
RH-09-2007Thesis for the degree of Master of S
ien
e in Physi
sRandom Brushes andNon-Generi
 Trees
Sigurður Örn Stefánsson

Fa
ulty of Natural S
ien
esDepartment of Physi
sMay 2007





A thesis submitted in partial ful�llment of the requirements for the degree of Masterof S
ien
e in Physi
s at the University of I
eland.Random Brushes and Non-Generi
 TreesSigurður Örn StefánssonS
ien
e Institute Report: RH-09-2007
© Sigurður Örn Stefánsson 2007Committee in 
harge:Resear
h Prof. Þórður Jónsson, 
hairProf. Lárus Thorla
ius

iii



iv



Contents
Abstra
t viiÁgrip (in I
elandi
) viiiA
knowledgements ix1 Introdu
tion 12 Spe
tral dimension of random brushes 32.1 Generating fun
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1.1 Random brushes . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 A generalized monotoni
ity lemma . . . . . . . . . . . . . . . . . . . 72.2.1 Monotoni
ity results for random brushes . . . . . . . . . . . . 122.3 Bounds on the spe
tral dimension . . . . . . . . . . . . . . . . . . . . 132.3.1 The full brush . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Non-generi
 trees 173.1 Some useful tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.2 Galton-Watson pro
esses . . . . . . . . . . . . . . . . . . . . . . . . . 193.3 The generi
 
ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.4 The three phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.5 A toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.6 Criti
al trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.7 Sub
riti
al trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.7.1 A 
andidate for a limiting measure . . . . . . . . . . . . . . . 343.7.2 Examples of random trees with one trap . . . . . . . . . . . . 363.7.3 Dimensions of the sub
riti
al limiting measure . . . . . . . . . 39v



4 Con
lusions 43

vi



Abstra
tIn the �rst part of the thesis we prove inequalities between generating fun
tions forreturn probabilities of random walks on bundled stru
tures. Bundled stru
tures are
onstru
ted by atta
hing graphs 
alled �bers to a single graph 
alled base, by identi-fying exa
tly one vertex of ea
h �ber to exa
tly one vertex of the base. We apply theinequalities to a 
lass of random bundled stru
tures, 
alled random brushes, wherethe base is Z
d viewed as a graph and the �bers are linear graphs of random lengths.Thereby we �nd that for d = 2 all random brushes have spe
tral dimension ds = 2.For d = 3 we have 5

2
≤ ds ≤ 3 and for d ≥ 4 we have 3 ≤ ds ≤ d.In the se
ond part we study non-generi
 random trees. They 
an be either 
riti
alor sub
riti
al. We show that 
riti
al trees resemble generi
 trees in some 
ases andargue that in other 
ases their 
riti
al exponents 
an be model dependent. We 
on-je
ture that in the sub
riti
al 
ase there is a limiting probability measure supportedon trees with exa
tly one vertex of in�nite order. We show that the 
orrespondingrandom trees have Hausdor� dimension dH = ∞ and spe
tral dimension ds ≥ 2with a model dependent upper bound.
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Ágrip (in I
elandi
)Í fyrri hluta ritgerðar sönnum við ójöfnur milli framleiðandi falla fyrir endurkomu-líkur slembiganga á ákveðnum tegundum neta sem við köllum útvaxtanet. Þau erubúin þannig til að byrjað er með net sem kallast grunnnet og á það eru hengd netsem kallast útvextir, með því að samsama nákvæmlega einn hnútpunkt í hverjumútvexti við nákvæmlega einn hnútpunkt á grunnnetinu. Ójöfnunum er beitt á sér-stök útvaxtanet sem kallast slembiburstar þar sem grunnnetið er Z
d og útvextirnireru línuleg net af handahófskenndri lengd. Með því er sýnt að í tilfellinu d = 2 hafaallir slembiburstar litrófsvíddina ds = 2. Þegar d = 3 gildir 5

2
≤ ds ≤ 3 og þegar

d ≥ 4 gildir 3 ≤ ds ≤ d.Í síðari hlutanum skoðum við sérstæð tré en þau skiptast í krítísk og undirkrítísktré. Við sýnum að í sumum tilfellum líkjast krítísk tré almennum trjám og færumrök fyrir því að í öðrum tilfellum geti þau verið háð líkani. Við getum okkur til ummarkgildi líkindamáls á undirkrítísk tré þar sem tré með nákvæmlega einn hnút-punkt af óendanlegu stigi fást með líkunum einn. Við sönnum að slík slembitré hafaHausdor�vídd dH = ∞ og litrófsvídd ds ≥ 2 með efri mörk sem háð eru líkani.
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1Introdu
tion
The generi
 stru
ture of random geometri
al obje
ts is of interest in many bran
hesof physi
s ranging from 
ondensed matter physi
s to quantum gravity, see e.g. [1℄ and[2℄. An interesting problem is to de�ne and study dimensions of random geometries.There are many possible de�nitions of dimensions whi
h agree on the latti
e Z

dviewed as a graph and on smooth manifolds, but they 
an di�er on general graphsand random geometries. One way to de�ne a notion of dimension is to study randomwalk or di�usion on the geometry. The spe
tral dimension is de�ned to be ds if theprobability that a random walker returns to its starting point, averaged over therandom geometries, behaves as t−ds/2 for large number of steps t. It is equivalentlyde�ned if the averaged heat kernel at 
oin
iding points viewed as a fun
tion of timehas this behavior at large time t. The spe
tral dimension was �rst introdu
ed byAlexander and Orba
h in [3℄.The spe
tral dimension has been studied analyti
ally for 
ertain 
lasses of ran-dom trees in [4�7℄. It is 
onvenient to study random walk on trees sin
e trees haveno loops and therefore a general walk 
an be 
ut into separate walks on smallertrees. This gives re
urren
e relations whi
h make expli
it 
al
ulations easier. In [8℄the spe
tral dimension of so 
alled bundled stru
tures is studied. They 
onsist ofa single graph 
alled base and a 
olle
tion of graphs 
alled �bers. The �bers areatta
hed to the base by identifying exa
tly one vertex of ea
h �ber to a vertex ofthe base. A random walk 
an be separated into walks on the base and walks on the�bers in the same way as for trees. Di�usion properties of the whole graph 
an thenbe dedu
ed from di�usion properties of the base and the �bers.1



When graphs 
an not be 
ut into pie
es like the trees and the bundled stru
turesit be
omes more di�
ult to do analyti
al 
al
ulations. This is for example the 
asefor triangulations in quantum gravity. The spe
tral dimension of triangulations hasbeen studied numeri
ally in re
ent years in [9�13℄.Another notion of a dimension 
omes from looking at the growth of the volumeof a ball of size R, denoted B(R), averaged over the random geometry, as R growslarge. In R
d for example, we know that the volume of a ball of radius R grows as

Rd. The Hausdor� dimension is de�ned to be dH if 〈B(R)〉 ∼ RdH as R → ∞where 〈·〉 denotes average over the random geometry. The Hausdor� and spe
traldimension do not agree in general but it is not well understood whi
h properties ofgraphs make them di�er.In Chapter 2 we study the spe
tral dimension of so 
alled random brushes. Theyare bundled stru
tures with a base Z
d viewed as a graph and the �bers are lineargraphs of random lengths. This is a generalization of 
ombs studied in [6℄ wherethe base was Z

1. We prove inequalities between generating fun
tions for �rst returnprobabilities on bundled stru
tures whi
h allow us to investigate properties of thespe
tral dimension and to �nd bounds on the spe
tral dimension of random brushes.In Chapter 3 we study non-generi
 trees whi
h are a spe
ial type of simplygenerated trees. Simply generated trees are random trees of a �xed size whereea
h tree is given a weight whi
h depends only on the order of its verti
es. Simplygenerated trees 
orrespond to 
riti
al or sub
riti
al Galton-Watson pro
esses whi
hare 
onditioned on the total progeny. In [7℄ generi
 trees are studied and it is shownthat their probability measure, when the size goes to in�nity, is 
on
entrated ontrees with exa
tly one in�nite bran
h with �nite 
riti
al Galton-Watson outgrowths.Their spe
tral dimension is shown to be ds = 4/3. We will generalize this partiallyto 
ertain kind of non-generi
 trees whi
h still 
orrespond to 
riti
al Galton-Watsonpro
esses. We then 
onje
ture that there is a limiting measure on non-generi
 treeswhi
h 
orrespond to sub
riti
al Galton-Watson pro
esses using arguments from [14�16℄. The trees are 
hara
terized by having exa
tly one vertex of in�nite order withsub
riti
al Galton-Watson outgrowths. We �nd that their Hausdor� dimension is
dH = ∞ and that their spe
tral dimension obeys ds ≥ 2 with a model dependentupper bound.
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2Spe
tral dimension of randombrushes
In [6℄ the spe
tral dimension of various ensembles of random 
ombs was 
al
ulated.In this part we generalize the monotoni
ity results of [6℄ whi
h allows us to �ndbounds on the spe
tral dimensions of graphs whi
h we 
all brushes and de�ne below.A graph is a set of verti
es linked together by a set of edges. In this se
tionwe only 
onsider graphs whi
h are lo
ally �nite, i.e. ea
h vertex is linked to only�nitely many other verti
es, and 
onne
ted meaning that any vertex 
an be rea
hedfrom another vertex by following edges. For 
onvenien
e we single out one vertexand 
all it the root. A simple random walk on a graph G starts at the root andtravels to adja
ent verti
es with equal probability in dis
rete timesteps. Let pG(t)be the probability that a simple random walk on G is ba
k at the root after t steps.If

pG(t) ∼ t−ds/2 (2.1)as t → ∞ then we say that ds is the spe
tral dimension of the graph G. Here themeaning of f(x) ∼ xα as x → 0 is that for any ǫ > 0 there exist positive 
onstants
c1 and c2, whi
h may depend on ǫ, su
h that

c1x
α+ǫ ≤ f(x) ≤ c2x

α−ǫ (2.2)for x small enough.Some graphs have the property that every random walk beginning and ending3



at the root has an even number of steps. Then we have to repla
e pG(t) with pG(2t)in the above de�nition. In parti
ular this is the 
ase for brushes and trees.The existen
e of ds is not guaranteed for individual graphs but its ensembleaverage 
an be shown to be well de�ned in many 
ases [6, 7℄. In the 
ase of lo
ally�nite and 
onne
ted graphs the spe
tral dimension is independent of the startingsite of the random walk. To see this we let i be any vertex other than the root.We 
hoose some path between r and i whi
h has some length T . Let pT and p′T bethe probabilities that a random walk follows this path from r to i and from i to rrespe
tively. Let pG,i(t) be the probability that a random walk starting at i returnsto i at time t. Then
pG(t + 2T ) ≥ pT pG,i(t)p

