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AbstratIn the �rst part of the thesis we prove inequalities between generating funtions forreturn probabilities of random walks on bundled strutures. Bundled strutures areonstruted by attahing graphs alled �bers to a single graph alled base, by identi-fying exatly one vertex of eah �ber to exatly one vertex of the base. We apply theinequalities to a lass of random bundled strutures, alled random brushes, wherethe base is Z
d viewed as a graph and the �bers are linear graphs of random lengths.Thereby we �nd that for d = 2 all random brushes have spetral dimension ds = 2.For d = 3 we have 5

2
≤ ds ≤ 3 and for d ≥ 4 we have 3 ≤ ds ≤ d.In the seond part we study non-generi random trees. They an be either ritialor subritial. We show that ritial trees resemble generi trees in some ases andargue that in other ases their ritial exponents an be model dependent. We on-jeture that in the subritial ase there is a limiting probability measure supportedon trees with exatly one vertex of in�nite order. We show that the orrespondingrandom trees have Hausdor� dimension dH = ∞ and spetral dimension ds ≥ 2with a model dependent upper bound.
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Ágrip (in Ielandi)Í fyrri hluta ritgerðar sönnum við ójöfnur milli framleiðandi falla fyrir endurkomu-líkur slembiganga á ákveðnum tegundum neta sem við köllum útvaxtanet. Þau erubúin þannig til að byrjað er með net sem kallast grunnnet og á það eru hengd netsem kallast útvextir, með því að samsama nákvæmlega einn hnútpunkt í hverjumútvexti við nákvæmlega einn hnútpunkt á grunnnetinu. Ójöfnunum er beitt á sér-stök útvaxtanet sem kallast slembiburstar þar sem grunnnetið er Z
d og útvextirnireru línuleg net af handahófskenndri lengd. Með því er sýnt að í tilfellinu d = 2 hafaallir slembiburstar litrófsvíddina ds = 2. Þegar d = 3 gildir 5

2
≤ ds ≤ 3 og þegar

d ≥ 4 gildir 3 ≤ ds ≤ d.Í síðari hlutanum skoðum við sérstæð tré en þau skiptast í krítísk og undirkrítísktré. Við sýnum að í sumum tilfellum líkjast krítísk tré almennum trjám og færumrök fyrir því að í öðrum tilfellum geti þau verið háð líkani. Við getum okkur til ummarkgildi líkindamáls á undirkrítísk tré þar sem tré með nákvæmlega einn hnút-punkt af óendanlegu stigi fást með líkunum einn. Við sönnum að slík slembitré hafaHausdor�vídd dH = ∞ og litrófsvídd ds ≥ 2 með efri mörk sem háð eru líkani.
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1Introdution
The generi struture of random geometrial objets is of interest in many branhesof physis ranging from ondensed matter physis to quantum gravity, see e.g. [1℄ and[2℄. An interesting problem is to de�ne and study dimensions of random geometries.There are many possible de�nitions of dimensions whih agree on the lattie Z

dviewed as a graph and on smooth manifolds, but they an di�er on general graphsand random geometries. One way to de�ne a notion of dimension is to study randomwalk or di�usion on the geometry. The spetral dimension is de�ned to be ds if theprobability that a random walker returns to its starting point, averaged over therandom geometries, behaves as t−ds/2 for large number of steps t. It is equivalentlyde�ned if the averaged heat kernel at oiniding points viewed as a funtion of timehas this behavior at large time t. The spetral dimension was �rst introdued byAlexander and Orbah in [3℄.The spetral dimension has been studied analytially for ertain lasses of ran-dom trees in [4�7℄. It is onvenient to study random walk on trees sine trees haveno loops and therefore a general walk an be ut into separate walks on smallertrees. This gives reurrene relations whih make expliit alulations easier. In [8℄the spetral dimension of so alled bundled strutures is studied. They onsist ofa single graph alled base and a olletion of graphs alled �bers. The �bers areattahed to the base by identifying exatly one vertex of eah �ber to a vertex ofthe base. A random walk an be separated into walks on the base and walks on the�bers in the same way as for trees. Di�usion properties of the whole graph an thenbe dedued from di�usion properties of the base and the �bers.1



When graphs an not be ut into piees like the trees and the bundled struturesit beomes more di�ult to do analytial alulations. This is for example the asefor triangulations in quantum gravity. The spetral dimension of triangulations hasbeen studied numerially in reent years in [9�13℄.Another notion of a dimension omes from looking at the growth of the volumeof a ball of size R, denoted B(R), averaged over the random geometry, as R growslarge. In R
d for example, we know that the volume of a ball of radius R grows as

Rd. The Hausdor� dimension is de�ned to be dH if 〈B(R)〉 ∼ RdH as R → ∞where 〈·〉 denotes average over the random geometry. The Hausdor� and spetraldimension do not agree in general but it is not well understood whih properties ofgraphs make them di�er.In Chapter 2 we study the spetral dimension of so alled random brushes. Theyare bundled strutures with a base Z
d viewed as a graph and the �bers are lineargraphs of random lengths. This is a generalization of ombs studied in [6℄ wherethe base was Z

1. We prove inequalities between generating funtions for �rst returnprobabilities on bundled strutures whih allow us to investigate properties of thespetral dimension and to �nd bounds on the spetral dimension of random brushes.In Chapter 3 we study non-generi trees whih are a speial type of simplygenerated trees. Simply generated trees are random trees of a �xed size whereeah tree is given a weight whih depends only on the order of its verties. Simplygenerated trees orrespond to ritial or subritial Galton-Watson proesses whihare onditioned on the total progeny. In [7℄ generi trees are studied and it is shownthat their probability measure, when the size goes to in�nity, is onentrated ontrees with exatly one in�nite branh with �nite ritial Galton-Watson outgrowths.Their spetral dimension is shown to be ds = 4/3. We will generalize this partiallyto ertain kind of non-generi trees whih still orrespond to ritial Galton-Watsonproesses. We then onjeture that there is a limiting measure on non-generi treeswhih orrespond to subritial Galton-Watson proesses using arguments from [14�16℄. The trees are haraterized by having exatly one vertex of in�nite order withsubritial Galton-Watson outgrowths. We �nd that their Hausdor� dimension is
dH = ∞ and that their spetral dimension obeys ds ≥ 2 with a model dependentupper bound.
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2Spetral dimension of randombrushes
In [6℄ the spetral dimension of various ensembles of random ombs was alulated.In this part we generalize the monotoniity results of [6℄ whih allows us to �ndbounds on the spetral dimensions of graphs whih we all brushes and de�ne below.A graph is a set of verties linked together by a set of edges. In this setionwe only onsider graphs whih are loally �nite, i.e. eah vertex is linked to only�nitely many other verties, and onneted meaning that any vertex an be reahedfrom another vertex by following edges. For onveniene we single out one vertexand all it the root. A simple random walk on a graph G starts at the root andtravels to adjaent verties with equal probability in disrete timesteps. Let pG(t)be the probability that a simple random walk on G is bak at the root after t steps.If

pG(t) ∼ t−ds/2 (2.1)as t → ∞ then we say that ds is the spetral dimension of the graph G. Here themeaning of f(x) ∼ xα as x → 0 is that for any ǫ > 0 there exist positive onstants
c1 and c2, whih may depend on ǫ, suh that

c1x
α+ǫ ≤ f(x) ≤ c2x

α−ǫ (2.2)for x small enough.Some graphs have the property that every random walk beginning and ending3



at the root has an even number of steps. Then we have to replae pG(t) with pG(2t)in the above de�nition. In partiular this is the ase for brushes and trees.The existene of ds is not guaranteed for individual graphs but its ensembleaverage an be shown to be well de�ned in many ases [6, 7℄. In the ase of loally�nite and onneted graphs the spetral dimension is independent of the startingsite of the random walk. To see this we let i be any vertex other than the root.We hoose some path between r and i whih has some length T . Let pT and p′T bethe probabilities that a random walk follows this path from r to i and from i to rrespetively. Let pG,i(t) be the probability that a random walk starting at i returnsto i at time t. Then
pG(t + 2T ) ≥ pT pG,i(t)p

′
T ≥ p2

T pG(t − 2T )(p′T )2. (2.3)This shows that pG,i(t) ∼ pG(t) as t → ∞.Let us view Z
d as a graph with j, k ∈ Z

d neighbours if their distane is 1 andlet the origin of Z
d be the root. The probability of a random walk returning to theroot on Z

d after t steps has the property that
pZd(2t)td/2 → C(d) (2.4)as t → ∞ where C(d) only depends on d. Therefore the spetral dimension of Z

d is
d. Let Nl be a linear hain of length ℓ, i.e. the graph obtained be onneting nearestneighbours in {0, 1, . . ., ℓ} with a link. Let 0 be the root of Nl. Similarly, let N∞be the in�nite linear hain with root at 0. A d-brush is a graph onstruted byattahing one of the graphs Nl, l ∈ N0 ∪ {∞}, to eah vertex of Z

d by identifyingthe root of Nℓ with a vertex in Z
d, l = 0 orresponding to the empty hain. In abrush B we will refer to Z

d as the base and the linear hains as bristles.A random brush is de�ned by letting the length of the bristles be identiallyand independently distributed by a probability measure on N0 ∪ {∞}. The ase
d = 1 orresponds to the ombs studied in [6℄ whih were shown to have a spetraldimension in the interval [1, 3

2
]. We will show that the spetral dimensions of random4



brushes satisfy
1 ≤ ds ≤ 3

2
, if d = 1,

ds = 2, if d = 2,
5

2
≤ ds ≤ 3, if d = 3,

3 ≤ ds ≤ d, if d ≥ 4. (2.5)In the next setion we de�ne the generating funtions we use to analyze thespetral dimension. We then establish a generalized monotoniity lemma whih willdiretly imply the stated bounds on ds.2.1 Generating funtionsConsider a loally �nite and onneted graph G. Let p1
G(t) be the probability thata random walk is at the root at time t the �rst time after t = 0 (p1

