the

annealed Hausdorff dimension agrees with the values obtained by Equation (7.44).

129
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The root and vertices of degree 3 will be referred to as internal vertices and vertices
of degree 1 (besides the root) will be referred to as leaves. Denote the set of rooted,
planar trees on n leaves by T,, and in a tree 7 denote the number of leaves by (7).
The model is defined by probability distributions 7o, on T}, forn > 1and 0 < o <1,

constructed in the following recursive way by a growth rule.
e Assign probability one to the unique trees in 77 and T5.

e Given 7y, for some n > 2, m, 41 is generated by first selecting a tree 7 € T;,

according to mqy p.

e Next an individual edge (a,b) is selected from 7 with probability a/(n — «) if
a and b are internal vertices and with probability (1 — «)/(n — «) if one is an

internal vertex and the other a leaf.

e The edge (a,b) is removed from 7 and two new vertices ¢ and d are introduced
along with the edges (a,c), (¢,b) and (¢, d). Equal probability is assigned to left
and right branching of the new edge (¢, d).

One can think about this procedure as grafting a new edge to an existing edge in T,
see Fig. 9.1.
The alpha model is equivalent to a slightly modified version of the vertex splitting

model with the following choice of weights. Consider the case D = 3 and choose

w1, = 1-— 7, w3, 2 = % and w31 = CO. (91)

Figure 9.1: The grafting process. Left: The edge (a,b) is selected with probability weight
1 — . Right: The edge (a,b) is selected with probability weight a. The selected edge is
removed, two new vertices ¢ and d and three new edges are added as shown in the figure.
The root is indicated by circled vertex.
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We modify the model by assigning a weight § (instead of wy) to splitting the root.
As the tree grows large it becomes very improbable to split the root and therefore
we expect this to play no role in the calculation of asymptotic properties such as the
vertex degree distribution and the Hausdorff dimension. The relation between the
grafting process of the alpha model and the above splitting operations is described in
Fig. 9.2. Note from Equation (9.1) that for 2/3 < o < 1, wy becomes negative which
means that the vertex splitting description breaks down. However, even though w;
is a negative weight, the total probability of the process which involves w splittings

(see Fig. 9.2, top) is still nonnegative since wg 1 + w32 > 0.

The alpha model is also related to the models of generic caterpillars and generic
trees, which were discussed in Part I. The case o = 1 corresponds to the generic
caterpillars obtained by choosing the branching weights w; = w3 = 1 and wa = 0.
In the case @ = 1/2 the growth process does not distinguish between leaves and
internal edges and therefore it generates the uniform measure on binary trees. This
corresponds to generic trees defined by the branching weights w; = w3 = 1 and
wg = 0. We know from Part I that in the generic phase of both of these models, the
finite volume measures converge to measures concentrated on the set of trees with
precisely one infinite spine having finite outgrowths. It is therefore reasonable to
conjecture that the same applies in the alpha model, at least for 1/2 < o < 1. In the

next section we will prove that this is indeed true, and holds for 0 < a < 1.

Attaching to aleaf

+
»—e W2'1 W3,2 W3‘1 >—L

l1-a

Attaching to an internal edge

2W2’3 W

: : 31

(of

Figure 9.2: The relation between the alpha model and the vertex splitting model explained.
Since wi,3 = 0o a vertex of degree 2 splits immediately, with probability one, to a vertex of
degree 1 and a vertex of degree 3 and the intermediate state is not realized.
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T T

Figure 9.3: An example of a tree 79 which has a root indicated by a circled vertex. The
tree 7o branches at the nearest neighbour of the root to two subtrees, 71 to the left and 7
to the right as is indicated by the dotted lines.