′
T ≥ p2

T pG(t − 2T )(p′T )2. (2.3)This shows that pG,i(t) ∼ pG(t) as t → ∞.Let us view Z
d as a graph with j, k ∈ Z

d neighbours if their distan
e is 1 andlet the origin of Z
d be the root. The probability of a random walk returning to theroot on Z

d after t steps has the property that
pZd(2t)td/2 → C(d) (2.4)as t → ∞ where C(d) only depends on d. Therefore the spe
tral dimension of Z

d is
d. Let Nl be a linear 
hain of length ℓ, i.e. the graph obtained be 
onne
ting nearestneighbours in {0, 1, . . ., ℓ} with a link. Let 0 be the root of Nl. Similarly, let N∞be the in�nite linear 
hain with root at 0. A d-brush is a graph 
onstru
ted byatta
hing one of the graphs Nl, l ∈ N0 ∪ {∞}, to ea
h vertex of Z

d by identifyingthe root of Nℓ with a vertex in Z
d, l = 0 
orresponding to the empty 
hain. In abrush B we will refer to Z

d as the base and the linear 
hains as bristles.A random brush is de�ned by letting the length of the bristles be identi
allyand independently distributed by a probability measure on N0 ∪ {∞}. The 
ase
d = 1 
orresponds to the 
ombs studied in [6℄ whi
h were shown to have a spe
traldimension in the interval [1, 3

2
]. We will show that the spe
tral dimensions of random4



brushes satisfy
1 ≤ ds ≤ 3

2
, if d = 1,

ds = 2, if d = 2,
5

2
≤ ds ≤ 3, if d = 3,

3 ≤ ds ≤ d, if d ≥ 4. (2.5)In the next se
tion we de�ne the generating fun
tions we use to analyze thespe
tral dimension. We then establish a generalized monotoni
ity lemma whi
h willdire
tly imply the stated bounds on ds.2.1 Generating fun
tionsConsider a lo
ally �nite and 
onne
ted graph G. Let p1
G(t) be the probability thata random walk is at the root at time t the �rst time after t = 0 (p1

G(0) = 0). Wede�ne the return generating fun
tion
QG(z) =

∞∑

t=0

pG(t)zt (2.6)and the �rst return generating fun
tion
PG(z) =

∞∑

t=0

p1
G(t)zt. (2.7)By de
omposing a return to the root into �rst return, se
ond return et
. we �ndthat the return generating fun
tion 
an be written as

QG(z) =

∞∑

n=0

PG(z)n =
1

1 − PG(z)
(2.8)where the exponent n in the sum 
ounts the 
ontribution from the n-th return andthe geometri
 sum is 
al
ulated in the se
ond step.The fun
tion PG(z) is analyti
 in the unit dis
 and |P (z)| < 1 for |z| < 1. If

PG(z) → 1 as z → 1 then QG(z) 
learly diverges in whi
h 
ase the random walkis re
urrent and returns to the root eventually with probability one. If PG(z) 6→ 15



as z → 1 then the random walk is transient and returns to the root eventuallywith probability less than one. If G has a spe
tral dimension ds then by integral
omparison we see that
Q

(n)
G (z) ∼

{

1 if n = ds/2 − 1

(1 − z)ds/2−1−n otherwise (2.9)where n is the smallest nonnegative integer for whi
h Q
(n)
G (z) diverges as z → 1.When the generating fun
tions are even fun
tions of z it is 
onvenient to intro-du
e a new variable x through

z2 = 1 − x (2.10)where x ∈ [0, 1]. This is always the 
ase for graphs whi
h have the property thatevery random walk beginning and ending at the root has an even number of steps.We will denote the generating fun
tions in x with the same symbol as the generatingfun
tions in z whi
h hopefully 
auses no 
onfusion. In the same way as above wesee that if G has a spe
tral dimension ds then
Q

(n)
G (x) ∼

{

1 if n = ds/2 − 1

(−1)nxds/2−1−n otherwise (2.11)where n is the smallest nonnegative integer for whi
h Q
(n)
G (x) diverges as x → 0.In some 
ases it is possible to �nd a ni
e formula for the generating fun
tions.Take for example the linear graph Nl. By de
omposing a �rst return random walkon Nl into a �rst step, then arbitrary many �rst returns to the next neighbour of theroot and �nally a last step ba
k to the root we get the following re
urren
e relationfor the �rst return probability generating fun
tions of Nl

Pl+1(x) =
1 − x

2 − Pl(x)
, l ≥ 1. (2.12)with boundary 
ondition Pl(x) = 1 − x. This is solved in [6℄ for �nite and in�nite lgiving

Pl(x) = 1 −
√

x
(1 +

√
x)l − (1 −√

x)l

(1 +
√

x)l + (1 −√
x)l

(2.13)and
P∞(x) = 1 −

√
x. (2.14)6



respe
tively. This shows that the graphs are re
urrent and for every �nite l thespe
tral dimension is zero but for the in�nite half line the spe
tral dimension is one.2.1.1 Random brushesLet µ be a probability measure on N0 ∪{∞}. Let Bd be the set of all d-brushes. Wede�ne a probability measure π on Bd by letting the measure of the set of d-brushes
Ω whi
h have bristles at n1, n2, ..., nk ∈ Z

d of length ℓ1, ℓ2, ..., ℓk be
π(Ω) =

k∏

i=1

µ(li). (2.15)This formula de�nes the measure π uniquely. The set Bd together with π is a randombrush. We de�ne the averaged generating fun
tions
P̄ (x) = 〈PB(x)〉π (2.16)and
Q̄(x) = 〈QB(x)〉π (2.17)where 〈·〉π denotes expe
tation with respe
t to π. We say that a random brush hasthe spe
tral dimension ds if Q̄(x) obeys the relation (2.11).2.2 A generalized monotoni
ity lemmaIn [6℄ it was shown that the �rst return generating fun
tion P (x) is a de
reasingfun
tion of the length of the teeth atta
hed to the base. A similar result was obtainedin [7℄ for trees showing that P (x) de
reases when bran
hes are added to a tree. Inthis se
tion we prove similar results for more general graphs. Lemma 1 deals withre
urrent bases and Lemma 2 deals with transient bases.Let G1 and G2 be rooted graphs. Assume that G1 
an be 
onstru
ted from G2by atta
hing rooted graphs F (i) by their roots to sites i 6= r of G2. We 
all thegraph G1 a bundled stru
ture with base G2 and �bers F (i). Let the roots of G1 and

G2 be the same vertex (regarding G2 as a subgraph of G1).
7



Lemma 1
PG1(z) ≤ PG2(z) (2.18)with equality if and only if all the F (i)'s are re
urrent and z = 1.

A

B C

D

F(B) F(C)

F(D)

F(A)

G2

G1

r

Figure 2.1: An example of a bundled stru
ture G1 
onstru
ted from G2 and the
F (i)'s.Proof: We 
an write PG2(z) as the sum over random walks ω whi
h start andend at the root without intermediate visits to the root. This 
ondition is denoted'ω: FR on G2' where FR stands for '�rst return'. Ea
h walk has a weight whi
h isthe produ
t of one over the order of verti
es visited by the walk

WG2(ω) =

|ω|−1
∏

t=0

(σG2(ωt))
−1 (2.19)and ea
h step of a walk has a fa
tor z asso
iated with it so

PG2(z) =
∑

ω: FR on G2

WG2(ω)z|ω| (2.20)8



where σG2(ωt) is the order of the vertex ωt on G2 where the walk ω is lo
ated attime t and |ω| is the number of steps in ω.Now 
onsider a random walk ω′ on G1 whi
h starts at the root. Let ω be thesubwalk of ω′ whi
h only travels on G2. If we look at the walk ω at time t andlo
ation ωt then ω 
an be a subwalk of many di�erent walks ω′ 
orresponding to allpossible visits into the graph F (ωt) before returning ba
k to the walk on G2. Theweight of these visits is
∞∑

n=0

(σF (ωt)(ωt)

σG1(ωt)
PF (ωt)(z)

)n

=
1

1 −
(

σF (ωt)
(ωt)

σG1
(ωt)

PF (ωt)(z)
) (2.21)where n 
ounts the number of visits and the fa
tor in front of PF (ωt)(z) 
hanges theorder of the root of F (ωt) to σG1(ωt) = σG2(ωt) + σF (ωt)(ωt). The weight of the �rststep ba
k into G2 after these visits to F (ωt) is

1

σG1(ωt)
z. (2.22)Now repla
e the original weight σG2(ωt)

−1z of ω at ea
h point ωt 6= ω0 by theprodu
t of the fa
tors (2.21) and (2.22). This newly weighted ω then a

ounts forevery random walk on G1 whi
h has ω as a subwalk on G2. Thus we 
an write
PG1(z) =

∑

ω: FR on G2

σG2(ω0)
−1z

|ω|−1
∏

t=1

( z

σG2(ωt) + σF (ωt)(ωt)(1 − PF (ωt)(z))

)

=
∑

ω: FR on G2

KG1,G2(z; ω)WG2(ω)z|ω| (2.23)where in the last step we de�ned
KG1,G2(z; ω) =

|ω|−1
∏

t=1

( σG2(ωt)

σG2(ωt) + σF (ωt)(ωt)(1 − PF (ωt)(z))

)

. (2.24)Sin
e PF (ωt)(z) ≤ 1 with equality if and only if F (ωt) is re
urrent and z = 1 it is
lear that KG1,G2(z; ω) ≤ 1 for all z with equality if and only if all the graphs F (ωt)for a given ω on G2 are re
urrent and z = 1. When we 
onsider all su
h randomwalks we get the inequality (2.18).
�9



Lemma 2 If there exists an n ≥ 1 su
h that P
(n−1)
G2

(z) is 
ontinuous on the 
losedinterval [0, 1] and if all the F (i)'s are re
urrent then for any z ∈]0, 1[ there exists a
ξ ∈]z, 1[ su
h that

P
(n)
G1

(ξ) ≥ P
(n)
G2

(ξ). (2.25)Proof: We de�ne
HG1,G2(z; n) =

∑

ω: FR on G2

KG1,G2(z; ω)WG2(ω)
dn−1

dzn−1
z|ω| (2.26)where KG1,G2 is de�ned as above. Every derivative of a (�rst) return generatingfun
tion is a positive in
reasing fun
tion of z ∈ [0, 1[ sin
e the power series have nonegative 
oe�
ients. It is easy to verify that the fun
tion KG1,G2(z) has the sameproperties. Therefore we get by di�erentiating (2.23) n times

P
(n)
G1

(z) =
n∑

i=0

(
n

i

)
∑

ω: FR on G2

K
(i)
G1,G2

(z; ω)WG2(ω)
(

z|ω|
)(n−i)

≥
∑

ω: FR on G2

KG1,G2(z; ω)WG2(ω)
(

z|ω|
)(n)