G(0) = 0). Wede�ne the return generating funtion
QG(z) =

∞∑

t=0

pG(t)zt (2.6)and the �rst return generating funtion
PG(z) =

∞∑

t=0

p1
G(t)zt. (2.7)By deomposing a return to the root into �rst return, seond return et. we �ndthat the return generating funtion an be written as

QG(z) =

∞∑

n=0

PG(z)n =
1

1 − PG(z)
(2.8)where the exponent n in the sum ounts the ontribution from the n-th return andthe geometri sum is alulated in the seond step.The funtion PG(z) is analyti in the unit dis and |P (z)| < 1 for |z| < 1. If

PG(z) → 1 as z → 1 then QG(z) learly diverges in whih ase the random walkis reurrent and returns to the root eventually with probability one. If PG(z) 6→ 15



as z → 1 then the random walk is transient and returns to the root eventuallywith probability less than one. If G has a spetral dimension ds then by integralomparison we see that
Q

(n)
G (z) ∼

{

1 if n = ds/2 − 1

(1 − z)ds/2−1−n otherwise (2.9)where n is the smallest nonnegative integer for whih Q
(n)
G (z) diverges as z → 1.When the generating funtions are even funtions of z it is onvenient to intro-due a new variable x through

z2 = 1 − x (2.10)where x ∈ [0, 1]. This is always the ase for graphs whih have the property thatevery random walk beginning and ending at the root has an even number of steps.We will denote the generating funtions in x with the same symbol as the generatingfuntions in z whih hopefully auses no onfusion. In the same way as above wesee that if G has a spetral dimension ds then
Q

(n)
G (x) ∼

{

1 if n = ds/2 − 1

(−1)nxds/2−1−n otherwise (2.11)where n is the smallest nonnegative integer for whih Q
(n)
G (x) diverges as x → 0.In some ases it is possible to �nd a nie formula for the generating funtions.Take for example the linear graph Nl. By deomposing a �rst return random walkon Nl into a �rst step, then arbitrary many �rst returns to the next neighbour of theroot and �nally a last step bak to the root we get the following reurrene relationfor the �rst return probability generating funtions of Nl

Pl+1(x) =
1 − x

2 − Pl(x)
, l ≥ 1. (2.12)with boundary ondition Pl(x) = 1 − x. This is solved in [6℄ for �nite and in�nite lgiving

Pl(x) = 1 −
√

x
(1 +

√
x)l − (1 −√

x)l

(1 +
√

x)l + (1 −√
x)l

(2.13)and
P∞(x) = 1 −

√
x. (2.14)6



respetively. This shows that the graphs are reurrent and for every �nite l thespetral dimension is zero but for the in�nite half line the spetral dimension is one.2.1.1 Random brushesLet µ be a probability measure on N0 ∪{∞}. Let Bd be the set of all d-brushes. Wede�ne a probability measure π on Bd by letting the measure of the set of d-brushes
Ω whih have bristles at n1, n2, ..., nk ∈ Z

d of length ℓ1, ℓ2, ..., ℓk be
π(Ω) =

k∏

i=1

µ(li). (2.15)This formula de�nes the measure π uniquely. The set Bd together with π is a randombrush. We de�ne the averaged generating funtions
P̄ (x) = 〈PB(x)〉π (2.16)and
Q̄(x) = 〈QB(x)〉π (2.17)where 〈·〉π denotes expetation with respet to π. We say that a random brush hasthe spetral dimension ds if Q̄(x) obeys the relation (2.11).2.2 A generalized monotoniity lemmaIn [6℄ it was shown that the �rst return generating funtion P (x) is a dereasingfuntion of the length of the teeth attahed to the base. A similar result was obtainedin [7℄ for trees showing that P (x) dereases when branhes are added to a tree. Inthis setion we prove similar results for more general graphs. Lemma 1 deals withreurrent bases and Lemma 2 deals with transient bases.Let G1 and G2 be rooted graphs. Assume that G1 an be onstruted from G2by attahing rooted graphs F (i) by their roots to sites i 6= r of G2. We all thegraph G1 a bundled struture with base G2 and �bers F (i). Let the roots of G1 and

G2 be the same vertex (regarding G2 as a subgraph of G1).
7



Lemma 1
PG1(z) ≤ PG2(z) (2.18)with equality if and only if all the F (i)'s are reurrent and z = 1.

A

B C

D

F(B) F(C)

F(D)

F(A)

G2

G1

r

Figure 2.1: An example of a bundled struture G1 onstruted from G2 and the
F (i)'s.Proof: We an write PG2(z) as the sum over random walks ω whih start andend at the root without intermediate visits to the root. This ondition is denoted'ω: FR on G2' where FR stands for '�rst return'. Eah walk has a weight whih isthe produt of one over the order of verties visited by the walk

WG2(ω) =

|ω|−1
∏

t=0

(σG2(ωt))
−1 (2.19)and eah step of a walk has a fator z assoiated with it so

PG2(z) =
∑

ω: FR on G2

WG2(ω)z|ω| (2.20)8



where σG2(ωt) is the order of the vertex ωt on G2 where the walk ω is loated attime t and |ω| is the number of steps in ω.Now onsider a random walk ω′ on G1 whih starts at the root. Let ω be thesubwalk of ω′ whih only travels on G2. If we look at the walk ω at time t andloation ωt then ω an be a subwalk of many di�erent walks ω′ orresponding to allpossible visits into the graph F (ωt) before returning bak to the walk on G2. Theweight of these visits is
∞∑

n=0

(σF (ωt)(ωt)

σG1(ωt)
PF (ωt)(z)

)n

=
1

1 −
(

σF (ωt)
(ωt)

σG1
(ωt)

PF (ωt)(z)
) (2.21)where n ounts the number of visits and the fator in front of PF (ωt)(z) hanges theorder of the root of F (ωt) to σG1(ωt) = σG2(ωt) + σF (ωt)(ωt). The weight of the �rststep bak into G2 after these visits to F (ωt) is

1

σG1(ωt)
z. (2.22)Now replae the original weight σG2(ωt)

−1z of ω at eah point ωt 6= ω0 by theprodut of the fators (2.21) and (2.22). This newly weighted ω then aounts forevery random walk on G1 whih has ω as a subwalk on G2. Thus we an write
PG1(z) =

∑

ω: FR on G2

σG2(ω0)
−1z

|ω|−1
∏

t=1

( z

σG2(ωt) + σF (ωt)(ωt)(1 − PF (ωt)(z))

)

=
∑

ω: FR on G2

KG1,G2(z; ω)WG2(ω)z|ω| (2.23)where in the last step we de�ned
KG1,G2(z; ω) =

|ω|−1
∏

t=1

( σG2(ωt)

σG2(ωt) + σF (ωt)(ωt)(1 − PF (ωt)(z))

)

. (2.24)Sine PF (ωt)(z) ≤ 1 with equality if and only if F (ωt) is reurrent and z = 1 it islear that KG1,G2(z; ω) ≤ 1 for all z with equality if and only if all the graphs F (ωt)for a given ω on G2 are reurrent and z = 1. When we onsider all suh randomwalks we get the inequality (2.18).
�9



Lemma 2 If there exists an n ≥ 1 suh that P
(n−1)
G2

(z) is ontinuous on the losedinterval [0, 1] and if all the F (i)'s are reurrent then for any z ∈]0, 1[ there exists a
ξ ∈]z, 1[ suh that

P
(n)
G1

(ξ) ≥ P
(n)
G2

(ξ). (2.25)Proof: We de�ne
HG1,G2(z; n) =

∑

ω: FR on G2

KG1,G2(z; ω)WG2(ω)
dn−1

dzn−1
z|ω| (2.26)where KG1,G2 is de�ned as above. Every derivative of a (�rst) return generatingfuntion is a positive inreasing funtion of z ∈ [0, 1[ sine the power series have nonegative oe�ients. It is easy to verify that the funtion KG1,G2(z) has the sameproperties. Therefore we get by di�erentiating (2.23) n times

P
(n)
G1

(z) =
n∑

i=0

(
n

i

)
∑

ω: FR on G2

K
(i)
G1,G2

(z; ω)WG2(ω)
(

z|ω|
)(n−i)

≥
∑

ω: FR on G2

KG1,G2(z; ω)WG2(ω)
(

z|ω|
)(n)

+ n
∑

ω: FR on G2

K ′
G1,G2

(z; ω)WG2(ω)
(

z|ω|
)(n−1)

≥
∑

ω: FR on G2

KG1,G2(z; ω)WG2(ω)
(

z|ω|
)(n)

+
∑

ω: FR on G2

K ′
G1,G2

(z; ω)WG2(ω)
(

z|ω|
)(n−1)

= H ′
G1,G2

(z; n). (2.27)In the �rst step we used the binomial formula for the n-th derivative of a produt.In the seond step every term of the binomial sum was thrown away exept for i = nand i = n − 1. In the third step the n in front of the seond sum was replaed byone and the �nal step is obvious from the de�nition of HG1,G2(z; n).With the same argument as in the proof of Lemma 1 it holds that
HG1,G2(z; n) ≤ P

(n−1)
G2

(z). We have equality when z = 1 sine all the F (i)'s arereurrent and beause P
(n−1)
G1

(z) and therefore also HG1,G2(z; n) are ontinuous on
[0, 1]. Then sine HG1,G2(z; n) and P

(n−1)
G2

(z) are positive and inreasing funtions10



of z we get that
HG1,G2(1; n) − HG1,G2(z; n)