9.1.1 Convergence of the finite volume measures

The alpha model has a property called Markovian self-similarity [43] which is essential
in the inductive proof of the theorem in this section. Markovian self-similarity means
that there exists a function ¢,(-,-), which is called the first split distribution, such
that for every finite tree 79 which branches at the nearest neighbour of the root to a

left tree 71 and a right tree 7o (see Fig. 9.3) the following holds

T 1(r0) (T0) = Qo (L(T1), 1(T2) ) Ta,1(r ) (T1) T 1(r) (T2)- (9.2)

In words, this says that g, (n1,n2) is the probability of a tree branching to subtrees
of sizes n1 and ns. Furthermore, given that the subtrees are of these sizes they are
distributed independently by 74, n, and mq,,,. The function g, is explicitly known [43]

and is given by

Ga(ni,ng) = —n'gi‘,:;l,%i?gﬂ <% + 7(1;(2027;3”2) (9.3)
where n = nq + no,
Fnn)=n—1—-a)(n—2—-a)---2—-—a)(l—a), and T,(1)=1 (9.4)

Using this property we can prove the following theorem.

Theorem 9.1.1 Let 0 < oo < 1. The measures Ty, viewed as probability measures
on T', converge weakly, as n — oo, with respect to the metric d defined in (3.4)', to

a probability measure 7w, on the set of infinite trees. The measure 7, is concentrated

1Since the degree of vertices is < 3 it is equivalent to work with the standard metric used in [65].
It is defined as in (3.4), replacing Lr with Bg.
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on the set of trees with exactly one infinite rooted spine having finite outgrowths which
are independently distributed by

Lo (T) = %l)(;—))ﬂa’l(ﬂ(ﬂ. (9.5)

The probabilities of right and left branching of outgrowths are equal.

Proof Let T be the set of rooted, binary trees of height R. To prove the existence
of Ta, it is sufficient to show that for any R > 1 and any 7y € T the sequence

Tan({TIBR(T) = 10}) = 7i[3) (o) (9.6)

converges to a limit x (10) as n — oo, c.f. Section 1.3.2. We show this by induction

on R. For R = 1 this is trivial since By (7) € T for all 7. Now assume that for some
R and all 7 € T, W((XIE(T) converges as n — oo. Choose a tree 7o € T(H+1) and
without loss of generality, assume it branches at the nearest neighbour of the root to
a left tree 7 € TU) and a right tree 7 € T(%) (see Fig. 9.3) where S < R. Then, by
Equation (9.3),

() = Y galny,ne)al) (r)rl, (r2)
ni+n2=n
n! s« To(n1)Ta(n2)
= Fa(n)(§ Z Wﬂfﬁl(ﬁ)ﬂé}%ﬁﬁ

1 -2« Ly (n1)To(n2)
AT 2 T Dl e ()L,

ni+n2=n

(9.7)

If S < R then wéﬁzz (12) = 0 when ny > [(72) and it is obvious from the induction
hypothesis that wéﬁfl)(m) converges. Therefore assume that S = R.
Note that in (9.7) it always holds that either ny <n—1and ns <norng <n-—1

and n; < n. Therefore we have the upper bound

Ay < Ay el

nilng!
ni+ns=n 1:2

Terms in the sums in (9.7) for which n; > % and ny > Aorny > § and ny > A

where A > 1 is some constant are therefore bounded from above by
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2n! Lo(ni)Ta(n2)  2n1Ta([n/2]) <= Ta(no)
To(n) nlJrzn;:n nlllngl < Lo (n)[n/2]! nzzz: n2!2
ni>n/2,n2>A

<C fo La(na) (9.8)
- ‘A TLQ! A—o0
nog=

where C' is a constant. The remaining contribution to (9.7) is from terms where
ny > 5 and nyg < A or ng > § and n; < A. Notice that the second term in that
contribution to (9.7) will be of one order lower in n than the first term. Therefore
it is enough to show that the first term converges as n — oo since then the second

term clearly converges to zero. The contribution to the first term is

2
n! « Lo(n1)Tq(n2)
oy, Y relmlelhm (e, )

La(n) 2 & e iy 1 !ng!
n, <AL
2 A
1 al'o(m)
- (R) (. E i (R)
n—s00 2 T (Tl) m| ﬂ—a,m(T])
z_;l m=1
JF
2 oS]
1 al'y(m)
T3 > 7P (m) D #Wé%(ﬁ)- (9.9)
i=1 m=1 ’
J#i

In the first step we used the induction hypothesis. This is the limit of wéﬁjl)(m) as

n — oo. The fact that the sum in (9.8) converges to zero as A — oo proves that
the measure is concentrated on the set of trees with exactly one infinite spine. The

last sum in (9.9) shows that the distribution of the finite outgrowths is given by pq.