+ n
∑

ω: FR on G2

K ′
G1,G2

(z; ω)WG2(ω)
(

z|ω|
)(n−1)

≥
∑

ω: FR on G2

KG1,G2(z; ω)WG2(ω)
(

z|ω|
)(n)

+
∑

ω: FR on G2

K ′
G1,G2

(z; ω)WG2(ω)
(

z|ω|
)(n−1)

= H ′
G1,G2

(z; n). (2.27)In the �rst step we used the binomial formula for the n-th derivative of a produ
t.In the se
ond step every term of the binomial sum was thrown away ex
ept for i = nand i = n − 1. In the third step the n in front of the se
ond sum was repla
ed byone and the �nal step is obvious from the de�nition of HG1,G2(z; n).With the same argument as in the proof of Lemma 1 it holds that
HG1,G2(z; n) ≤ P

(n−1)
G2

(z). We have equality when z = 1 sin
e all the F (i)'s arere
urrent and be
ause P
(n−1)
G1

(z) and therefore also HG1,G2(z; n) are 
ontinuous on
[0, 1]. Then sin
e HG1,G2(z; n) and P

(n−1)
G2

(z) are positive and in
reasing fun
tions10



of z we get that
HG1,G2(1; n) − HG1,G2(z; n)

P
(n−1)
G2

(1) − P
(n−1)
G2

(z)
≥ 1. (2.28)By a generalized mean-value theorem [17℄ there exists a ξ ∈]z, 1[ su
h that

HG1,G2(1; n) − HG1,G2(z; n)

P
(n−1)
G2

(1) − P
(n−1)
G2

(z)
=

H ′
G1,G2

(ξ; n)

P
(n)
G2

(ξ)
. (2.29)Then for any z ∈]0, 1[ there exists a ξ ∈]z, 1[ su
h that

P
(n)
G2

(ξ) ≤ H ′
G1,G2

(ξ; n) ≤ P
(n)
G1

(ξ). (2.30)
�From the above lemmas we get the following theorem.Theorem 1 Assume that all the F (i)'s are re
urrent and that G1 and G2 havespe
tral dimensions ds1 and ds2 respe
tively. If G2 is re
urrent then G1 is re
urrentand ds1 ≥ ds2. If G2 is transient then G1 is transient and ds1 ≤ ds2.Proof: First 
onsider the 
ase when G2 is re
urrent. If all the F (i)'s are re
urrentLemma 1 shows that PG1(1) = PG2(1) = 1 and therefore G1 is also re
urrent.Assuming the existen
e of ds1 and ds2 and using (2.9) and Lemma 1 along with (2.8)we get

c1(1 − z)ds1/2−1+ǫ ≤ QG1(z) ≤ QG2(z) ≤ c2(1 − z)ds2/2−1−ǫ (2.31)for z 
lose to 1 where ǫ > 0 is arbitrary and c1 and c2 are positive 
onstants whi
hmay depend on ǫ. Then
(1 − z)

1
4
(ds2−ds1 )−ǫ > c (2.32)where c is a positive 
onstant. By 
hoosing ǫ < 1

4
|ds2 − ds1| and sending z → 1 wesee that it must hold that ds1 ≥ ds2.Now 
onsider the 
ase when G2 is transient. Again, if all the F (i)'s are re
urrentLemma 1 shows that PG1(1) = PG2(1) < 1 and therefore G1 is also transient. Firstnote that if some n-th derivative Q

(n)
Gi

(z), i = 1, 2 diverges as z → 1 then from (2.9)we get
Q

(n)
Gi

(z) ∼
P

(n)
Gi

(z)

(1 − PGi
(z))2

∼ P
(n)
Gi

(z) as z → 1 (2.33)11



sin
e PGi
(1) < 1. By Lemma 2 there exists a sequen
e ξk < 1 su
h that ξk → 1 as

k → ∞ and
P

(n)
G2

(ξk) ≤ P
(n)
G1

(ξk) (2.34)for all k where n is the lowest positive integer for whi
h P
(n)
G2

(z) diverges as z → 0.We then see that P
(n)
G1

(z) also diverges as z → 1 and if n is not the lowest integer forwhi
h that happens then 
learly ds1 < ds2. If however n is also the lowest integerfor whi
h P
(n)
G1

(z) diverges then we get from (2.34), (2.33) and (2.9) that
c1(1 − ξk)

ds2/2−1−n+ǫ ≤ c2(1 − ξk)
ds1/2−1−n−ǫ (2.35)for k large enough where ǫ > 0 is arbitrary and c1 and c2 are positive 
onstants whi
hmay depend on ǫ. With the same arguments as before we 
hoose ǫ < 1

4
|ds2 − ds1|and let k → ∞ to see that ds1 ≤ ds2.

�It is not surprising that atta
hing re
urrent �bers to a re
urrent base results in are
urrent graph. If a random walker on the base happens to travel into a �bre he willeventually return ba
k to the base with probability one. However the meeting withthe �ber delays the walker and therefore in
reases the spe
tral dimension. In the
ase of a transient base the time spent in the re
urrent �bre redu
es the time spentin the base and therefore the probability of not returning to the root. Therefore thespe
tral dimension de
reases.2.2.1 Monotoni
ity results for random brushesNow, let's 
onsider the 
ase when G2 = Z
d and instead of having a �xed G1 we
onsider a random d-brush (Bd, π). We would like to get similar results for randombrushes as in Lemmas 1 and 2. First we note that by Lemma 1 we have for any

B ∈ Bd that
P∗d(z) ≤ PB(z) ≤ PZd(z) (2.36)where ∗d is the full brush, de�ned in Se
tion 2.3.1. By integrating with respe
t to

π we get
P∗d(z) ≤ P (z) ≤ PZd(z). (2.37)12



To get a similar result for random d-brushes as in Lemma 2 we 
onsider the 
ase
d > 2 and we de�ne the fun
tions

Ha(z; n) =

∫

π

HB,Zd(z; n)dπ(B) and Hb(z) =

∫

π

H∗d,B(z; 1)dπ(B) (2.38)where the fun
tion in the integrand is de�ned as in (2.26) and n is the smallestpositive integer for whi
h P
(n)

Zd (z) diverges as z → 1. With the same 
al
ulation asin (2.27) we get
H

′
a(z, n)

P
(n)

(z)
≤ 1 and H

′
b(z)

P ′
∗d(z)

≤ 1. (2.39)We 
learly have Ha(z; n) ≤ P
(n−1)

Zd (z) and Hb(z) ≤ P (z) both with equality when
z = 1 be
ause the bristles are re
urrent. Sin
e the fun
tions Ha(z; n),P (n−1)

Zd (z),
Hb(z) and P (z) are all in
reasing fun
tions of z on [0, 1[ we get with the sameargument as in (2.29) that for any z ∈]0, 1[ there exists a ξ ∈]z, 1[ su
h that

1 ≤ P
(n)

(ξ)

P
(n)

Zd (ξ)
and 1 ≤ P ′

∗d(ξ)

P
′
(ξ)

. (2.40)These arguments 
an be generalized by repla
ing the base Z
d with any �xedgraph and by repla
ing the random bristles by any random graph whi
h 
onsists ofa probability distribution on a set of re
urrent graphs.2.3 Bounds on the spe
tral dimensionNow that we have established these monotoni
ity results we 
an �nd bounds onthe spe
tral dimension of (random) brushes. First we �nd the spe
tral dimensionof brushes whi
h have every bristle in�nite. We 
all su
h brushes full brushes anddenote them ∗d . Then we use the monotoni
ity results to sandwi
h any brushbetween an empty brush and a full brush.For those graphs whi
h have the property that the (�rst) return generating fun
-tion is an even fun
tion of z it is easy to verify that all the inequalities derivedin the previous se
tion hold for generating fun
tions in the variable x de�ned in(2.10). This is the 
ase for �xed and random brushes. For 
onvenien
e we presentthe following 
al
ulations in the variable x.13



2.3.1 The full brushWe 
an relate the �rst return generating fun
tion of the full d-brush to the �rstreturn generating fun
tions of Z
d and N∞. We use the same argument as in theproof of the monotoni
ity lemma. We simply repla
e all the graphs F (i) with N∞and note that the order of every point in Z

d is 2d. Then equation (2.23) be
omes
P∗d(x) =

(

1 +
1 − P∞(x)

2d

) ∑

ω: FR on Zd

|ω|−1
∏

t=0

1

2d

√
1 − x

1 + 1−P∞(x)
2d

=
(

1 +

√
x

2d

)

PZd(xren(x)) (2.41)where we used (2.14) and de�ned xren through
√

1 − xren =

√
1 − x

1 +
√

x
2d

. (2.42)We see that xren =
√

x/d+O(x). By di�erentiating (2.41) on
e and 
omparing with(2.11) we �nd the spe
tral dimension of the full brush
d∗ =

{
d
2

+ 1 if 1 ≤ d ≤ 4

3 if d ≥ 4. (2.43)Note that the spe
tral dimension is always ds = 3 when d ≥ 4. This 
omes fromthe fa
t that x′ren(x) ∼ x−1/2 as x → 0 and that |P ′
Zd(x)| grows at most like − ln(x)as x → 0 when d ≥ 4. If we repla
e the in�nite bristles with �nite ones, all ofwhi
h have the same length, then with the same 
al
ulation we see that the spe
traldimension remains equal to d.These results are spe
ial 
ases of a more general result obtained in [8℄ for bundledstru
tures. There, the base Z

d 
an be repla
ed by any 
onne
ted graph G and thein�nite bristle (�bre) 
an also be repla
ed by any �xed, 
onne
ted graph F .2.3.2 ResultsAny �xed d-brush B 
an be 
onstru
ted from Z
d by atta
hing (re
urrent) bristles toit and the full d-brush 
an be 
onstru
ted from B by atta
hing (re
urrent) bristlesto it. Therefore, by Theorem 1 in Se
tion 2.2, the spe
tral dimension of any �xed

d-brush, if it exists, lies between d and d∗. This also holds for random brushes as14



is 
lear from equations (2.37) and (2.40). The spe
tral dimension for any �xed orrandom d-brush, if it exists, therefore obeys the relation (2.5).It is interesting to note that the spe
tral dimension of random 2-brushes alwaysequals 2. In fa
t, from the relation (2.4) it follows from (2.42) and Lemma 1 thatthere exist positive 
onstants c1 and c2 su
h that
c1| ln(x)| ≤ P (x) ≤ c2| ln(x)| (2.44)for a random 2-brush when x is small enough . This is a more stri
t 
ondition onthe asymptoti
 behavior of P (x) than the 
ondition that P (x) ∼ 1 as x → 0. Thereason why the spe
tral dimension is always 2 is that when we 
onstru
t a 2-brush

B by atta
hing bristles to Z
2 we get a similar s
enario as in (2.41) namely that