P
(n−1)
G2

(1) − P
(n−1)
G2

(z)
≥ 1. (2.28)By a generalized mean-value theorem [17℄ there exists a ξ ∈]z, 1[ suh that

HG1,G2(1; n) − HG1,G2(z; n)

P
(n−1)
G2

(1) − P
(n−1)
G2

(z)
=

H ′
G1,G2

(ξ; n)

P
(n)
G2

(ξ)
. (2.29)Then for any z ∈]0, 1[ there exists a ξ ∈]z, 1[ suh that

P
(n)
G2

(ξ) ≤ H ′
G1,G2

(ξ; n) ≤ P
(n)
G1

(ξ). (2.30)
�From the above lemmas we get the following theorem.Theorem 1 Assume that all the F (i)'s are reurrent and that G1 and G2 havespetral dimensions ds1 and ds2 respetively. If G2 is reurrent then G1 is reurrentand ds1 ≥ ds2. If G2 is transient then G1 is transient and ds1 ≤ ds2.Proof: First onsider the ase when G2 is reurrent. If all the F (i)'s are reurrentLemma 1 shows that PG1(1) = PG2(1) = 1 and therefore G1 is also reurrent.Assuming the existene of ds1 and ds2 and using (2.9) and Lemma 1 along with (2.8)we get

c1(1 − z)ds1/2−1+ǫ ≤ QG1(z) ≤ QG2(z) ≤ c2(1 − z)ds2/2−1−ǫ (2.31)for z lose to 1 where ǫ > 0 is arbitrary and c1 and c2 are positive onstants whihmay depend on ǫ. Then
(1 − z)

1
4
(ds2−ds1 )−ǫ > c (2.32)where c is a positive onstant. By hoosing ǫ < 1

4
|ds2 − ds1| and sending z → 1 wesee that it must hold that ds1 ≥ ds2.Now onsider the ase when G2 is transient. Again, if all the F (i)'s are reurrentLemma 1 shows that PG1(1) = PG2(1) < 1 and therefore G1 is also transient. Firstnote that if some n-th derivative Q

(n)
Gi

(z), i = 1, 2 diverges as z → 1 then from (2.9)we get
Q

(n)
Gi

(z) ∼
P

(n)
Gi

(z)

(1 − PGi
(z))2

∼ P
(n)
Gi

(z) as z → 1 (2.33)11



sine PGi
(1) < 1. By Lemma 2 there exists a sequene ξk < 1 suh that ξk → 1 as

k → ∞ and
P

(n)
G2

(ξk) ≤ P
(n)
G1

(ξk) (2.34)for all k where n is the lowest positive integer for whih P
(n)
G2

(z) diverges as z → 0.We then see that P
(n)
G1

(z) also diverges as z → 1 and if n is not the lowest integer forwhih that happens then learly ds1 < ds2. If however n is also the lowest integerfor whih P
(n)
G1

(z) diverges then we get from (2.34), (2.33) and (2.9) that
c1(1 − ξk)

ds2/2−1−n+ǫ ≤ c2(1 − ξk)
ds1/2−1−n−ǫ (2.35)for k large enough where ǫ > 0 is arbitrary and c1 and c2 are positive onstants whihmay depend on ǫ. With the same arguments as before we hoose ǫ < 1

4
|ds2 − ds1|and let k → ∞ to see that ds1 ≤ ds2.

�It is not surprising that attahing reurrent �bers to a reurrent base results in areurrent graph. If a random walker on the base happens to travel into a �bre he willeventually return bak to the base with probability one. However the meeting withthe �ber delays the walker and therefore inreases the spetral dimension. In thease of a transient base the time spent in the reurrent �bre redues the time spentin the base and therefore the probability of not returning to the root. Therefore thespetral dimension dereases.2.2.1 Monotoniity results for random brushesNow, let's onsider the ase when G2 = Z
d and instead of having a �xed G1 weonsider a random d-brush (Bd, π). We would like to get similar results for randombrushes as in Lemmas 1 and 2. First we note that by Lemma 1 we have for any

B ∈ Bd that
P∗d(z) ≤ PB(z) ≤ PZd(z) (2.36)where ∗d is the full brush, de�ned in Setion 2.3.1. By integrating with respet to

π we get
P∗d(z) ≤ P (z) ≤ PZd(z). (2.37)12



To get a similar result for random d-brushes as in Lemma 2 we onsider the ase
d > 2 and we de�ne the funtions

Ha(z; n) =

∫

π

HB,Zd(z; n)dπ(B) and Hb(z) =

∫

π

H∗d,B(z; 1)dπ(B) (2.38)where the funtion in the integrand is de�ned as in (2.26) and n is the smallestpositive integer for whih P
(n)

Zd (z) diverges as z → 1. With the same alulation asin (2.27) we get
H

′
a(z, n)

P
(n)

(z)
≤ 1 and H

′
b(z)

P ′
∗d(z)

≤ 1. (2.39)We learly have Ha(z; n) ≤ P
(n−1)

Zd (z) and Hb(z) ≤ P (z) both with equality when
z = 1 beause the bristles are reurrent. Sine the funtions Ha(z; n),P (n−1)

Zd (z),
Hb(z) and P (z) are all inreasing funtions of z on [0, 1[ we get with the sameargument as in (2.29) that for any z ∈]0, 1[ there exists a ξ ∈]z, 1[ suh that

1 ≤ P
(n)

(ξ)

P
(n)

Zd (ξ)
and 1 ≤ P ′

∗d(ξ)

P
′
(ξ)

. (2.40)These arguments an be generalized by replaing the base Z
d with any �xedgraph and by replaing the random bristles by any random graph whih onsists ofa probability distribution on a set of reurrent graphs.2.3 Bounds on the spetral dimensionNow that we have established these monotoniity results we an �nd bounds onthe spetral dimension of (random) brushes. First we �nd the spetral dimensionof brushes whih have every bristle in�nite. We all suh brushes full brushes anddenote them ∗d . Then we use the monotoniity results to sandwih any brushbetween an empty brush and a full brush.For those graphs whih have the property that the (�rst) return generating fun-tion is an even funtion of z it is easy to verify that all the inequalities derivedin the previous setion hold for generating funtions in the variable x de�ned in(2.10). This is the ase for �xed and random brushes. For onveniene we presentthe following alulations in the variable x.13



2.3.1 The full brushWe an relate the �rst return generating funtion of the full d-brush to the �rstreturn generating funtions of Z
d and N∞. We use the same argument as in theproof of the monotoniity lemma. We simply replae all the graphs F (i) with N∞and note that the order of every point in Z

d is 2d. Then equation (2.23) beomes
P∗d(x) =

(

1 +
1 − P∞(x)

2d

) ∑

ω: FR on Zd

|ω|−1
∏

t=0

1

2d

√
1 − x

1 + 1−P∞(x)
2d

=
(

1 +

√
x

2d

)

PZd(xren(x)) (2.41)where we used (2.14) and de�ned xren through
√

1 − xren =

√
1 − x

1 +
√

x
2d

. (2.42)We see that xren =
√

x/d+O(x). By di�erentiating (2.41) one and omparing with(2.11) we �nd the spetral dimension of the full brush
d∗ =

{
d
2

+ 1 if 1 ≤ d ≤ 4

3 if d ≥ 4. (2.43)Note that the spetral dimension is always ds = 3 when d ≥ 4. This omes fromthe fat that x′ren(x) ∼ x−1/2 as x → 0 and that |P ′
Zd(x)| grows at most like − ln(x)as x → 0 when d ≥ 4. If we replae the in�nite bristles with �nite ones, all ofwhih have the same length, then with the same alulation we see that the spetraldimension remains equal to d.These results are speial ases of a more general result obtained in [8℄ for bundledstrutures. There, the base Z

d an be replaed by any onneted graph G and thein�nite bristle (�bre) an also be replaed by any �xed, onneted graph F .2.3.2 ResultsAny �xed d-brush B an be onstruted from Z
d by attahing (reurrent) bristles toit and the full d-brush an be onstruted from B by attahing (reurrent) bristlesto it. Therefore, by Theorem 1 in Setion 2.2, the spetral dimension of any �xed

d-brush, if it exists, lies between d and d∗. This also holds for random brushes as14



is lear from equations (2.37) and (2.40). The spetral dimension for any �xed orrandom d-brush, if it exists, therefore obeys the relation (2.5).It is interesting to note that the spetral dimension of random 2-brushes alwaysequals 2. In fat, from the relation (2.4) it follows from (2.42) and Lemma 1 thatthere exist positive onstants c1 and c2 suh that
c1| ln(x)| ≤ P (x) ≤ c2| ln(x)| (2.44)for a random 2-brush when x is small enough . This is a more strit ondition onthe asymptoti behavior of P (x) than the ondition that P (x) ∼ 1 as x → 0. Thereason why the spetral dimension is always 2 is that when we onstrut a 2-brush

B by attahing bristles to Z
2 we get a similar senario as in (2.41) namely that

PB(x) ∼ PZ2(xren(x)) as x → 0 where xren(x) is some funtion of x. If xren(x) ∼ xαas x → 0 then the logarithm in PZ2 does not see the exponent α and behaves as ifno bristles were attahed.It is also interesting that for d ≥ 4 the lower bound on the spetral dimensionalways equals 3. In fat it is easy to see that attahing a single in�nite bristle to Z
dwith d ≥ 4 redues the spetral dimension to 3. We an show this by attahing thein�nite bristle to the root of Z

d sine the spetral dimension is independent of thestarting site of the random walks. We all the resulting graph d⊥. The �rst returngenerating funtion for this graph is
P⊥d(x) =

2d − 1

2d
PZd(x) +

1

2d
P∞(x). (2.45)Sine d ≥ 4 equations (2.11) and (2.4) show that |Q′

Zd(x)| diverges at most as − ln(x)as x → 0 whih is slower than the divergene of Q′
∞(x). Therefore by di�erentiating(2.45) we get