O

9.1.2 The annealed Hausdorff dimension

In [43], Ford proves that for 0 < « < 1, the expected distance of a random leaf in
a tree chosen from the alpha model with n leaves is O(n®). This means that the
Hausdorff dimension, as defined in (1.25), of the alpha model is dg = 1/a. Indeed,

Y

by plugging the weights (9.1) into Equation (7.44) we find that

wo 1 + 311)3 2
dyp = ——— > =1/« 9.10
A 211)3’2 / ( )
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which supports the validity of the formula (7.44). In this section we use the results
of Theorem 9.1.1 to prove that the annealed Hausdorff dimension with respect to the
measure 7, equals 1/« which demonstrates that the two definitions of the Hausdorff

dimension, (1.21) and (1.25), agree for the alpha model.

Theorem 9.1.2 For 0 < o < 1, the annealed Hausdorff dimension with respect to
To 18

dg =1/a. (9.11)

Proof We need to analyse the large R behaviour of (|Bgl|).. Let 7 be a finite
outgrowth from the spine and take the unique vertex common to 7 and the spine to

be the root of 7. It is clearly sufficient to show that
(IBR(T) o ~ RV (9.12)

as R — oo since the outgrowths from the spine are i.i.d. Define the probability

generating function

2R—1

fr(z) = Z pal{T | |Br(7)| = 2i — 1})2* 7", (9.13)

Consider the contribution to (9.13) from trees on n leaves and define

2R71
T'y(n . i—
Apr(z) = Z « (:1(' )7ra7n(7 | |Br| = 2i—1)z%"! (9.14)
i=1 ’

and the corresponding generating function

n=1
It then follows that
<|BR|>ua = 0. fr(2)|.=1 = 0-GRr(2,1)].=1. (9.16)

Using the Markovian self similarity property of the alpha model we can derive the

following recursion

A1 r(z) = az (9.17)
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and for n > 2

oR—1
53)12&1—‘0(—(71) +z Oéra(n) Z qa(nlvnQ)

AnR(Z) =
) | |
n: i=2 n ni+ns=n
x 3 Tam (1Broi] = 2§ — Dang (|Broy| = 2k — 1)2%7 1221
1<) heah2
To(n) 1
= Oriza— +Z(§ Y Aur-1(2)An 1 (2)
ni+n2=n
1-2a 1

+

E nlAnl,R71n2An2,R71)~

a nn-1) iy
Writing the above recursion in terms of the generating function Gi one finds

Tu(n)

n!

Gi(z,()=2) a "=z(1-(1-0Y (9.18)

and for R > 1

_ ¢ ¢
GR<z,<>—z<a<+§<GR1<z,<>>2+1 = (ac,,GR1(z,<">>2dc"dc>.
0 0

o
(9.19)
It is straightforward to verify that for all R
Gr(1,()=1-(1 -0 (9.20)

Define Vg(¢) = 0.GRr(z,¢)|.=1. Differentiating the recursion (9.19) with respect to z
and putting z = 1 one then gets

Vi()=1-(1-0° (9.21)

and for R > 1

¢ ¢
Vr(¢) = (1=(1-0") (1 + VR_l(C))+2(1—2a)/O /0 (1=¢") " 0¢n Vr-1(¢")d¢"d(.
(9.22)
Differentiating (9.22) twice one finds that

e =a(l—a)(1- O 21+ VR)+2(1—a)(1 =) 'V + (1 — (1= ))VE (9.23)



9.1 The alpha model 137

and the initial conditions
Vr(0)=0 and Vi(0)=a  forall R (9.24)

follow from (9.21) and (9.22). Define the generating function

Q2(¢) =Y _ Vr(Q)z". (9.25)

R=1

From (9.23) we get the differential equation

((G-1)a-0=s1)a-crer-20-a0-0e -at-ae, = T2
(9.26)

with initial conditions
Q:(0)=0 and  QL(0)= - (9.27)