PB(x) ∼ PZ2(xren(x)) as x → 0 where xren(x) is some fun
tion of x. If xren(x) ∼ xαas x → 0 then the logarithm in PZ2 does not see the exponent α and behaves as ifno bristles were atta
hed.It is also interesting that for d ≥ 4 the lower bound on the spe
tral dimensionalways equals 3. In fa
t it is easy to see that atta
hing a single in�nite bristle to Z
dwith d ≥ 4 redu
es the spe
tral dimension to 3. We 
an show this by atta
hing thein�nite bristle to the root of Z

d sin
e the spe
tral dimension is independent of thestarting site of the random walks. We 
all the resulting graph d⊥. The �rst returngenerating fun
tion for this graph is
P⊥d(x) =

2d − 1

2d
PZd(x) +

1

2d
P∞(x). (2.45)Sin
e d ≥ 4 equations (2.11) and (2.4) show that |Q′

Zd(x)| diverges at most as − ln(x)as x → 0 whi
h is slower than the divergen
e of Q′
∞(x). Therefore by di�erentiating(2.45) we get

Q′
⊥d(x) ∼ P ′

⊥d(x) ∼ P ′
∞(x) ∼ x−1/2 (2.46)as x → 0 and therefore by (2.11) the spe
tral dimension is d⊥ = 3. From this andthe lower bound in (2.5) it follows from equations similar to (2.40) that if a random

d-brush with d ≥ 4 has a nonzero probability of having one or more in�nite bristlesits spe
tral dimension equals 3.We �nd with similar arguments that adding a single (or �nitely many) bristlesto Z
3 gives the spe
tral dimension 3. However if we add in�nitely many bristles thespe
tral dimension 
an be lowered as is seen e.g. in the 
ase of the full 3-brush.15
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3Non-generi
 treesA tree is a 
onne
ted graph with no loops. We 
onsider rooted planar trees wherethe root has order one and is denoted r. Planar means that if we imagine the treesto be embedded in the plane then two trees are the same if one 
an be deformedinto the other without links 
rossing ea
h other. Let ΓN be the set of all su
h treeshaving N links and let Γ be the set of all lo
ally �nite rooted planar trees. We de�nea metri
 on Γ by
dΓ(τ, τ ′) = inf

R≥0
{ 1

R + 1
|BR(τ) = BR(τ ′)} (3.1)where BR(τ) is the subtree of τ spanned by verti
es at distan
e less than or equalto R from the root. We denote the number of links in a tree τ with |τ | and refer toit as the size of the tree.In this se
tion we study a model of random trees whi
h are often 
alled simplygenerated trees. It is de�ned by a set of positive bran
hing weights wn, n ≥ 1. Giventhese bran
hing weights we de�ne the �nite volume partition fun
tion for trees ofsize N

ZN =
∑

τ∈ΓN

∏

i∈τ\r
wσi

(3.2)and a probability distribution νN on ΓN by
νN(τ) = Z−1

N

∏

i∈τ\r
wσi

, τ ∈ ΓN . (3.3)The set ΓN equipped with the probability measure νN is our model of a randomtree of size N . We are interested in determining how a typi
al tree looks like when N17
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Figure 3.1: A tree with weight w9
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4 w5.is large or even when N → ∞. Some desireable parameters would be the Hausdor�and spe
tral dimension. In [18℄ the 
ase wn = 1, ∀n is studied. There it is shownthat when N → ∞ the probability measure νN 
onverges weakly to a probabilitymeasure on Γ whi
h is 
on
entrated on trees with one in�nite bran
h with �niteoutgrowths. In [7℄ the same is shown to be true for so 
alled generi
 trees whi
hare de�ned in the next se
tion. There it is established that the spe
tral dimensionis ds = 4/3. The Hausdor� dimension of generi
 trees is dH = 2 [2℄. In this part ofthe thesis we dis
uss what is known about non-generi
 trees and try to �nd similarresults as in the generi
 
ase.
3.1 Some useful toolsWe de�ne a generating fun
tion for the bran
hing weights

g(z) =

∞∑

n=1

wnz
n−1 (3.4)and a generating fun
tion for the �nite volume partition fun
tion

Z(ζ) =
∞∑

N=1

ZNζN . (3.5)18



The 
ontribution to Z from trees for whi
h the vertex next to the root has order
k is ζwkZ(ζ)k−1. By summing over k we get the following relation between thegenerating fun
tions

Z(ζ) = ζ
∞∑

k=1

wkZ(ζ)k−1 = ζg(Z(ζ)). (3.6)Let ρ and ζ0 be the radii of 
onvergen
e of the generating fun
tions g and Zrespe
tively. Here we will always 
onsider bran
hing weights su
h that ρ > 0. Wede�ne Z0 = limζ→ζ0 Z(ζ). From the above relation we see that Z0 is �nite and
Z0 ≤ ρ. (3.7)When Z0 < ρ we have a generi
 ensemble of in�nite trees but when the equalityholds we have a non-generi
 ensemble. The generi
 
ase is easier to analyze be
ausethe fun
tion g is analyti
 in a neighbourhood of a disk 
entered at zero and withradius Z0. Note that when ρ is in�nite we always have a generi
 ensemble.From the fun
tional equation (3.6) we 
an relate the 
oe�
ients of powers of

Z(ζ) to the bran
hing weights wn. By Lagrange's Inversion Theorem (see e.g. [19℄)we get
[ζN ]{Z(ζ)k} =

k

N

∑

N1+...+NN=N−k

N∏

i=1

wNi+1 =
k

N
[zN−k]{g(z)N} (3.8)where [zn]{f(z)} stands for the n-th 
oe�
ient of the power series f(z). The 
ase

k = 1 gives ZN .3.2 Galton-Watson pro
essesIn this se
tion we dis
uss a relation between simply generated trees and so 
alledGalton-Watson pro
esses whi
h 
an give us some insight in how simply generatedtrees look like in the large N limit. A Galton-Watson pro
ess is a pro
ess for treegrowth whi
h was �rst studied by Galton and Watson in the late 19th 
entury inrelation to family trees. Sin
e then this pro
ess has for example been a modelfor populations of neutrons, genes, 
osmi
 rays and more. Standard referen
es forGalton-Watson pro
esses are e.g. [20, 21℄.19



The pro
ess is de�ned in the following way. We start with a single an
estor (ingeneral they 
an be many) whi
h has n o�springs with probability pn where pn arenon-negative numbers and
∞∑

n=0

pn = 1. (3.9)Ea
h o�spring then has n o�springs itself with the same probabilities pn and so on.For 
onvenien
e we add a root r to the Galton-Watson trees by linking a vertex oforder one to the an
estor. The pro
ess gives a probability measure on the set of all�nite trees
µ(τ) =

∏

i∈τ\r
pσi−1, where τ ∈

∞⋃

N=0

ΓN . (3.10)We de�ne a generating fun
tion for the o�spring probabilities
f(z) =

∞∑

n=0

pnz
n. (3.11)Galton-Watson pro
esses are usually divided into three 
ategories depending on thesize of the �rst moment of the generating fun
tion m = f ′(1). It is 
lear that mrepresents the mean number of o�springs of ea
h individual. If m > 1 the pro
essis said to be super
riti
al and the probability that it survives forever is positive. If

m = 1 the pro
ess is said to be 
riti
al and it dies out eventually with probabilityone. If m < 1 the pro
ess is said to be sub
riti
al and it dies out eventually withprobability one and mu
h faster than in the 
riti
al 
ase.The reason why we are interested in Galton-Watson pro
esses in this paper isthe following relation.Lemma 3 A simply generated tree of size N is a rooted Galton-Watson pro
ess witho�spring probabilities
pn = ζ0wn+1Z

n−1
0 (3.12)whi
h is 
onditioned on the total size of the trees. The Galton-Watson pro
ess 
anbe either 
riti
al or sub
riti
al.Proof: With the pn given in (3.12) we get

∞∑

n=0

pn = ζ0

∞∑

n=0

wn+1Z
n−1
0 = ζ0Z

−1
0 g(Z0) = 1 (3.13)20



by using (3.6). Therefore the pn are Galton-Watson o�spring probabilities. The �rstmoment is
m =

∞∑

n=0

npn = ζ0

∞∑

n=0

nwn+1Z
n−1
0 = ζ0g

′(Z0) = Z0
g′(Z0)

g(Z0)
. (3.14)By di�erentiating (3.6) with respe
t to ζ and rearranging terms we �nd that

Z(ζ)
g′(Z(ζ))

g(Z(ζ))
= 1 − g(Z(ζ))

Z ′(ζ)
≤ 1 (3.15)and the equality holds for ζ = ζ0 if and only if Z ′(ζ0) = ∞. This shows that thepro
ess is 
riti
al if Z ′(ζ0) = ∞ and sub
riti
al otherwise.The measure 
orresponding to these probabilities when 
onditioned on trees ofsize N is then

µN(τ) = CN

∏

i∈τ\r
pσi−1 = CNZ−1

0 ζN
0

∏

i∈τ\r
wσ(i) (3.16)where τ ∈ ΓN and CN is a normalization 
onstant. From (3.3) we see that νN = µNand CN = Z0ζ

−N
0 Z−1

N whi
h proves the lemma.
�Sin
e 
riti
al and sub
riti
al Galton-Watson pro
esses are relevant when dealingwith simply generated trees we state here some results about standard propertiesproved e.g. in [20℄. Let 〈·〉µ denote expe
tation with respe
t to the measure µ de�nedin (3.10). Let h(τ) denote the maximum graph distan
e from the root to any vertexof τ , referred to as the height of τ .Lemma 4 For sub
riti
al Galton-Watson trees with mean number of o�springs mit holds that

〈|BR|〉µ =
1 − mR+1

1 − m
(3.17)and letting R → ∞ we �nd that the expe
tation value of the size of trees is �nite

〈|B∞|〉µ =
1

1 − m
. (3.18)

21



Lemma 5 For 
riti
al Galton-Watson trees it holds that
〈|BR|〉µ = R (3.19)and if f ′′(1) < ∞

µ({τ ∈ Γ|h(T ) > R}) =
2

f ′′(1)R
+ O(R−2). (3.20)The 
ase when f ′′(1) is in�nite in 
riti
al pro
esses has been studied e.g. in [22℄.There, generating fun
tions of the form

f(s) = s + (1 − s)1+αL(1 − s) (3.21)are studied where 0 < α ≤ 1 and L is slowly varying. Slowly varying means that
L(λt)

L(t)
→ 1 as t → ∞ (3.22)for all λ > 0. It is shown that

µ({τ ∈ Γ|h(T ) > R})αL(µ({τ ∈ Γ|h(T ) > R})) ≈ 1

αR
(3.23)as R → ∞. The generi
 behaviour in (3.20) therefore 
hanges and be
omes modeldependent. Here the meaning of f(x) ≈ g(x) as x → ∞ is that

f(x)

g(x)
→ 1 as x → ∞. (3.24)3.3 The generi
 
aseGeneri
 random trees are de�ned by the 
ondition Z0 < ρ as was explained above.In this 
ase it 
an be shown [23℄ that ZN has the generi
 behaviour