Q′
⊥d(x) ∼ P ′

⊥d(x) ∼ P ′
∞(x) ∼ x−1/2 (2.46)as x → 0 and therefore by (2.11) the spetral dimension is d⊥ = 3. From this andthe lower bound in (2.5) it follows from equations similar to (2.40) that if a random

d-brush with d ≥ 4 has a nonzero probability of having one or more in�nite bristlesits spetral dimension equals 3.We �nd with similar arguments that adding a single (or �nitely many) bristlesto Z
3 gives the spetral dimension 3. However if we add in�nitely many bristles thespetral dimension an be lowered as is seen e.g. in the ase of the full 3-brush.15
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3Non-generi treesA tree is a onneted graph with no loops. We onsider rooted planar trees wherethe root has order one and is denoted r. Planar means that if we imagine the treesto be embedded in the plane then two trees are the same if one an be deformedinto the other without links rossing eah other. Let ΓN be the set of all suh treeshaving N links and let Γ be the set of all loally �nite rooted planar trees. We de�nea metri on Γ by
dΓ(τ, τ ′) = inf

R≥0
{ 1

R + 1
|BR(τ) = BR(τ ′)} (3.1)where BR(τ) is the subtree of τ spanned by verties at distane less than or equalto R from the root. We denote the number of links in a tree τ with |τ | and refer toit as the size of the tree.In this setion we study a model of random trees whih are often alled simplygenerated trees. It is de�ned by a set of positive branhing weights wn, n ≥ 1. Giventhese branhing weights we de�ne the �nite volume partition funtion for trees ofsize N

ZN =
∑

τ∈ΓN

∏

i∈τ\r
wσi

(3.2)and a probability distribution νN on ΓN by
νN(τ) = Z−1

N

∏

i∈τ\r
wσi

, τ ∈ ΓN . (3.3)The set ΓN equipped with the probability measure νN is our model of a randomtree of size N . We are interested in determining how a typial tree looks like when N17
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Figure 3.1: A tree with weight w9
1 w2 w3 w2

4 w5.is large or even when N → ∞. Some desireable parameters would be the Hausdor�and spetral dimension. In [18℄ the ase wn = 1, ∀n is studied. There it is shownthat when N → ∞ the probability measure νN onverges weakly to a probabilitymeasure on Γ whih is onentrated on trees with one in�nite branh with �niteoutgrowths. In [7℄ the same is shown to be true for so alled generi trees whihare de�ned in the next setion. There it is established that the spetral dimensionis ds = 4/3. The Hausdor� dimension of generi trees is dH = 2 [2℄. In this part ofthe thesis we disuss what is known about non-generi trees and try to �nd similarresults as in the generi ase.
3.1 Some useful toolsWe de�ne a generating funtion for the branhing weights

g(z) =

∞∑

n=1

wnz
n−1 (3.4)and a generating funtion for the �nite volume partition funtion

Z(ζ) =
∞∑

N=1

ZNζN . (3.5)18



The ontribution to Z from trees for whih the vertex next to the root has order
k is ζwkZ(ζ)k−1. By summing over k we get the following relation between thegenerating funtions

Z(ζ) = ζ
∞∑

k=1

wkZ(ζ)k−1 = ζg(Z(ζ)). (3.6)Let ρ and ζ0 be the radii of onvergene of the generating funtions g and Zrespetively. Here we will always onsider branhing weights suh that ρ > 0. Wede�ne Z0 = limζ→ζ0 Z(ζ). From the above relation we see that Z0 is �nite and
Z0 ≤ ρ. (3.7)When Z0 < ρ we have a generi ensemble of in�nite trees but when the equalityholds we have a non-generi ensemble. The generi ase is easier to analyze beausethe funtion g is analyti in a neighbourhood of a disk entered at zero and withradius Z0. Note that when ρ is in�nite we always have a generi ensemble.From the funtional equation (3.6) we an relate the oe�ients of powers of

Z(ζ) to the branhing weights wn. By Lagrange's Inversion Theorem (see e.g. [19℄)we get
[ζN ]{Z(ζ)k} =

k

N

∑

N1+...+NN=N−k

N∏

i=1

wNi+1 =
k

N
[zN−k]{g(z)N} (3.8)where [zn]{f(z)} stands for the n-th oe�ient of the power series f(z). The ase

k = 1 gives ZN .3.2 Galton-Watson proessesIn this setion we disuss a relation between simply generated trees and so alledGalton-Watson proesses whih an give us some insight in how simply generatedtrees look like in the large N limit. A Galton-Watson proess is a proess for treegrowth whih was �rst studied by Galton and Watson in the late 19th entury inrelation to family trees. Sine then this proess has for example been a modelfor populations of neutrons, genes, osmi rays and more. Standard referenes forGalton-Watson proesses are e.g. [20, 21℄.19



The proess is de�ned in the following way. We start with a single anestor (ingeneral they an be many) whih has n o�springs with probability pn where pn arenon-negative numbers and
∞∑

n=0

pn = 1. (3.9)Eah o�spring then has n o�springs itself with the same probabilities pn and so on.For onveniene we add a root r to the Galton-Watson trees by linking a vertex oforder one to the anestor. The proess gives a probability measure on the set of all�nite trees
µ(τ) =

∏

i∈τ\r
pσi−1, where τ ∈

∞⋃

N=0

ΓN . (3.10)We de�ne a generating funtion for the o�spring probabilities
f(z) =

∞∑

n=0

pnz
n. (3.11)Galton-Watson proesses are usually divided into three ategories depending on thesize of the �rst moment of the generating funtion m = f ′(1). It is lear that mrepresents the mean number of o�springs of eah individual. If m > 1 the proessis said to be superritial and the probability that it survives forever is positive. If

m = 1 the proess is said to be ritial and it dies out eventually with probabilityone. If m < 1 the proess is said to be subritial and it dies out eventually withprobability one and muh faster than in the ritial ase.The reason why we are interested in Galton-Watson proesses in this paper isthe following relation.Lemma 3 A simply generated tree of size N is a rooted Galton-Watson proess witho�spring probabilities
pn = ζ0wn+1Z

n−1
0 (3.12)whih is onditioned on the total size of the trees. The Galton-Watson proess anbe either ritial or subritial.Proof: With the pn given in (3.12) we get

∞∑

n=0

pn = ζ0

∞∑

n=0

wn+1Z
n−1
0 = ζ0Z

−1
0 g(Z0) = 1 (3.13)20



by using (3.6). Therefore the pn are Galton-Watson o�spring probabilities. The �rstmoment is
m =

∞∑

n=0

npn = ζ0

∞∑

n=0

nwn+1Z
n−1
0 = ζ0g

′(Z0) = Z0
g′(Z0)

g(Z0)
. (3.14)By di�erentiating (3.6) with respet to ζ and rearranging terms we �nd that

Z(ζ)
g′(Z(ζ))

g(Z(ζ))
= 1 − g(Z(ζ))

Z ′(ζ)
≤ 1 (3.15)and the equality holds for ζ = ζ0 if and only if Z ′(ζ0) = ∞. This shows that theproess is ritial if Z ′(ζ0) = ∞ and subritial otherwise.The measure orresponding to these probabilities when onditioned on trees ofsize N is then

µN(τ) = CN

∏

i∈τ\r
pσi−1 = CNZ−1

0 ζN
0

∏

i∈τ\r
wσ(i) (3.16)where τ ∈ ΓN and CN is a normalization onstant. From (3.3) we see that νN = µNand CN = Z0ζ

−N
0 Z−1

N whih proves the lemma.
�Sine ritial and subritial Galton-Watson proesses are relevant when dealingwith simply generated trees we state here some results about standard propertiesproved e.g. in [20℄. Let 〈·〉µ denote expetation with respet to the measure µ de�nedin (3.10). Let h(τ) denote the maximum graph distane from the root to any vertexof τ , referred to as the height of τ .Lemma 4 For subritial Galton-Watson trees with mean number of o�springs mit holds that

〈|BR|〉µ =
1 − mR+1

1 − m
(3.17)and letting R → ∞ we �nd that the expetation value of the size of trees is �nite

〈|B∞|〉µ =
1

1 − m
. (3.18)

21



Lemma 5 For ritial Galton-Watson trees it holds that
〈|BR|〉µ = R (3.19)and if f ′′(1) < ∞

µ({τ ∈ Γ|h(T ) > R}) =
2

f ′′(1)R
+ O(R−2). (3.20)The ase when f ′′(1) is in�nite in ritial proesses has been studied e.g. in [22℄.There, generating funtions of the form

f(s) = s + (1 − s)1+αL(1 − s) (3.21)are studied where 0 < α ≤ 1 and L is slowly varying. Slowly varying means that
L(λt)

L(t)
→ 1 as t → ∞ (3.22)for all λ > 0. It is shown that

µ({τ ∈ Γ|h(T ) > R})αL(µ({τ ∈ Γ|h(T ) > R})) ≈ 1

αR
(3.23)as R → ∞. The generi behaviour in (3.20) therefore hanges and beomes modeldependent. Here the meaning of f(x) ≈ g(x) as x → ∞ is that

f(x)

g(x)
→ 1 as x → ∞. (3.24)3.3 The generi aseGeneri random trees are de�ned by the ondition Z0 < ρ as was explained above.In this ase it an be shown [23℄ that ZN has the generi behaviour

ZN = CN−3/2ζ−N
0 (1 + O(N−1)) (3.25)where C is a onstant independent of N . This immediately shows that Z ′(ζ) → ∞as ζ → ζ0 and thus generi trees orrespond to a ritial Galton-Watson proessonditioned on the total size N . 22



It is shown in [7℄ using the methods of [18℄ that the probability measure νN forgeneri trees onverges weakly to a probability measure ν on Γ. This means that
∫