Let y(¢) = —(1=¢)*(2 —1)! and define P,(y(¢)) = Qx(¢). Then P,(y) satisfies the

differential equation

1
Yy~ DP + (y+ VP, — Py = (9.28)

with initial conditions

x , T
f— pr— .2
P, <x_1> 0 and P! <x_1) 1 (9.29)

which is equivalent to (9.26) and (9.27). Equation (9.28) is an inhomogeneous, hy-

pergeometric differential equation which has the general solution

2—a 11—« a—i—l. 1
o Q o 1—2a’

Px<y>—cl<x><y+1>+cg<x)y1/aF( Joaatl N L g0

where F' is a hypergeometric function and Cy(x), C2(x) are functions independent of
y, see e.g. [25, Chapter 9, §10]. Thus

(9.31)
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We use the initial conditions on P, to find C4(x) and get

1
(ax —2z+1)F (22,2, 521 —2) + (2 - a)z(2z — 1)F (2,2, 221 — 1)

[e3 [e3

o (1)% a_ 2—a 1
X <ﬂx2a1(1—x)_1/(’+(ax+1)F<—a,2,ﬂ;1—x>
et et

(%)
- (22 ) )

Cl (J)) =

[e3

This shows that

(BRI = 0:Gr(z D)ozt = V(1) ~ R/~ (9.32)

and thus
dy =1/a. (9.33)
O

9.2 The alpha—gamma model

A generalization of the alpha model to a two parameter model of trees was introduced
in [28] in the so called alpha gamma model. A new step was added to the growth
process, allowing links to be attached to vertices and thereby increasing their degrees.
The parameters of the models are positive numbers a and « obeying 0 < v < a <1
and the growth rules are the following. Graft a new edge to either side of an internal
edge with probability weight -, to either side of a leaf with probability weight 1 — «
and anywhere to a vertex of degree k > 3 with probability weight (k — 2)a — 7.
This growth process generates a probability measure on trees with n leaves which we
will denote by 74, .. When o = v we recover the alpha model i.e. 7o a.n = Tan.
The alpha-gamma model is Markovian self-similar [28] and we denote the first split
distribution by qa ~,n-

The above growth rules can be obtained from the rules of the vertex splitting

model as in the case of the alpha model. The nonzero weights are then

w, = 1-— w31 = 00, (9.34)
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2((k = 2)a =)

5 for k > 3. (9.35)

(6%
Wk2 = 5 and  wi1,1 =

In [28] it is remarked that for v = 1 — « the continuum limit of the alpha gamma
model is equivalent to the stable tree of Duquesne and Le Gall [34] with parameter
1/a. The stable trees with parameter 1/« can be viewed as the continuum limit of
a size conditioned critical Galton—Watson process with offspring probabilities defined
by (3.22) with =1+ 1/a and w; = w,.

The alpha—gamma model also provides a connection between the vertex splitting
model and the critical line in the equilibrium statistical mechanical model of cater-
pillars from Part I. As noted in [28], the choice & = 1 and 0 < v < 1 yields a model

of growing caterpillars with a first split distribution

Yy (k-1)/(k—-1)! if2<k<n—-1landn; =n—Fk+1,
n; =1, i # j, for some g,
y(n—-1)/(n—=2)! ifk=nand (ni,...,nt) = (1,...,1),

0 otherwise.

G y(n1,...,nE) =

(9.36)
It is straightforward to prove that m; , , converges weakly as n — oo to a measure
71, Which is concentrated on the set of infinitely long caterpillars and that the degrees

k on the spine are independently distributed by
Iy (k—2)/(k—2). (9.37)

The measure 7, is the same measure as is obtained for the equilibrium statistical
mechanical model of caterpillars with the branching weights (2.41), and 8 = ~v + 2.
Theorems 2.4.2 and 2.4.3 therefore apply and we find that the Hausdorff dimension of
the alpha-gamma model with o = 1 is m; ,—almost surely dg = 1/ and the spectral

dimension is m; ,—almost surely ds = 2/(1 + 7).