ZN = CN−3/2ζ−N
0 (1 + O(N−1)) (3.25)where C is a 
onstant independent of N . This immediately shows that Z ′(ζ) → ∞as ζ → ζ0 and thus generi
 trees 
orrespond to a 
riti
al Galton-Watson pro
ess
onditioned on the total size N . 22



It is shown in [7℄ using the methods of [18℄ that the probability measure νN forgeneri
 trees 
onverges weakly to a probability measure ν on Γ. This means that
∫

Γ

fdνN →
∫

Γ

fdν, as N → ∞ (3.26)for all bounded fun
tions f on Γ whi
h are 
ontinuous in the topology de�ned bythe metri
 dΓ. Furthermore the measure is shown to be 
on
entrated on trees withone in�nite bran
h growing from the root with identi
al and independent 
riti
alGalton-Watson outgrowths distributed by (3.10).
Figure 3.2: A generi
 tree 
onsists of one in�nite bran
h with 
riti
al Galton-Watsonoutgrowths. The balloons denote Galton-Watson trees.The probability of having k left bran
hes and l right bran
hes growing from avertex on the in�nite bran
h is

φ(k, l) = ζ0w2+k+lZ
k+l
0 . (3.27)The outgrowths are free in the sense that there is no 
ondition on their size. We
an understand this in the following way. As N goes to in�nity the size 
onstrainton the Galton-Watson pro
ess is 
ompletely taken 
are of by the one in�nite bran
h.The rest of the graph then grows freely like a 
riti
al Galton-Watson pro
ess.As is explained in [18℄, to prove the 
onvergen
e of the measure it is su�
ient toshow that for any value of R ≥ 0 the following holdsProperty 1

νN ({τ ∈ Γ : |BR(τ)| > K}) → 0 as K → ∞ (3.28)uniformly in N . 23



Property 2 The sequen
e
(νN ({τ ∈ Γ : BR(τ) = τ0}))N∈N

(3.29)is 
onvergent for ea
h �nite tree τ0 ∈ Γ.Both properties are proven for generi
 trees in Appendix A in [7℄. The �rst propertyshows that the order of verti
es stays �nite as N → ∞. This seems to fail in some
ases for non-generi
 trees as will be dis
ussed later. The se
ond property is alsotrue in many non-generi
 
ases as will now be proved.Assume that ZN has the asymptoti
 behaviour
ZN ≈ CN−δζ−N

0 L(N) (3.30)for large N , where C > 0 is a 
onstant and L is slowly varying. We also assumethat
max

aN≤N ′≤N

(L(N ′)

L(N)

)

< D, for all N (3.31)where D > 0 and 0 < a < 1 are 
onstants and that L(N) grows or de
ays slowerthan any power of N . This is for example true for any power of logarithms. In thegeneri
 
ase we always have δ = 3/2 but in non-generi
 ensembles the existen
e of δis not always guaranteed. However it seems to be possible to 
onstru
t non-generi
models with any δ ≥ 3/2 as we shall later see.Let τ0 be a �nite graph and let M be the number of verti
es in τ0 at graphdistan
e R from the root. We 
an de
ompose any tree τ for whi
h BR(τ) = τ0 intothe tree τ0 and rooted subtrees whose roots are at graph distan
e R − 1 from theroot of τ0 (see Figure 3.3). Note that the roots of these subtrees are verti
es of τ0.Then we 
an write
νN ({τ ∈ Γ : BR(τ) = τ0}) = W (τ0)Z

−1
N

∑

N1+...+NM=N+M−|τ0|

M∏

i=1

ZNi
(3.32)where

W (τ0) =
∏

i∈BR−1(τ0)\r
wσ(i) (3.33)is the 
ontribution from verti
es in τ0 at a distan
e less than R from the root. The

ZNi
in the last produ
t in (3.32) is the 
ontribution from the subtree atta
hed to24



τ 0

Figure 3.3: The tree τ0 in the 
ase R = 4 and M = 6. The balloons denote allpossible rooted trees atta
hed to τ0 at a distan
e R = 4 and their roots are in τ0.vertex i of τ0.Now 
hoose a positive 
onstant A. The 
ontribution to (3.32) from terms forwhi
h Ni ≥ (N + M − τ0)/M and Nj ≥ A for some pair of indi
es i 6= j 
an beestimated from above with
W (τ0)M

2
∑

N1+...+NM=N+M−|τ0|

N1≥(N+M−τ0)/M,N2≥A

Z−1
N

M∏

i=1

ZNi

≤ W (τ0)M
2ζ

M−|τ0|
0

(
NM

N + M − |τ0|

)δ

max
N1

(L(N1)

L(N)

) ∑

N3,...,NM≥1
N2≥A

ZN2ζ
N2
0

M∏

i=3

ZNi
ζNi
0

≤ C(τ0)
∑

N2≥A

ZN2ζ
N2
0 (3.34)where C(τ0) only depends on τ0. Sin
e Z0 is �nite the last expression goes to zeroas A → ∞. By estimating the remaining 
ontribution to (3.32) and letting A → ∞it then follows as in [7℄ that

νN({τ ∈ Γ : BR(τ) = τ0}) → MW (τ0)Z
M−1
0 ζ

|τ0|−M
0 (3.35)as N → ∞ whi
h proves Property 2 for all ensembles whi
h have a relation like in(3.30). 25



An important observation in these 
al
ulations is that when N gets larger allthe mass tends to gather into one subtree atta
hed to τ0 and the sizes of the othersubtrees are bounded by the 
onstant A. In general this leaves two possibilities ofhow simply generated trees obeying (3.30) look like in the large N limit. Eitherthe subtree with the large mass be
omes an in�nite bran
h as N goes to in�nity, asalways happens in the generi
 
ase, or the order of some of its verti
es be
omes in�-nite. There is some eviden
e from numeri
al 
al
ulations and analyti
al argumentsthat in�nite verti
es o

ur in a parti
ular model for non-generi
 trees [14, 15℄. Thiswill be dis
ussed in more detail later.When the 
onvergen
e of the measure has been established in [7℄ it is shown thatthe spe
tral dimension of the resulting in�nite random graph is ds = 4/3 and theHausdor� dimension is dH = 2. In the proof it is important that the trees haveone in�nite bran
h with identi
ally and independently distributed 
riti
al Galton-Watson outgrowths with f ′′(1) < ∞, therefore obeying the relation (3.20).3.4 The three phasesIn the non-generi
 
ase Z0 = ρ as was explained above. Sin
e all models with in�nite
ρ are generi
 we 
an take ρ to be �nite when we study non-generi
 trees. In fa
twe 
an 
hoose ρ = 1 without loss of generality by rede�ning the bran
hing weights
wn → wnρ

n−1. This rede�nition does not 
hange the probability distribution νNsin
e
∏

i∈τ\r
wσi

→
∏

i∈τ\r
wσi

ρσi−1 = ρN−1
∏

i∈τ\r
wσi

, τ ∈ ΓN (3.36)where we used that ∑i∈τ\r σi = 2N − 1.We start with a set of bran
hing weights wn whi
h give ρ = 1 and at this stagethe model 
an be either generi
 or non-generi
. We �x the values of wn for n ≥ 2but for now we let w1 be a free parameter of the model. De�ne
h(Z) ≡ g(Z)

Z
. (3.37)From (3.6) we see that h(Z) = 1/ζ(Z) for Z ≤ Z0. Di�erentiating h we get

h′(Z) =
g(Z)

Z2

[

Z
g′(Z)

g(Z)
− 1

] (3.38)26



and again
h′′(Z) =

g′′(Z)

Z
− 2

Z
h′(Z). (3.39)The generi
ity 
ondition 
an be interpreted as h having a minimum at Z = Z0 < 1.For any Z0 < 1 we 
an 
hoose w1 =

∑∞
n=2(n−2)wnZ

n−1
0 making Z0

g′(Z0)
g(Z0)

= 1. Then
h′′(Z0) = g′′(Z0)/Z0 > 0 whi
h shows that the minimum is quadrati
. Note that
Z0

g′(Z0)
g(Z0)

= m where m is the mean number of o�springs de�ned in (3.14). We 
an
learly make any model with ρ = 1 generi
 by 
hoosing
w1 <

∞∑

n=2

(n − 2)wn ≡ wc (3.40)where wc is a 
riti
al value for w1 whi
h depends on wn for n ≥ 3. It is interestingto note that the 
riti
al value is independent of w2. Also note that if wc = ∞, i.e. if
g′(z) diverges as z → 1, we always have a generi
 ensemble.
h(Z) h(Z) h(Z)

ρ =Z 0 ZZZ

a) b) c)

Z 0= ρ = Z 0= ρ =1 1 1Figure 3.4: The three possible s
enarios. a) Generi
, quadrati
 minimum at Z0.b) Criti
al, quadrati
 minimum at Z0 = ρ = 1 if g′′(1) < ∞. 
) Sub
riti
al,
h′(1) 6= 0. The solid lines are also graphs of the fun
tion 1/ζ(Z).The next possible s
enario is that h has a minimum at Z = Z0 = 1. This happenswhen w1 = wc or in other words when m = g′(1)

g(1)
= 1. We see that although this is anon-generi
 ensemble, the trees are still 
riti
al Galton-Watson trees 
onditioned onthe total size. They will be referred to as 
riti
al trees. We see that h′′(1) = g′′(1) > 0whi
h shows that the minimum is quadrati
 if g′′(1) is �nite.Finally, by 
hoosing w1 > wc, h has no minimum and m = g′(1)

g(1)
< 1. In this 
asethe trees are non-generi
, sub
riti
al Galton-Watson trees 
onditioned on the total27



size. They will be referred to as sub
riti
al trees.To summarize, every model for whi
h g has a �nite radius of 
onvergen
e has atmost three phases. A generi
 phase when w1 < wc, a 
riti
al phase when w1 = wcand a sub
riti
al phase when w1 > wc. If wc = ∞ there is only the generi
 phase.3.5 A toy modelA simple model whi
h has the properties in the previous se
tion is the model
wn = n−β, β ∈ R for n ≥ 2 and w1 > 0 free. It is 
lear that ρ = 1. This model hasthe advantage that it is possible to make expli
it 
al
ulations. It has been studiedin [14�16℄ both in the 
ontext of random trees and "balls in boxes" models.

1w

.