Γ

fdνN →
∫

Γ

fdν, as N → ∞ (3.26)for all bounded funtions f on Γ whih are ontinuous in the topology de�ned bythe metri dΓ. Furthermore the measure is shown to be onentrated on trees withone in�nite branh growing from the root with idential and independent ritialGalton-Watson outgrowths distributed by (3.10).
Figure 3.2: A generi tree onsists of one in�nite branh with ritial Galton-Watsonoutgrowths. The balloons denote Galton-Watson trees.The probability of having k left branhes and l right branhes growing from avertex on the in�nite branh is

φ(k, l) = ζ0w2+k+lZ
k+l
0 . (3.27)The outgrowths are free in the sense that there is no ondition on their size. Wean understand this in the following way. As N goes to in�nity the size onstrainton the Galton-Watson proess is ompletely taken are of by the one in�nite branh.The rest of the graph then grows freely like a ritial Galton-Watson proess.As is explained in [18℄, to prove the onvergene of the measure it is su�ient toshow that for any value of R ≥ 0 the following holdsProperty 1

νN ({τ ∈ Γ : |BR(τ)| > K}) → 0 as K → ∞ (3.28)uniformly in N . 23



Property 2 The sequene
(νN ({τ ∈ Γ : BR(τ) = τ0}))N∈N

(3.29)is onvergent for eah �nite tree τ0 ∈ Γ.Both properties are proven for generi trees in Appendix A in [7℄. The �rst propertyshows that the order of verties stays �nite as N → ∞. This seems to fail in someases for non-generi trees as will be disussed later. The seond property is alsotrue in many non-generi ases as will now be proved.Assume that ZN has the asymptoti behaviour
ZN ≈ CN−δζ−N

0 L(N) (3.30)for large N , where C > 0 is a onstant and L is slowly varying. We also assumethat
max

aN≤N ′≤N

(L(N ′)

L(N)

)

< D, for all N (3.31)where D > 0 and 0 < a < 1 are onstants and that L(N) grows or deays slowerthan any power of N . This is for example true for any power of logarithms. In thegeneri ase we always have δ = 3/2 but in non-generi ensembles the existene of δis not always guaranteed. However it seems to be possible to onstrut non-generimodels with any δ ≥ 3/2 as we shall later see.Let τ0 be a �nite graph and let M be the number of verties in τ0 at graphdistane R from the root. We an deompose any tree τ for whih BR(τ) = τ0 intothe tree τ0 and rooted subtrees whose roots are at graph distane R − 1 from theroot of τ0 (see Figure 3.3). Note that the roots of these subtrees are verties of τ0.Then we an write
νN ({τ ∈ Γ : BR(τ) = τ0}) = W (τ0)Z

−1
N

∑

N1+...+NM=N+M−|τ0|

M∏

i=1

ZNi
(3.32)where

W (τ0) =
∏

i∈BR−1(τ0)\r
wσ(i) (3.33)is the ontribution from verties in τ0 at a distane less than R from the root. The

ZNi
in the last produt in (3.32) is the ontribution from the subtree attahed to24



τ 0

Figure 3.3: The tree τ0 in the ase R = 4 and M = 6. The balloons denote allpossible rooted trees attahed to τ0 at a distane R = 4 and their roots are in τ0.vertex i of τ0.Now hoose a positive onstant A. The ontribution to (3.32) from terms forwhih Ni ≥ (N + M − τ0)/M and Nj ≥ A for some pair of indies i 6= j an beestimated from above with
W (τ0)M

2
∑

N1+...+NM=N+M−|τ0|

N1≥(N+M−τ0)/M,N2≥A

Z−1
N

M∏

i=1

ZNi

≤ W (τ0)M
2ζ

M−|τ0|
0

(
NM

N + M − |τ0|

)δ

max
N1

(L(N1)

L(N)

) ∑

N3,...,NM≥1
N2≥A

ZN2ζ
N2
0

M∏

i=3

ZNi
ζNi
0

≤ C(τ0)
∑

N2≥A

ZN2ζ
N2
0 (3.34)where C(τ0) only depends on τ0. Sine Z0 is �nite the last expression goes to zeroas A → ∞. By estimating the remaining ontribution to (3.32) and letting A → ∞it then follows as in [7℄ that

νN({τ ∈ Γ : BR(τ) = τ0}) → MW (τ0)Z
M−1
0 ζ

|τ0|−M
0 (3.35)as N → ∞ whih proves Property 2 for all ensembles whih have a relation like in(3.30). 25



An important observation in these alulations is that when N gets larger allthe mass tends to gather into one subtree attahed to τ0 and the sizes of the othersubtrees are bounded by the onstant A. In general this leaves two possibilities ofhow simply generated trees obeying (3.30) look like in the large N limit. Eitherthe subtree with the large mass beomes an in�nite branh as N goes to in�nity, asalways happens in the generi ase, or the order of some of its verties beomes in�-nite. There is some evidene from numerial alulations and analytial argumentsthat in�nite verties our in a partiular model for non-generi trees [14, 15℄. Thiswill be disussed in more detail later.When the onvergene of the measure has been established in [7℄ it is shown thatthe spetral dimension of the resulting in�nite random graph is ds = 4/3 and theHausdor� dimension is dH = 2. In the proof it is important that the trees haveone in�nite branh with identially and independently distributed ritial Galton-Watson outgrowths with f ′′(1) < ∞, therefore obeying the relation (3.20).3.4 The three phasesIn the non-generi ase Z0 = ρ as was explained above. Sine all models with in�nite
ρ are generi we an take ρ to be �nite when we study non-generi trees. In fatwe an hoose ρ = 1 without loss of generality by rede�ning the branhing weights
wn → wnρ

n−1. This rede�nition does not hange the probability distribution νNsine
∏

i∈τ\r
wσi

→
∏

i∈τ\r
wσi

ρσi−1 = ρN−1
∏

i∈τ\r
wσi

, τ ∈ ΓN (3.36)where we used that ∑i∈τ\r σi = 2N − 1.We start with a set of branhing weights wn whih give ρ = 1 and at this stagethe model an be either generi or non-generi. We �x the values of wn for n ≥ 2but for now we let w1 be a free parameter of the model. De�ne
h(Z) ≡ g(Z)

Z
. (3.37)From (3.6) we see that h(Z) = 1/ζ(Z) for Z ≤ Z0. Di�erentiating h we get

h′(Z) =
g(Z)

Z2

[

Z
g′(Z)

g(Z)
− 1

] (3.38)26



and again
h′′(Z) =

g′′(Z)

Z
− 2

Z
h′(Z). (3.39)The generiity ondition an be interpreted as h having a minimum at Z = Z0 < 1.For any Z0 < 1 we an hoose w1 =

∑∞
n=2(n−2)wnZ

n−1
0 making Z0

g′(Z0)
g(Z0)

= 1. Then
h′′(Z0) = g′′(Z0)/Z0 > 0 whih shows that the minimum is quadrati. Note that
Z0

g′(Z0)
g(Z0)

= m where m is the mean number of o�springs de�ned in (3.14). We anlearly make any model with ρ = 1 generi by hoosing
w1 <

∞∑

n=2

(n − 2)wn ≡ wc (3.40)where wc is a ritial value for w1 whih depends on wn for n ≥ 3. It is interestingto note that the ritial value is independent of w2. Also note that if wc = ∞, i.e. if
g′(z) diverges as z → 1, we always have a generi ensemble.
h(Z) h(Z) h(Z)

ρ =Z 0 ZZZ

a) b) c)

Z 0= ρ = Z 0= ρ =1 1 1Figure 3.4: The three possible senarios. a) Generi, quadrati minimum at Z0.b) Critial, quadrati minimum at Z0 = ρ = 1 if g′′(1) < ∞. ) Subritial,
h′(1) 6= 0. The solid lines are also graphs of the funtion 1/ζ(Z).The next possible senario is that h has a minimum at Z = Z0 = 1. This happenswhen w1 = wc or in other words when m = g′(1)

g(1)
= 1. We see that although this is anon-generi ensemble, the trees are still ritial Galton-Watson trees onditioned onthe total size. They will be referred to as ritial trees. We see that h′′(1) = g′′(1) > 0whih shows that the minimum is quadrati if g′′(1) is �nite.Finally, by hoosing w1 > wc, h has no minimum and m = g′(1)

g(1)
< 1. In this asethe trees are non-generi, subritial Galton-Watson trees onditioned on the total27



size. They will be referred to as subritial trees.To summarize, every model for whih g has a �nite radius of onvergene has atmost three phases. A generi phase when w1 < wc, a ritial phase when w1 = wcand a subritial phase when w1 > wc. If wc = ∞ there is only the generi phase.3.5 A toy modelA simple model whih has the properties in the previous setion is the model
wn = n−β, β ∈ R for n ≥ 2 and w1 > 0 free. It is lear that ρ = 1. This model hasthe advantage that it is possible to make expliit alulations. It has been studiedin [14�16℄ both in the ontext of random trees and "balls in boxes" models.

1w

.