We conclude this chapter by summarizing in a diagram the relation between the
models presented in the thesis.
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generic caterpillar

(a=1)
critical line ESM of
(a=1) U K=1
\ caterpillars

alpha - gamma cutoff K
= models i
5] alpha
€ (y=a)
<
& ESM of 8
s trees -

critical line generic tree
(alpha stable, y = 1- a) (a = 1/2)

Figure 9.4: Relation between the models presented in the thesis. The vertex splitting
model is represented by a cube. The left side of the cube contains the preferential attachment
model. The front side of the cube is the limiting case of the alpha—gamma model, and the
special case of the alpha-model is represented by a thick line on the front-right edge. The
models of Part I intersect the front right edge in various places as indicated. ESM stands
for equilibrium statistical mechanics and “cutoff models” refers to the models discussed in
Section 2.5 where K is the maximum vertex degree in the outgrowths .
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Conclusion

In the second part of the thesis we introduced a new model of growing random trees,
referred to as the vertex splitting model. We analyzed some properties of large trees
such as the vertex degree distribution, correlations between neighbouring vertices and
the Hausdorff dimension. Rigorous results were presented in the case of linear splitting
weights w; = ai 4+ b and the case of more general weights was studied by a mean field
assumption which was supported by simulations. It would be desirable to extend the
rigorous calculations for linear weights to the more general case and thereby confirm
the observed mean field behaviour.

The study of the degree distribution involved proving convergence of the expec-
tation value of the relative number of vertices of a given degree. It is possible to
strengthen the notion of convergence by showing that the vertex degree densities
converge almost surely to their limits. This can presumably be done using results
on generalized Poélya urn models as is done in the case of random recursive trees
(preferential attachment) in [49].

Tt is an interesting problem to establish weak convergence of the finite volume
measures vy, generated by the vertex splitting procedure, to a measure on infinite
trees. This was done in Section 9.1 for the special case of the alpha model. It was
shown that the infinite volume measure is concentrated on the set of trees consisting
of exactly one infinite spine with outgrowths which are finite and i.i.d. Similar results
are expected to hold in the alpha gamma model and a natural next step would be to
examine this in detail. The proof of Theorem 9.1.1 relied heavily on the Markovian

self-similarity property of the alpha model, which does not seem to be present in

141
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general in the vertex splitting model. Therefore, a different approach is required in
the vertex splitting model.

If the convergence of the measures is established, one can study properties of the
infinite volume measure, such as the Hausdorff dimension and the spectral dimension.
In Theorem 9.1.2, the annealed Hausdorff dimension of the alpha model was shown to
be di = 1/c. In the case of the alpha-gamma model with o = 1 it was shown, using
a connection to the caterpillar model from Part I, that dg = 1/ and ds = 2/(1 + )
almost surely. In this case, Equation (1.23) relating dy and d, holds and it would
be interesting to examine whether the relation holds in general in the vertex splitting
model. A first approach is to use Equation (7.28), for the Hausdorff dimension, and
compare it to numerical calculations of the spectral dimension.

Another notion of convergence of graphs is the so called continuum limit or scaling
limit, obtained by shrinking the edges of a graph while increasing their number. More
precisely, a graph G of volume N is viewed as a metric space with the graph metric
dg - Then, for a suitable constant v, an almost sure convergence of (Gy, N 7dg,)
to a metric space (G, d) is established in the Gromov-Hausdorft sense [44]. The study
of convergence in this approach and properties of the limiting objects has been an
active area of research in the past two decades, boosted by Aldous’ definition of the
continuum random tree in 1991 [4]. Since then, much work has been done on trees
and planar maps. More details may be found in [55] and the references therein.

In the special case of the alpha model and the alpha—gamma model, the continuum
limit has been constructed ( [28,45] respectively) in the context of fragmentation pro-
cesses [16]. It is shown that growth rules of the trees are in one-to-one correspondence
with dislocation measures of homogeneous fragmentation processes. An interesting
question is whether the same applies in the vertex splitting model. A promising tool
to answer this question is the volume distribution function pg(ni,...,ng). A posi-
tive answer would determine whether the vertex splitting model falls into the already
known categories of dislocation measures for self-similar growing trees or if new classes
would be discovered. The latter result would indicate a richer universality class struc-
ture of the vertex splitting model which includes other previously studied models as

special cases.
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