Critical

Generic

Sub−critical

β2 3Figure 3.5: A diagram showing the three possible phases of trees. The 
riti
al lineis determined by the equation w1 = wc.We see right away that the 
ase β < 2 is always generi
 sin
e then g′(z) → ∞ as
z → 1. The 
ondition w1 = wc gives a relation between w1 and β whi
h determineswhere the phase transition happens for any β. We 
all this relation the 
riti
al lineand it is shown in Figure 3.5. Above the 
riti
al line we get sub
riti
al trees butbelow it and to the left of it we get generi
 trees.In [15℄ it is shown by expanding the fun
tion h around Z = Z0 and inverting theexpansion, that if there exists an exponent δ as in (3.30) it obeys

δ =







3
2

if w1 < wc or if w1 = wc and β ≥ 3
β

β−1
if w1 = wc and β ≤ 3

β if w1 > wc. (3.41)28



The model 
an give any value of δ ≥ 3/2. We noti
e that on the 
riti
al line thevalue β = 3 plays a spe
ial role. It 
orresponds to the values of β, for whi
h g′′(1)goes from being �nite to being in�nite. We will interpret this in the next se
tionand dis
uss generalizations beyond the n−β model.3.6 Criti
al treesThe 
riti
al value of w1 whi
h separates generi
 and sub
riti
al trees is de�ned by
w1 = wc. In the toy model in the previous se
tion the exponent δ for 
riti
altrees agrees with the exponent for generi
 trees when g′′(1) is �nite. The 
ondi-tion g′′(1) < ∞ a
tually guarantees the generi
 behaviour (3.20) of 
riti
al Galton-Watson pro
esses . After the 
onvergen
e of the measure has been established in [7℄,this is in fa
t the only 
ondition that is used to prove that the value of the spe
-tral dimension of generi
 trees is ds = 4/3. Therefore it is tempting to make thefollowing 
onje
ture.Criti
al trees for whi
h g′′(1) is �nite share the properties of generi
 trees,having spe
tral dimension ds = 4/3 and Hausdor� dimension dH = 2.For now we will have to settle on the less general result in Theorem 2. First weprove the following lemma.Lemma 6 Consider 
riti
al trees whi
h obey (3.30), (3.31) and g′′(1) < ∞. Then
δ = 3/2.Proof: As was mentioned in the beginning of Se
tion 3.4 the 
ondition g′′(1) < ∞for 
riti
al trees implies that h(Z) has a quadrati
 minimum at Z = 1. We 
antherefore do the following expansion

h(Z) − h(1) =
h′′(1)

2
(1 − Z)2 + o(1 − Z)2. (3.42)By inverting this and remembering the de�nition of h we �nd that

Z(ζ) = 1 − g(1)

√

2

g′′(1)
(ζ0 − ζ)1/2 + o(ζ0 − ζ)1/2. (3.43)29



We now use Theorem 5 in 
hapter XIII.5 in [24℄ (a Tauberian theorem) to �nd that
q
∑

N=1

NZNζN
0 ≈ Cq1/2L(q) (3.44)where C > 0 is a 
onstant and L is slowly varying. Sin
e the trees obey (3.30) and(3.31) this shows that δ = 3/2.

�Theorem 2 Consider 
riti
al trees whi
h obey (3.30) and (3.31) . If
∑

k5/2wk+1 < ∞ the trees share the properties of generi
 trees, having spe
traldimension ds = 4/3 and Hausdor� dimension dH = 2.Proof: To prove this it is enough to verify the 
onvergen
e of the measure νN asexplained above. Note that the 
ondition in the theorem implies that g′′(1) < ∞and therefore the previous lemma shows that δ = 3/2 and that Property 2 is true.All that is left is to prove is Property 1 and for later 
onvenien
e we will do it foran arbitrary δ.We show (3.28) by indu
tion on R. The 
ase R = 1 is trivial so we next 
onsiderthe 
ase R = 2. We 
an make the following estimate
νN({τ ∈ Γ : |B2(τ)| = k + 1}) = Z−1

N wk+1

∑

N1+...+Nk=N−1

k∏

i=1

ZNi

≤ ζ0kwk+1

∑

N1+...+Nk=N−1

N1≥(N−1)/k

ZN1ζ
N1
0

ZNζN
0

k∏

i=2

ZNi
ζNi
0

≤ Ckwk+1

( Nk

N − 1

)δ

max
N1

(L(N1)

L(N)

) ∑

N2,...,Nk≥1

k∏

i=2

ZNi
ζNi
0

≤ C ′k1+δwk+1 (3.45)where C, C ′ > 0 are numbers independent of k and N . In the last step we used
Z0 = 1. Then we �nd

νN({τ ∈ Γ : |B2(τ)| > K}) ≤ C ′
∞∑

k=K

k1+δwk+1. (3.46)30



If this sum is �nite it tends to zero as K → ∞ uniformly in N proving the 
ase
R = 2.Now assume that (3.28) holds for some R ≥ 2. Sin
e the set of balls BR(τ) withvolume at most K is �nite for ea
h �xed K it is enough to show that

νN ({τ ∈ Γ : |BR+1(τ)| > K, BR(τ) = τ0}) → 0 as K → ∞ (3.47)uniformly in N for every �nite tree τ0 of height R. With a slight generalization ofthe arguments in [7℄ we 
an show that
νN({τ ∈ Γ : |BR+1(τ)| > K, BR(τ) = τ0})

≤ C ′′

( ∞∑

k=1

k1+δwk+1

)M−1



∑

k>(K−|τ0|)/M
k1+δwk+1



 (3.48)where C ′′ > 0 only depends on τ0 and M is the number of verti
es in τ0 at distan
e
R from the root. This goes to zero uniformly in N as K → ∞ if the last two sumsare �nite.

�The 
ase g′′(1) = ∞ for 
riti
al trees is more di�
ult to treat. It is not possible toshow the 
onvergen
e of the measure with the dire
t approa
h used here and in [7℄.If the 
onvergen
e 
ould be established it would be possible to �nd the spe
traldimension for some spe
i�
 models like (3.21) . This model a
tually in
ludes the
ase wn = n−β, w1 = wc with 2 < β < 3 and L 
onstant. Then (3.23) be
omes
µ({τ ∈ Γ|h(T ) > R}) ≈ R

1
β−2 . (3.49)By assuming the existen
e of the measure and using this relation, a dire
t appli
ationof the methods of [7℄ gives a lower bound on the spe
tral dimension

ds ≥ 2
β − 1

2β − 3
. (3.50)This lower bound is the same as the 
laimed exa
t value of the spe
tral dimensionin [5, 16℄. It is not possible to �nd an upper bound with the methods of [7℄ sin
ethey rely on g′′(1) < ∞. 31



3.7 Sub
riti
al treesFor now there are no rigorous results on the limiting behaviour of the measure onsub
riti
al trees. In this se
tion we will however give some arguments for the largesize behaviour of sub
riti
al trees whi
h allow us to 
ook up a possible limitingmeasure.To begin with we 
onsider only the model of Se
tion 3.5. In the relation (3.41)we see that for sub
riti
al trees δ = β. In this 
ase ZNζN
0 behaves exa
tly like wn.When we try to prove the 
onvergen
e of the measure the proof of Property 1 goesseriously wrong sin
e k1+δ−β = k and the sum of this never 
onverges. Althoughthis is of 
ourse no disproof of Property 1 this exa
t 
an
ellation between β and δindi
ates a di�erent behaviour. It is in fa
t natural to expe
t a dramati
ally di�erentlimiting behaviour be
ause sub
riti
al trees 
orrespond to sub
riti
al Galton-Watsonpro
esses. This seems to hold even beyond the n−β model. If we for example let

wn = e−
√

n and w1 > wc then by repeated di�erentiation of (3.6) we see that ZNζN
0falls faster than any power of N , and in that way behaves similar to wn .As was explained in Se
tion 3.3 there are two possible s
enarios as the tree sizegrows large. Either there emerges exa
tly one in�nite bran
h with �nite outgrowthsor one or more verti
es of in�nite order appear. We will from now on refer to verti
esof in�nite order as traps. If Property 1 is in fa
t not true in the sub
riti
al 
asewe expe
t traps to o

ur. It is argued in [14, 15℄ with numeri
al 
al
ulations andanalyti
al arguments that exa
tly one trap o

urs . For large �nite N its size isestimated to be (1−m)N where m = g′(1)

g(1)
< 1 is the mean value of o�springs of thesub
riti
al Galton-Watson pro
ess. We 
annot prove this but we 
an 
he
k if thisis 
onsistent with our pi
ture of sub
riti
al trees being size 
onditioned sub
riti
alGalton-Watson trees.First, observe the behaviour of the mean size of un
onditioned sub
riti
al Galton-Watson trees (3.18) with m. The mean size 〈|B∞|〉µ is always �nite so it is notimpossible to imagine that by 
onditioning the Galton-Watson pro
ess on very largetrees of �xed size, the limiting distribution would have trees of bounded height. Thiswould indi
ate the o

urren
e of a trap. When m is small, 〈|B∞|〉µ is small and sothe trees are 
rumpled. Therefore it is natural to expe
t the trap size to in
rease aspredi
ted. When m → 1 the mean size goes to in�nity and the trees be
ome longerand are stret
hed towards the 
riti
al 
ase. The trap size would then go to zero aspredi
ted. 32



Se
ondly, we 
an prove that there 
an o

ur at most one trap. We 
an estimatethe probability that there exist two verti
es, i and j su
h that σ(i) ≥ ǫiN and
σ(j) ≥ ǫjN , ǫi, ǫj > 0. We draw the trees as in Figure 3.6 where we assume thatthe order of the vertex j is p. Ea
h balloon N1, . . . , Np−1 along with the link to j isa tree of size Nk + 1 with root j. The balloon labelled with Np along with the linkto j is a tree of size Np + 1 with root r and one marked vertex j of order one. Thepartition fun
tion for the balloon with the marked vertex is ∂ZNp+1/∂w1 be
ausewe 
an 
hoose the marked vertex in e(τ) ways where e(τ) is the number of verti
esin τ of order one (ex
luding the root). It is easy to 
onvin
e oneself that

w1
∂ZN+1

∂w1
≤ NZN+1. (3.51)The partition fun
tion for ea
h of the other balloons is ZNk+1. Finally the weightof the vertex j is wp. We get the following estimate by summing over all these
on�gurations

νN ({τ ∈ ΓN |∃i, j ∈ τ su
h that σ(j) ≥ ǫjN and σ(i) ≥ ǫiN})

≤ Z−1
N

∑

N≥p≥ǫjN

wp

[

(p − 1)
∑

N1+...+Np=N−p
N1≥ǫiN

∂ZNp+1

∂w1

p−1
∏

k=1

ZNk+1 +
∑

N1+...+Np=N−p
Np≥ǫiN

∂ZNp+1

∂w1

p−1
∏

k=1

ZNk+1

]

≤ Cǫj
N Z−1

N wNζ−N
0

︸ ︷︷ ︸

<
onst.