Critical

Generic

Sub−critical

β2 3Figure 3.5: A diagram showing the three possible phases of trees. The ritial lineis determined by the equation w1 = wc.We see right away that the ase β < 2 is always generi sine then g′(z) → ∞ as
z → 1. The ondition w1 = wc gives a relation between w1 and β whih determineswhere the phase transition happens for any β. We all this relation the ritial lineand it is shown in Figure 3.5. Above the ritial line we get subritial trees butbelow it and to the left of it we get generi trees.In [15℄ it is shown by expanding the funtion h around Z = Z0 and inverting theexpansion, that if there exists an exponent δ as in (3.30) it obeys

δ =







3
2

if w1 < wc or if w1 = wc and β ≥ 3
β

β−1
if w1 = wc and β ≤ 3

β if w1 > wc. (3.41)28



The model an give any value of δ ≥ 3/2. We notie that on the ritial line thevalue β = 3 plays a speial role. It orresponds to the values of β, for whih g′′(1)goes from being �nite to being in�nite. We will interpret this in the next setionand disuss generalizations beyond the n−β model.3.6 Critial treesThe ritial value of w1 whih separates generi and subritial trees is de�ned by
w1 = wc. In the toy model in the previous setion the exponent δ for ritialtrees agrees with the exponent for generi trees when g′′(1) is �nite. The ondi-tion g′′(1) < ∞ atually guarantees the generi behaviour (3.20) of ritial Galton-Watson proesses . After the onvergene of the measure has been established in [7℄,this is in fat the only ondition that is used to prove that the value of the spe-tral dimension of generi trees is ds = 4/3. Therefore it is tempting to make thefollowing onjeture.Critial trees for whih g′′(1) is �nite share the properties of generi trees,having spetral dimension ds = 4/3 and Hausdor� dimension dH = 2.For now we will have to settle on the less general result in Theorem 2. First weprove the following lemma.Lemma 6 Consider ritial trees whih obey (3.30), (3.31) and g′′(1) < ∞. Then
δ = 3/2.Proof: As was mentioned in the beginning of Setion 3.4 the ondition g′′(1) < ∞for ritial trees implies that h(Z) has a quadrati minimum at Z = 1. We antherefore do the following expansion

h(Z) − h(1) =
h′′(1)

2
(1 − Z)2 + o(1 − Z)2. (3.42)By inverting this and remembering the de�nition of h we �nd that

Z(ζ) = 1 − g(1)

√

2

g′′(1)
(ζ0 − ζ)1/2 + o(ζ0 − ζ)1/2. (3.43)29



We now use Theorem 5 in hapter XIII.5 in [24℄ (a Tauberian theorem) to �nd that
q
∑

N=1

NZNζN
0 ≈ Cq1/2L(q) (3.44)where C > 0 is a onstant and L is slowly varying. Sine the trees obey (3.30) and(3.31) this shows that δ = 3/2.

�Theorem 2 Consider ritial trees whih obey (3.30) and (3.31) . If
∑

k5/2wk+1 < ∞ the trees share the properties of generi trees, having spetraldimension ds = 4/3 and Hausdor� dimension dH = 2.Proof: To prove this it is enough to verify the onvergene of the measure νN asexplained above. Note that the ondition in the theorem implies that g′′(1) < ∞and therefore the previous lemma shows that δ = 3/2 and that Property 2 is true.All that is left is to prove is Property 1 and for later onveniene we will do it foran arbitrary δ.We show (3.28) by indution on R. The ase R = 1 is trivial so we next onsiderthe ase R = 2. We an make the following estimate
νN({τ ∈ Γ : |B2(τ)| = k + 1}) = Z−1

N wk+1

∑

N1+...+Nk=N−1

k∏

i=1

ZNi

≤ ζ0kwk+1

∑

N1+...+Nk=N−1

N1≥(N−1)/k

ZN1ζ
N1
0

ZNζN
0

k∏

i=2

ZNi
ζNi
0

≤ Ckwk+1

( Nk

N − 1

)δ

max
N1

(L(N1)

L(N)

) ∑

N2,...,Nk≥1

k∏

i=2

ZNi
ζNi
0

≤ C ′k1+δwk+1 (3.45)where C, C ′ > 0 are numbers independent of k and N . In the last step we used
Z0 = 1. Then we �nd

νN({τ ∈ Γ : |B2(τ)| > K}) ≤ C ′
∞∑

k=K

k1+δwk+1. (3.46)30



If this sum is �nite it tends to zero as K → ∞ uniformly in N proving the ase
R = 2.Now assume that (3.28) holds for some R ≥ 2. Sine the set of balls BR(τ) withvolume at most K is �nite for eah �xed K it is enough to show that

νN ({τ ∈ Γ : |BR+1(τ)| > K, BR(τ) = τ0}) → 0 as K → ∞ (3.47)uniformly in N for every �nite tree τ0 of height R. With a slight generalization ofthe arguments in [7℄ we an show that
νN({τ ∈ Γ : |BR+1(τ)| > K, BR(τ) = τ0})

≤ C ′′

( ∞∑

k=1

k1+δwk+1

)M−1



∑

k>(K−|τ0|)/M
k1+δwk+1



 (3.48)where C ′′ > 0 only depends on τ0 and M is the number of verties in τ0 at distane
R from the root. This goes to zero uniformly in N as K → ∞ if the last two sumsare �nite.

�The ase g′′(1) = ∞ for ritial trees is more di�ult to treat. It is not possible toshow the onvergene of the measure with the diret approah used here and in [7℄.If the onvergene ould be established it would be possible to �nd the spetraldimension for some spei� models like (3.21) . This model atually inludes thease wn = n−β, w1 = wc with 2 < β < 3 and L onstant. Then (3.23) beomes
µ({τ ∈ Γ|h(T ) > R}) ≈ R

1
β−2 . (3.49)By assuming the existene of the measure and using this relation, a diret appliationof the methods of [7℄ gives a lower bound on the spetral dimension

ds ≥ 2
β − 1

2β − 3
. (3.50)This lower bound is the same as the laimed exat value of the spetral dimensionin [5, 16℄. It is not possible to �nd an upper bound with the methods of [7℄ sinethey rely on g′′(1) < ∞. 31



3.7 Subritial treesFor now there are no rigorous results on the limiting behaviour of the measure onsubritial trees. In this setion we will however give some arguments for the largesize behaviour of subritial trees whih allow us to ook up a possible limitingmeasure.To begin with we onsider only the model of Setion 3.5. In the relation (3.41)we see that for subritial trees δ = β. In this ase ZNζN
0 behaves exatly like wn.When we try to prove the onvergene of the measure the proof of Property 1 goesseriously wrong sine k1+δ−β = k and the sum of this never onverges. Althoughthis is of ourse no disproof of Property 1 this exat anellation between β and δindiates a di�erent behaviour. It is in fat natural to expet a dramatially di�erentlimiting behaviour beause subritial trees orrespond to subritial Galton-Watsonproesses. This seems to hold even beyond the n−β model. If we for example let

wn = e−
√

n and w1 > wc then by repeated di�erentiation of (3.6) we see that ZNζN
0falls faster than any power of N , and in that way behaves similar to wn .As was explained in Setion 3.3 there are two possible senarios as the tree sizegrows large. Either there emerges exatly one in�nite branh with �nite outgrowthsor one or more verties of in�nite order appear. We will from now on refer to vertiesof in�nite order as traps. If Property 1 is in fat not true in the subritial asewe expet traps to our. It is argued in [14, 15℄ with numerial alulations andanalytial arguments that exatly one trap ours . For large �nite N its size isestimated to be (1−m)N where m = g′(1)

g(1)
< 1 is the mean value of o�springs of thesubritial Galton-Watson proess. We annot prove this but we an hek if thisis onsistent with our piture of subritial trees being size onditioned subritialGalton-Watson trees.First, observe the behaviour of the mean size of unonditioned subritial Galton-Watson trees (3.18) with m. The mean size 〈|B∞|〉µ is always �nite so it is notimpossible to imagine that by onditioning the Galton-Watson proess on very largetrees of �xed size, the limiting distribution would have trees of bounded height. Thiswould indiate the ourrene of a trap. When m is small, 〈|B∞|〉µ is small and sothe trees are rumpled. Therefore it is natural to expet the trap size to inrease aspredited. When m → 1 the mean size goes to in�nity and the trees beome longerand are strethed towards the ritial ase. The trap size would then go to zero aspredited. 32



Seondly, we an prove that there an our at most one trap. We an estimatethe probability that there exist two verties, i and j suh that σ(i) ≥ ǫiN and
σ(j) ≥ ǫjN , ǫi, ǫj > 0. We draw the trees as in Figure 3.6 where we assume thatthe order of the vertex j is p. Eah balloon N1, . . . , Np−1 along with the link to j isa tree of size Nk + 1 with root j. The balloon labelled with Np along with the linkto j is a tree of size Np + 1 with root r and one marked vertex j of order one. Thepartition funtion for the balloon with the marked vertex is ∂ZNp+1/∂w1 beausewe an hoose the marked vertex in e(τ) ways where e(τ) is the number of vertiesin τ of order one (exluding the root). It is easy to onvine oneself that

w1
∂ZN+1

∂w1
≤ NZN+1. (3.51)The partition funtion for eah of the other balloons is ZNk+1. Finally the weightof the vertex j is wp. We get the following estimate by summing over all theseon�gurations

νN ({τ ∈ ΓN |∃i, j ∈ τ suh that σ(j) ≥ ǫjN and σ(i) ≥ ǫiN})

≤ Z−1
N

∑

N≥p≥ǫjN

wp

[

(p − 1)
∑

N1+...+Np=N−p
N1≥ǫiN

∂ZNp+1

∂w1

p−1
∏

k=1

ZNk+1 +
∑

N1+...+Np=N−p
Np≥ǫiN

∂ZNp+1

∂w1

p−1
∏

k=1

ZNk+1

]

≤ Cǫj
N Z−1

N wNζ−N
0

︸ ︷︷ ︸

<onst.

∑

N≥p≥ǫjN

∑

N1+...+Np=N−p
N1≥ǫiN

(Np + 1)

p
∏

k=1

ZNk+1ζ
Nk+1
0

≤ C ′
ǫj
N

∑

N≥p≥ǫjN

∑

N1≥ǫiN

[N − 1 − N1

p − 1

]

ZN1+1ζ
N1+1
0

︸ ︷︷ ︸

∼N−δ
1

∑

N2+...+Np=N−p−N1

p
∏

k=2

ZNk+1ζ
Nk+1
0

≤ Cǫi,ǫj
N1−δ

∑

N≥p≥ǫjN

( ∞∑

n=0

Zn+1ζ
n+1
0

)p−1

≤ C ′
ǫi,ǫj

N2−δ.Here, C(·) and C ′
(·) are positive numbers whih only depend on their subsripts.Sine δ > 2 the last expression goes to zero as N → ∞. For onveniene we left theslowly varying funtion out of these alulation but it enters as in (3.45) and an beestimated as before.
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3.7.1 A andidate for a limiting measureFrom the above arguments we are ready to make an eduated guess on what thelimiting measure on subritial trees might look like. We assume that exatly onetrap emerges when the size goes to in�nity. We also assume that the trap takesare of the size onstraint on the onditioned Galton-Watson proess just as thein�nite branh did in the generi ase. Therefore the rest of the graph grows like anunonditioned, subritial Galton-Watson proess.
pN  

p−1N

N N

N

1 2

3

jr

Figure 3.6: A graph with a vertex j of large order p and another vertex of largeorder inside one of the balloons.By looking at Figure 3.6 we an imagine the vertex j to be the trap, the balloonslabelled with N1, . . . , Np−1 to be subritial Galton-Watson trees with root j andthe balloon labelled with Np to be a subritial Galton-Watson tree with root rand one marked vertex j (the trap) of order one. We assume that eah balloongrows independent of the others. We know the probability measure for the balloonswith unmarked verties, it is simply µ de�ned in (3.10) and (3.12). To hek foronsisteny, note that the expetation value of the size of eah of the balloons, when
N is large, is approximately 〈|B∞|〉µ = 1/(1 − m) and the expeted number ofballoons is (1−m)N (the order of j). These two numbers multiplied together, givethe total size N whih shows onsisteny.We denote the probability measure for rooted Galton-Watson trees with one trapwith µ∗. It an be onstruted from µ by notiing that the probability for eah treeto our is the same as before

µ∗(τ) = Dζ
|τ |−1
0

∏

i∈τ\{r,j}
wσ(i) (3.52)but we exlude the weight of the trap and there is a di�erent normalization onstant34



D. To �nd the normalization onstant we note that for eah unmarked tree τ weget e(τ) marked trees where e(τ) denotes the number of verties in τ of order one(exluding the root). Therefore
1

D
=

∞∑

N=1

ζN−1
0

∑

τ∈ΓN

e(τ)
∏

i∈τ\{r,j}
wσ(i) =

1

ζ0

∞∑

N=1

∂ZN

∂w1
ζN
0 =

1

1 − m
(3.53)where we found the last step by di�erentiating (3.6) with respet to w1 and using

Z0 = 1. Therefore D = 1 − m.We an look at the measure µ∗ in the following way. Eah tree for whih theshortest path between the root and the trap equals h an be drawn as in Figure 3.7.
sh−1s2s1 *

hFigure 3.7: A possible desription of in�nite, subritial trees. The tree has thegraph Mh as a base with the probability p(h) given in (3.54) and it has �nite sub-ritial Galton-Watson outgrowths. The trap is denoted with an asterisk.We all the linear subgraph whih starts at the root and ends at the trap Mh.We denote the vertex with graph distane i from the root on the subgraph Mh with
si. Eah balloon attahed to one of the verties si, grows independently aordingto µ. The probability distribution of the length h is

p(h) = D
(∑

k,l≥0

ζ0w2+k+l

)h−1

= (1 − m)g(1)−h+1
( ∞∑

n=0

(n + 1)w2+n

)h−1

= (1 − m)g(1)−h+1g′(1)h−1 = (1 − m)mh−1. (3.54)Note that the probabilities p(h) sum to one. Sine m < 1, p(h) deays exponentiallywhih means that the probability of the trap being lose to the root is relativelyhigh. The onditional probability of having k left branhes and l right branhesattahed to a vertex si given that Mh is a subgraph of the tree is
φ(k, l) =

1

m
ζ0w2+k+l (3.55)35



and is idential for eah vertex.To summarize, a possible desription of in�nite subritial trees is the following.There ours exatly one trap and its distane from the root, h, is distributed by
p(h). Subritial Galton-Watson trees grow from the subgraph Mh aording to φand µ. The trap has in�nitely many subritial Galton-Watson trees growing fromit distributed by µ. We will not worry about the outgrowths from the trap sinea random walk whih hits the trap will never return bak to the root and ballsentered on the root with radius greater than the distane to the trap have in�nitevolume. This means that the trap outgrowths neither a�et the spetral dimensionnor the Hausdor� dimension.We would like to say something about the spetral and Hausdor� dimension ofthe above random tree. First we onsider some simple random tree models whihare related to the subritial trees.3.7.2 Examples of random trees with one trapConsider the graph Ml mentioned in the previous setion. It looks like Nl but it

*
lFigure 3.8: The graph Ml with a trap denoted with an asterisk.has a trap at the opposite end of the root. If a random walk hits the trap we saythat it returns to the root with probability zero. For a �xed graph Ml it is thereforeobvious that the spetral dimension is in�nite beause the random walk eventuallygoes to the trap with probability one. If we de�ne the trap to have in�nite volumethe graph also has an in�nite Hausdor� dimension. This seems like the end of thestory but it turns out that we an get a �nite spetral dimension by onsideringa random graph where we put a probability distribution on the length l and makesure that the trap has a high probability of being far from the root. The Hausdor�dimension is however always in�nite. 36



To �nd the �rst return generating funtion of Ml we use the reurrene relationin (2.12) replaing Nl with Ml but with a di�erent boundary ondition PM1(x) = 0.To solve this we use the methods of Appendix A in [6℄. The result is very similar tothe result for Nl in (2.13)
PMl

(x) = 1 −
√

x
(1 +

√
x)l + (1 −√

x)l

(1 +
√

x)l − (1 −√
x)l

. (3.56)The square root in this formula is atually deeiving beause PMl
is in fat a rationalfuntion for all l. By expanding the brakets using the binomial formula we an writethe orresponding return probability generating funtion as

QMl
(x) =

Rl(x)

Sl(x)
(3.57)where Rl and Sl are the polynomials

Rl(x) =

[ l−1
2 ]
∑

i=0

(
l

2i + 1

)

xi and Sl(x) =

[ l
2 ]∑

i=0

(
l

2i

)

xi. (3.58)From these expressions one an see that Q
(n)
Ml

(0) is a polynomial in l of degree 2n+1.In partiular Q
(n)
Ml

(0) is �nite for all l showing that the spetral dimension is indeedin�nite for a �xed l. Now, pik a probability distribution pl = cl−a on the set
{Ml|l ≥ 1} and de�ne a return generating funtion for the orresponding randomgraph

Q̄(x) =

∞∑

l=1

plQMl
(x). (3.59)The onvergene or divergene of this sum or its derivatives an now be determinedby inserting x = 0 and �nding the highest exponent of l. From that we an onludethat if the graph has a spetral dimension ds it obeys a − 2 ≤ ds ≤ a + 2. In thease when 1 < a ≤ 2 it is in fat easy to show by omparing the sum (3.59) withan integral that ds = a. This relation probably holds for higher values of a but itbeomes messier to on�rm sine it involves taking higher and higher derivatives of

QMl
.These arguments show that we an get a �nite spetral dimension for the randomgraph in whatever range we like. The bounds on ds are like we expeted. Bydereasing a the probability of having the trap lose to the root dereases and the37



spetral dimension is lowered. We note that if pl dereases faster than any power of
l then the spetral dimension is always in�nite. In the subritial random trees thisprobability dereases exponentially whih implies that they might have an in�nitespetral dimension. But the graph Ml has no branhes and it turns out that itapproximates the subritial trees poorly.We look at another model of a tree where we attah q single links to eah vertexof Ml as is shown in Figure 3.9. We all the resulting graph Ml;q. Let's all thegraph whih is made of the bundle of q single links Fq and let the vertex of order qbe the root. The �rst return generating funtion for Fq is

*
q q q

lFigure 3.9: The graph Ml;q made by attahing a graph Fq to eah vertex of Mlexept the root.
PFq(x) = 1 − x. (3.60)We an use the methods of Setion 2.2 to �nd the �rst return generating funtionfor Ml;q. The funtion KG1,G2 in (2.24) is simply

KMl;q,Fq(x; ω) =
( 2

2 + qx

)|ω|−1 (3.61)so the �rst return generating funtion beomes
PMl;q

(x) = (1 +
q

2
x)PMl

(xq(x)) (3.62)where we de�ned
xq(x) =

q2

4
x2 + (1 + q)x

(1 + q
2
x)2

. (3.63)We see that xq(0) = 0. Repeated di�erentiation of xq(x) shows that x
(n)
q (0) is apolynomial in q of degree n. Therefore, repeated di�erentiation of QMl;q
(x) showsthat Q

(n)
Ml;q

(0) is a polynomial in l of degree 2n + 1 and in q of degree n. For any38



�xed graph of this kind the spetral dimension is therefore in�nite.Now let's make both q and l random aording to some distributions rq and plrespetively. Sine
Q

(n)
Ml;q

(0) = Anl
2n+1qn + lower powers of l and q An 6= 0 onstant (3.64)we an learly make any derivative of the average of QMl;q

(x) diverge as x → 0 bytuning the probabilities. This gives a �nite spetral dimension whih depends onboth distributions. What is more interesting is that for any pl we an make anyderivative diverge with a suitable hoie of rq. This means that even though pldrops exponentially the branhes attahed to Ml an slow the random walker downso that it has little probability of meeting the trap whih results in a �nite spetraldimension. This e�et might give us a �nite spetral dimension of subritial trees.By attahing graphs more ompliated than Fq to Ml we an slow the randomwalker even further down. For example, onsider a rooted tree whih has a root oforder one and a single vertex of order q2. Attah q1 opies of it to every vertex of
Ml exept the root. Then with the same analysis as above we �nd that
Q