∑

N≥p≥ǫjN

∑

N1+...+Np=N−p
N1≥ǫiN

(Np + 1)

p
∏

k=1

ZNk+1ζ
Nk+1
0

≤ C ′
ǫj
N

∑

N≥p≥ǫjN

∑

N1≥ǫiN

[N − 1 − N1

p − 1

]

ZN1+1ζ
N1+1
0

︸ ︷︷ ︸

∼N−δ
1

∑

N2+...+Np=N−p−N1

p
∏

k=2

ZNk+1ζ
Nk+1
0

≤ Cǫi,ǫj
N1−δ

∑

N≥p≥ǫjN

( ∞∑

n=0

Zn+1ζ
n+1
0

)p−1

≤ C ′
ǫi,ǫj

N2−δ.Here, C(·) and C ′
(·) are positive numbers whi
h only depend on their subs
ripts.Sin
e δ > 2 the last expression goes to zero as N → ∞. For 
onvenien
e we left theslowly varying fun
tion out of these 
al
ulation but it enters as in (3.45) and 
an beestimated as before.
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3.7.1 A 
andidate for a limiting measureFrom the above arguments we are ready to make an edu
ated guess on what thelimiting measure on sub
riti
al trees might look like. We assume that exa
tly onetrap emerges when the size goes to in�nity. We also assume that the trap takes
are of the size 
onstraint on the 
onditioned Galton-Watson pro
ess just as thein�nite bran
h did in the generi
 
ase. Therefore the rest of the graph grows like anun
onditioned, sub
riti
al Galton-Watson pro
ess.
pN  

p−1N

N N

N

1 2

3

jr

Figure 3.6: A graph with a vertex j of large order p and another vertex of largeorder inside one of the balloons.By looking at Figure 3.6 we 
an imagine the vertex j to be the trap, the balloonslabelled with N1, . . . , Np−1 to be sub
riti
al Galton-Watson trees with root j andthe balloon labelled with Np to be a sub
riti
al Galton-Watson tree with root rand one marked vertex j (the trap) of order one. We assume that ea
h balloongrows independent of the others. We know the probability measure for the balloonswith unmarked verti
es, it is simply µ de�ned in (3.10) and (3.12). To 
he
k for
onsisten
y, note that the expe
tation value of the size of ea
h of the balloons, when
N is large, is approximately 〈|B∞|〉µ = 1/(1 − m) and the expe
ted number ofballoons is (1−m)N (the order of j). These two numbers multiplied together, givethe total size N whi
h shows 
onsisten
y.We denote the probability measure for rooted Galton-Watson trees with one trapwith µ∗. It 
an be 
onstru
ted from µ by noti
ing that the probability for ea
h treeto o

ur is the same as before

µ∗(τ) = Dζ
|τ |−1
0

∏

i∈τ\{r,j}
wσ(i) (3.52)but we ex
lude the weight of the trap and there is a di�erent normalization 
onstant34



D. To �nd the normalization 
onstant we note that for ea
h unmarked tree τ weget e(τ) marked trees where e(τ) denotes the number of verti
es in τ of order one(ex
luding the root). Therefore
1

D
=

∞∑

N=1

ζN−1
0

∑

τ∈ΓN

e(τ)
∏

i∈τ\{r,j}
wσ(i) =

1

ζ0

∞∑

N=1

∂ZN

∂w1
ζN
0 =

1

1 − m
(3.53)where we found the last step by di�erentiating (3.6) with respe
t to w1 and using

Z0 = 1. Therefore D = 1 − m.We 
an look at the measure µ∗ in the following way. Ea
h tree for whi
h theshortest path between the root and the trap equals h 
an be drawn as in Figure 3.7.
sh−1s2s1 *

hFigure 3.7: A possible des
ription of in�nite, sub
riti
al trees. The tree has thegraph Mh as a base with the probability p(h) given in (3.54) and it has �nite sub-
riti
al Galton-Watson outgrowths. The trap is denoted with an asterisk.We 
all the linear subgraph whi
h starts at the root and ends at the trap Mh.We denote the vertex with graph distan
e i from the root on the subgraph Mh with
si. Ea
h balloon atta
hed to one of the verti
es si, grows independently a

ordingto µ. The probability distribution of the length h is

p(h) = D
(∑

k,l≥0

ζ0w2+k+l

)h−1

= (1 − m)g(1)−h+1
( ∞∑

n=0

(n + 1)w2+n

)h−1

= (1 − m)g(1)−h+1g′(1)h−1 = (1 − m)mh−1. (3.54)Note that the probabilities p(h) sum to one. Sin
e m < 1, p(h) de
ays exponentiallywhi
h means that the probability of the trap being 
lose to the root is relativelyhigh. The 
onditional probability of having k left bran
hes and l right bran
hesatta
hed to a vertex si given that Mh is a subgraph of the tree is
φ(k, l) =

1

m
ζ0w2+k+l (3.55)35



and is identi
al for ea
h vertex.To summarize, a possible des
ription of in�nite sub
riti
al trees is the following.There o

urs exa
tly one trap and its distan
e from the root, h, is distributed by
p(h). Sub
riti
al Galton-Watson trees grow from the subgraph Mh a

ording to φand µ. The trap has in�nitely many sub
riti
al Galton-Watson trees growing fromit distributed by µ. We will not worry about the outgrowths from the trap sin
ea random walk whi
h hits the trap will never return ba
k to the root and balls
entered on the root with radius greater than the distan
e to the trap have in�nitevolume. This means that the trap outgrowths neither a�e
t the spe
tral dimensionnor the Hausdor� dimension.We would like to say something about the spe
tral and Hausdor� dimension ofthe above random tree. First we 
onsider some simple random tree models whi
hare related to the sub
riti
al trees.3.7.2 Examples of random trees with one trapConsider the graph Ml mentioned in the previous se
tion. It looks like Nl but it

*
lFigure 3.8: The graph Ml with a trap denoted with an asterisk.has a trap at the opposite end of the root. If a random walk hits the trap we saythat it returns to the root with probability zero. For a �xed graph Ml it is thereforeobvious that the spe
tral dimension is in�nite be
ause the random walk eventuallygoes to the trap with probability one. If we de�ne the trap to have in�nite volumethe graph also has an in�nite Hausdor� dimension. This seems like the end of thestory but it turns out that we 
an get a �nite spe
tral dimension by 
onsideringa random graph where we put a probability distribution on the length l and makesure that the trap has a high probability of being far from the root. The Hausdor�dimension is however always in�nite. 36



To �nd the �rst return generating fun
tion of Ml we use the re
urren
e relationin (2.12) repla
ing Nl with Ml but with a di�erent boundary 
ondition PM1(x) = 0.To solve this we use the methods of Appendix A in [6℄. The result is very similar tothe result for Nl in (2.13)
PMl

(x) = 1 −
√

x
(1 +

√
x)l + (1 −√

x)l

(1 +
√

x)l − (1 −√
x)l

. (3.56)The square root in this formula is a
tually de
eiving be
ause PMl
is in fa
t a rationalfun
tion for all l. By expanding the bra
kets using the binomial formula we 
an writethe 
orresponding return probability generating fun
tion as

QMl
(x) =

Rl(x)

Sl(x)
(3.57)where Rl and Sl are the polynomials

Rl(x) =

[ l−1
2 ]
∑

i=0

(
l

2i + 1

)

xi and Sl(x) =

[ l
2 ]∑

i=0

(
l

2i

)

xi. (3.58)From these expressions one 
an see that Q
(n)
Ml

(0) is a polynomial in l of degree 2n+1.In parti
ular Q
(n)
Ml

(0) is �nite for all l showing that the spe
tral dimension is indeedin�nite for a �xed l. Now, pi
k a probability distribution pl = cl−a on the set
{Ml|l ≥ 1} and de�ne a return generating fun
tion for the 
orresponding randomgraph

Q̄(x) =

∞∑

l=1

plQMl
(x). (3.59)The 
onvergen
e or divergen
e of this sum or its derivatives 
an now be determinedby inserting x = 0 and �nding the highest exponent of l. From that we 
an 
on
ludethat if the graph has a spe
tral dimension ds it obeys a − 2 ≤ ds ≤ a + 2. In the
ase when 1 < a ≤ 2 it is in fa
t easy to show by 
omparing the sum (3.59) withan integral that ds = a. This relation probably holds for higher values of a but itbe
omes messier to 
on�rm sin
e it involves taking higher and higher derivatives of

QMl
.These arguments show that we 
an get a �nite spe
tral dimension for the randomgraph in whatever range we like. The bounds on ds are like we expe
ted. Byde
reasing a the probability of having the trap 
lose to the root de
reases and the37



spe
tral dimension is lowered. We note that if pl de
reases faster than any power of
l then the spe
tral dimension is always in�nite. In the sub
riti
al random trees thisprobability de
reases exponentially whi
h implies that they might have an in�nitespe
tral dimension. But the graph Ml has no bran
hes and it turns out that itapproximates the sub
riti
al trees poorly.We look at another model of a tree where we atta
h q single links to ea
h vertexof Ml as is shown in Figure 3.9. We 
all the resulting graph Ml;q. Let's 
all thegraph whi
h is made of the bundle of q single links Fq and let the vertex of order qbe the root. The �rst return generating fun
tion for Fq is

*
q q q

lFigure 3.9: The graph Ml;q made by atta
hing a graph Fq to ea
h vertex of Mlex
ept the root.
PFq(x) = 1 − x. (3.60)We 
an use the methods of Se
tion 2.2 to �nd the �rst return generating fun
tionfor Ml;q. The fun
tion KG1,G2 in (2.24) is simply

KMl;q,Fq(x; ω) =
( 2

2 + qx

)|ω|−1 (3.61)so the �rst return generating fun
tion be
omes
PMl;q

(x) = (1 +
q

2
x)PMl

(xq(x)) (3.62)where we de�ned
xq(x) =

q2

4
x2 + (1 + q)x

(1 + q
2
x)2

. (3.63)We see that xq(0) = 0. Repeated di�erentiation of xq(x) shows that x
(n)
q (0) is apolynomial in q of degree n. Therefore, repeated di�erentiation of QMl;q
(x) showsthat Q

(n)
Ml;q

(0) is a polynomial in l of degree 2n + 1 and in q of degree n. For any38



�xed graph of this kind the spe
tral dimension is therefore in�nite.Now let's make both q and l random a

ording to some distributions rq and plrespe
tively. Sin
e
Q

(n)
Ml;q

(0) = Anl
2n+1qn + lower powers of l and q An 6= 0 
onstant (3.64)we 
an 
learly make any derivative of the average of QMl;q

(x) diverge as x → 0 bytuning the probabilities. This gives a �nite spe
tral dimension whi
h depends onboth distributions. What is more interesting is that for any pl we 
an make anyderivative diverge with a suitable 
hoi
e of rq. This means that even though pldrops exponentially the bran
hes atta
hed to Ml 
an slow the random walker downso that it has little probability of meeting the trap whi
h results in a �nite spe
traldimension. This e�e
t might give us a �nite spe
tral dimension of sub
riti
al trees.By atta
hing graphs more 
ompli
ated than Fq to Ml we 
an slow the randomwalker even further down. For example, 
onsider a rooted tree whi
h has a root oforder one and a single vertex of order q2. Atta
h q1 
opies of it to every vertex of
Ml ex
ept the root. Then with the same analysis as above we �nd that
Q

(n)
Ml;q1q2

(0) = Bnl
2n+1qn

1 qn
2 + lower powers of l and q Bn 6= 0 
onstant (3.65)where we have denoted the resulting graph with Ml;q1q2 . If we distribute q1 and q2independently with the same probability distribution we have a very similar situationas in (3.64). However, if we for example put q1 = q2 ≡ q and put the probabilitydistribution on q we make the resulting random graph less transient.3.7.3 Dimensions of the sub
riti
al limiting measureTo 
on
lude we would like to say something about the spe
tral and Hausdor� di-mension of the proposed sub
riti
al random tree. First of all we 
an right awaydedu
e that the Hausdor� dimension is dH = ∞ sin
e there is a nonzero probabilityof having the trap at a �nite distan
e from the root.The spe
tral dimension 
ould however be �nite even though p(h) drops expo-nentially, sin
e the bran
hes atta
hed to Mh 
ould serve to slow the random walkerdown on its way to the trap. This needs to be 
arefully 
he
ked.Let P̄ ∗(x) and Q̄∗(x) be the �rst return and return probability generating fun
-tions averaged with respe
t to the measure µ∗. We 
onstru
t graphs Mh;q like in39



the previous se
tion and 
ompare their return probability generating fun
tion to
P̄ ∗(x) and Q̄∗(x) using the monotoni
ity lemma from Chapter 2. First 
onsider asub
riti
al random tree. The probability that a vertex has at least q bran
hes is

a(q) =
∑

k+l≥q

φ(k, l). (3.66)The probability that the number of bran
hes of ea
h vertex of Mh is at least q isthen
bh(q) = a(q)h−1. (3.67)Then the probability that there are exa
tly q bran
hes at some vertex of Mh and atleast q bran
hes at all the other verti
es is

ch(q) = bh(q) − bh(q + 1). (3.68)Let Γh be the set of trees whi
h have Mh as a subgraph and let Γh;q be the set oftrees whi
h have Mh;q as a subgraph and at least one vertex on Mh of order q. Wethen de�ne
Q̄h(x) =

∫

τ∈Γh

Qτ (x)dµ∗(τ |Γh) (3.69)as the return probability generating fun
tion averaged over the bran
hes of Mh and
Q̄h;q(x) =

∫

τ∈Γh;q

Qτ (x)dµ∗(τ |Γh;q) (3.70)as the return probability generating fun
tion averaged over the bran
hes of Mh;q.We de�ne P̄h(x) and P̄h;q(x) in the same way. We 
an then write
Q̄∗(x) =

∞∑

h=1

p(h)Q̄h(x) =

∞∑

q=0

∞∑

h=1

p(h)ch(q)Q̄h;q(x) (3.71)and
P̄ ∗(x) =

∞∑

h=1

p(h)P̄h(x) =

∞∑

q=0

∞∑

h=1

p(h)ch(q)P̄h;q(x). (3.72)We start by �nding a lower bound on the spe
tral dimension. Let Q̄(x) be the sameas in (3.59) with ph = p(h) from (3.54). By the monotoni
ity lemma of Chapter 2we have Q̄h(x) ≤ QMh
(x) for all h. Therefore, by (3.71) Q̄∗(x) ≤ Q̄(x). Now Q̄(0)40



is �nite be
ause of the 
hoi
e of ph and therefore Q̄∗(0) is �nite and so the randomtree is transient and ds ≥ 2. This bound is model independent and it is not 
lear ifit is optimal.Now we would like to �nd an upper bound. Sin
e we have just shown thatsub
riti
al random trees are transient it is 
lear that we have to 
ompare derivativesof return generating fun
tions. We therefore use the methods of Se
tion 2.2.1. De�ne
H̄h;q(x; n) =

∫

τ∈Γh;q

Hτ,Mh;q
(x; n)dµ∗(τ |Γh;q) (3.73)where the integrand has the same de�nition as in Se
tion 2.2.1 and n is 
hosen su
hthat (−1)n−1P̄ ∗ (n−1)(0) < ∞. An example of su
h an n is n = 1 but we will makethe 
hoi
e more optimal later. With the same methods as in (2.27) we get

(−1)nH̄ ′
h;q(x; n) ≤ (−1)nP̄

(n)
h;q (x). (3.74)We have (−1)(n−1)H̄h;q(x; n) ≤ (−1)(n−1)P

(n−1)
Mh;q

(x) with equality in x = 0. Thereforeby using the generalized mean value theorem as before, we �nd that for every
x ∈]0, 1[ there exists a ξ ∈]0, x[ su
h that

(−1)nP̄
(n)
h;q (ξ) ≥ (−1)nP

(n)
Mh;q

(ξ). (3.75)By summing over h and q we get
(−1)nP̄ ∗ (n)(ξ) ≥ (−1)n

∞∑

q=0

∞∑

h=1

p(h)ch(q)P
(n)
Mh;q

(ξ). (3.76)We would like to �nd if and how this diverges when ξ → 0 to get an upper boundon the spe
tral dimension. We start by throwing away every term of the sum over
h ex
ept h = 2. From (3.62) and (3.63) we �nd

PM2,q(x) =
1 − x

2 + qx
(3.77)and it is easily proved by indu
tion that

P
(n)
M2,q

(x) = (−1)nn!
qn−1(q + 2)

(2 + qx)n+1
, for n ≥ 1. (3.78)41



Therefore
(−1)nP̄ ∗ (n)(ξ) ≥ (1 − m)ζ0n!

∞∑

q=0

wq+1q
n−1(q + 1)(q + 2)

(2 + qξ)n+1
(3.79)

= (1 − m)ζ0n!

∞∑

q=0

qn−1(q + 1)−β+1(q + 2)

(2 + qξ)n+1
(3.80)Note that for every ξ > 0 this sum 
onverges but if we put ξ = 0 it diverges giventhat β ≤ n + 2. We are now ready to make an optimal 
hoi
e of n. Choose n su
hthat n + 1 < β ≤ n + 2. Consider �rst the possibility that (−1)n−1P̄ ∗ (n−1)(0) = ∞.In this 
ase ds ≤ 2n < 2(β − 1). If however (−1)n−1P̄ ∗ (n−1)(0) < ∞ the 
hoi
e of nfull�lls the 
ondition explained below (3.73) and we 
an therefore use the estimatein (3.80). We then 
ompare the last sum in (3.80) to an integral and get

∞∑

q=0

qn−1(q + 1)−β+1(q + 2)

(2 + qξ)n+1
≈ C

∫ ∞

1

tn+1−β

(2 + tξ)n+1
dt, as ξ → 0

= Cξβ−n−2

∫ ∞

ξ

yn+1−β

(2 + y)n+1
dy (3.81)where C > 0 is a 
onstant. If β < n + 2 the last integral is 
onvergent even when

ξ → 0. In this 
ase
(−1)nP̄ ∗ (n)(ξ) ≥ C ′ξβ−n−2 (3.82)where C ′ > 0 is independent of ξ. Then we see from (2.11) that the spe
traldimension has an upper bound ds ≤ 2(β − 1). If however β = n + 2 the singularbehaviour in front of the integral disappears and we have to perform the integral.We �nd that it diverges like a logarithm as ξ → 0 and we get the same upper boundas before.We have therefore shown that the spe
tral dimension of the sub
riti
al trees isin the interval 2 ≤ ds ≤ 2(β−1) for all β > 2. It is proposed in [5℄ that the spe
traldimension of sub
riti
al trees equals 2 whi
h is 
learly in this range.In all of the above dis
ussion we have worked with wn = n−β, w1 > wc. If weassume that the measure only depends on the trees being sub
riti
al then we 
ouldfor example take wn ∼ n−β, w1 > wc. Then (3.79) shows that we get the samebounds on the spe
tral dimension as before.
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4Con
lusions
In Chapter 2 we found inequalities between �rst return generating fun
tions of bun-dles stru
tures, generalizing the monotoni
ity lemmas in [6, 7℄. These monotoni
ityresults allowed us to investigate how the spe
tral dimension of a graph 
hanges whenre
urrent graphs are atta
hed to it. It turns out that re
urrent graphs stay re
urrentand their spe
tral dimension in
reases but transient graphs stay transient and theirspe
tral dimension de
reases. This gives bounds on the spe
tral dimension of ran-dom brushes and in the same way it is possible to deal with general random bundledstru
tures with a �xed base and random �bers. Similar methods were used to �ndbounds on the spe
tral dimension of the 
onje
tured limiting measure on sub
riti
altrees. This 
ase was slightly di�erent sin
e the transient base Mh was also random.The methods used here to study the spe
tral dimension only work for bundledstru
tures for whi
h the di�usion properties of the base and the �bers are known. Itwould be interesting to understand the properties of the spe
tral dimension of moregeneral graphs.In Chapter 3, non-generi
 trees were studied. They were divided into two 
ate-gories, 
riti
al trees and sub
riti
al trees, depending on weather they are related to
riti
al or sub
riti
al Galton-Watson pro
esses. It was shown that in any model forwhi
h the generating fun
tion of the bran
hing weights, g, has a �nite radius of 
on-vergen
e the trees 
an have three phases: generi
, 
riti
al and sub
riti
al dependingon the weight of the leaves w1.A 
onje
ture was made, that all 
riti
al trees for whi
h g′′(1) < ∞ share theproperties of generi
 trees. A less general statement was proved and some possible43



results in the 
ase g′′(1) = ∞ were dis
ussed. We might need fan
ier methods to dealwith 
riti
al trees, than the straight forward estimates used to prove Properties 1 and2. One idea is to use saddle point methods to approximate the sums en
ountered, inthe large N limit. However, saddle point methods usually rely on 
onditions similarto the generi
ity 
ondition in the tree model.A 
onje
ture was made on a limiting measure for sub
riti
al trees using argu-ments from [14�16℄. The measure is 
on
entrated on trees with exa
tly one trap within�nitely many �nite sub
riti
al Galton-Watson outgrowths, one of them 
ontainingthe root. One idea to prove the existen
e of this measure 
ould be to show that the
νN probability that a tree has height greater than h goes to zero, uniformly in N as
h → ∞. The measure was shown to have Hausdor� dimension dH = ∞ and spe
traldimension ds ≥ 2 with a model dependent upper bound. The measure is interestingin itself, even though it would turn out to be the wrong limiting measure, sin
e itis an example of a random graph with a trap whi
h 
an still have a �nite spe
traldimension.
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