(n)
Ml;q1q2

(0) = Bnl
2n+1qn

1 qn
2 + lower powers of l and q Bn 6= 0 onstant (3.65)where we have denoted the resulting graph with Ml;q1q2 . If we distribute q1 and q2independently with the same probability distribution we have a very similar situationas in (3.64). However, if we for example put q1 = q2 ≡ q and put the probabilitydistribution on q we make the resulting random graph less transient.3.7.3 Dimensions of the subritial limiting measureTo onlude we would like to say something about the spetral and Hausdor� di-mension of the proposed subritial random tree. First of all we an right awaydedue that the Hausdor� dimension is dH = ∞ sine there is a nonzero probabilityof having the trap at a �nite distane from the root.The spetral dimension ould however be �nite even though p(h) drops expo-nentially, sine the branhes attahed to Mh ould serve to slow the random walkerdown on its way to the trap. This needs to be arefully heked.Let P̄ ∗(x) and Q̄∗(x) be the �rst return and return probability generating fun-tions averaged with respet to the measure µ∗. We onstrut graphs Mh;q like in39



the previous setion and ompare their return probability generating funtion to
P̄ ∗(x) and Q̄∗(x) using the monotoniity lemma from Chapter 2. First onsider asubritial random tree. The probability that a vertex has at least q branhes is

a(q) =
∑

k+l≥q

φ(k, l). (3.66)The probability that the number of branhes of eah vertex of Mh is at least q isthen
bh(q) = a(q)h−1. (3.67)Then the probability that there are exatly q branhes at some vertex of Mh and atleast q branhes at all the other verties is

ch(q) = bh(q) − bh(q + 1). (3.68)Let Γh be the set of trees whih have Mh as a subgraph and let Γh;q be the set oftrees whih have Mh;q as a subgraph and at least one vertex on Mh of order q. Wethen de�ne
Q̄h(x) =

∫

τ∈Γh

Qτ (x)dµ∗(τ |Γh) (3.69)as the return probability generating funtion averaged over the branhes of Mh and
Q̄h;q(x) =

∫

τ∈Γh;q

Qτ (x)dµ∗(τ |Γh;q) (3.70)as the return probability generating funtion averaged over the branhes of Mh;q.We de�ne P̄h(x) and P̄h;q(x) in the same way. We an then write
Q̄∗(x) =

∞∑

h=1

p(h)Q̄h(x) =

∞∑

q=0

∞∑

h=1

p(h)ch(q)Q̄h;q(x) (3.71)and
P̄ ∗(x) =

∞∑

h=1

p(h)P̄h(x) =

∞∑

q=0

∞∑

h=1

p(h)ch(q)P̄h;q(x). (3.72)We start by �nding a lower bound on the spetral dimension. Let Q̄(x) be the sameas in (3.59) with ph = p(h) from (3.54). By the monotoniity lemma of Chapter 2we have Q̄h(x) ≤ QMh
(x) for all h. Therefore, by (3.71) Q̄∗(x) ≤ Q̄(x). Now Q̄(0)40



is �nite beause of the hoie of ph and therefore Q̄∗(0) is �nite and so the randomtree is transient and ds ≥ 2. This bound is model independent and it is not lear ifit is optimal.Now we would like to �nd an upper bound. Sine we have just shown thatsubritial random trees are transient it is lear that we have to ompare derivativesof return generating funtions. We therefore use the methods of Setion 2.2.1. De�ne
H̄h;q(x; n) =

∫

τ∈Γh;q

Hτ,Mh;q
(x; n)dµ∗(τ |Γh;q) (3.73)where the integrand has the same de�nition as in Setion 2.2.1 and n is hosen suhthat (−1)n−1P̄ ∗ (n−1)(0) < ∞. An example of suh an n is n = 1 but we will makethe hoie more optimal later. With the same methods as in (2.27) we get

(−1)nH̄ ′
h;q(x; n) ≤ (−1)nP̄

(n)
h;q (x). (3.74)We have (−1)(n−1)H̄h;q(x; n) ≤ (−1)(n−1)P

(n−1)
Mh;q

(x) with equality in x = 0. Thereforeby using the generalized mean value theorem as before, we �nd that for every
x ∈]0, 1[ there exists a ξ ∈]0, x[ suh that

(−1)nP̄
(n)
h;q (ξ) ≥ (−1)nP

(n)
Mh;q

(ξ). (3.75)By summing over h and q we get
(−1)nP̄ ∗ (n)(ξ) ≥ (−1)n

∞∑

q=0

∞∑

h=1

p(h)ch(q)P
(n)
Mh;q

(ξ). (3.76)We would like to �nd if and how this diverges when ξ → 0 to get an upper boundon the spetral dimension. We start by throwing away every term of the sum over
h exept h = 2. From (3.62) and (3.63) we �nd

PM2,q(x) =
1 − x

2 + qx
(3.77)and it is easily proved by indution that

P
(n)
M2,q

(x) = (−1)nn!
qn−1(q + 2)

(2 + qx)n+1
, for n ≥ 1. (3.78)41



Therefore
(−1)nP̄ ∗ (n)(ξ) ≥ (1 − m)ζ0n!

∞∑

q=0

wq+1q
n−1(q + 1)(q + 2)

(2 + qξ)n+1
(3.79)

= (1 − m)ζ0n!

∞∑

q=0

qn−1(q + 1)−β+1(q + 2)

(2 + qξ)n+1
(3.80)Note that for every ξ > 0 this sum onverges but if we put ξ = 0 it diverges giventhat β ≤ n + 2. We are now ready to make an optimal hoie of n. Choose n suhthat n + 1 < β ≤ n + 2. Consider �rst the possibility that (−1)n−1P̄ ∗ (n−1)(0) = ∞.In this ase ds ≤ 2n < 2(β − 1). If however (−1)n−1P̄ ∗ (n−1)(0) < ∞ the hoie of nfull�lls the ondition explained below (3.73) and we an therefore use the estimatein (3.80). We then ompare the last sum in (3.80) to an integral and get

∞∑

q=0

qn−1(q + 1)−β+1(q + 2)

(2 + qξ)n+1
≈ C

∫ ∞

1

tn+1−β

(2 + tξ)n+1
dt, as ξ → 0

= Cξβ−n−2

∫ ∞

ξ

yn+1−β

(2 + y)n+1
dy (3.81)where C > 0 is a onstant. If β < n + 2 the last integral is onvergent even when

ξ → 0. In this ase
(−1)nP̄ ∗ (n)(ξ) ≥ C ′ξβ−n−2 (3.82)where C ′ > 0 is independent of ξ. Then we see from (2.11) that the spetraldimension has an upper bound ds ≤ 2(β − 1). If however β = n + 2 the singularbehaviour in front of the integral disappears and we have to perform the integral.We �nd that it diverges like a logarithm as ξ → 0 and we get the same upper boundas before.We have therefore shown that the spetral dimension of the subritial trees isin the interval 2 ≤ ds ≤ 2(β−1) for all β > 2. It is proposed in [5℄ that the spetraldimension of subritial trees equals 2 whih is learly in this range.In all of the above disussion we have worked with wn = n−β, w1 > wc. If weassume that the measure only depends on the trees being subritial then we ouldfor example take wn ∼ n−β, w1 > wc. Then (3.79) shows that we get the samebounds on the spetral dimension as before.
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4Conlusions
In Chapter 2 we found inequalities between �rst return generating funtions of bun-dles strutures, generalizing the monotoniity lemmas in [6, 7℄. These monotoniityresults allowed us to investigate how the spetral dimension of a graph hanges whenreurrent graphs are attahed to it. It turns out that reurrent graphs stay reurrentand their spetral dimension inreases but transient graphs stay transient and theirspetral dimension dereases. This gives bounds on the spetral dimension of ran-dom brushes and in the same way it is possible to deal with general random bundledstrutures with a �xed base and random �bers. Similar methods were used to �ndbounds on the spetral dimension of the onjetured limiting measure on subritialtrees. This ase was slightly di�erent sine the transient base Mh was also random.The methods used here to study the spetral dimension only work for bundledstrutures for whih the di�usion properties of the base and the �bers are known. Itwould be interesting to understand the properties of the spetral dimension of moregeneral graphs.In Chapter 3, non-generi trees were studied. They were divided into two ate-gories, ritial trees and subritial trees, depending on weather they are related toritial or subritial Galton-Watson proesses. It was shown that in any model forwhih the generating funtion of the branhing weights, g, has a �nite radius of on-vergene the trees an have three phases: generi, ritial and subritial dependingon the weight of the leaves w1.A onjeture was made, that all ritial trees for whih g′′(1) < ∞ share theproperties of generi trees. A less general statement was proved and some possible43



results in the ase g′′(1) = ∞ were disussed. We might need fanier methods to dealwith ritial trees, than the straight forward estimates used to prove Properties 1 and2. One idea is to use saddle point methods to approximate the sums enountered, inthe large N limit. However, saddle point methods usually rely on onditions similarto the generiity ondition in the tree model.A onjeture was made on a limiting measure for subritial trees using argu-ments from [14�16℄. The measure is onentrated on trees with exatly one trap within�nitely many �nite subritial Galton-Watson outgrowths, one of them ontainingthe root. One idea to prove the existene of this measure ould be to show that the
νN probability that a tree has height greater than h goes to zero, uniformly in N as
h → ∞. The measure was shown to have Hausdor� dimension dH = ∞ and spetraldimension ds ≥ 2 with a model dependent upper bound. The measure is interestingin itself, even though it would turn out to be the wrong limiting measure, sine itis an example of a random graph with a trap whih an still have a �nite spetraldimension.
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