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Abstract

In the first part of the thesis we prove inequalities between generating functions for
return probabilities of random walks on bundled structures. Bundled structures are
constructed by attaching graphs called fibers to a single graph called base, by identi-
fying exactly one vertex of each fiber to exactly one vertex of the base. We apply the
inequalities to a class of random bundled structures, called random brushes, where
the base is Z? viewed as a graph and the fibers are linear graphs of random lengths.
Thereby we find that for d = 2 all random brushes have spectral dimension d; = 2.
Fordszehaveg§d8§3andf0rd24wehave3§d5§d.

In the second part we study non-generic random trees. They can be either critical
or subcritical. We show that critical trees resemble generic trees in some cases and
argue that in other cases their critical exponents can be model dependent. We con-
jecture that in the subcritical case there is a limiting probability measure supported
on trees with exactly one vertex of infinite order. We show that the corresponding
random trees have Hausdorff dimension dy = oo and spectral dimension dg > 2

with a model dependent upper bound.
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Agrip (in lcelandic)

I fyrri hluta ritgerdar sénnum vid 6jofnur milli framleidandi falla fyrir endurkomu-
likur slembiganga 4 akvednum tegundum neta sem vid kollum ttvaxtanet. Pau eru
biin pannig til ad byrjad er med net sem kallast grunnnet og & pad eru hengd net
sem kallast ttvextir, med pvi a0 samsama nékvsemlega einn hnitpunkt 1 hverjum
Gtvexti vid nakvaemlega einn hnatpunkt & grunnnetinu. Ojéfnunum er beitt & sér-
stok tvaxtanet sem kallast slembiburstar par sem grunnnetid er Z¢ og atvextirnir
eru linuleg net af handaho6fskenndri lengd. Med bvi er synt ad { tilfellinu d = 2 hafa
allir slembiburstar litrofsviddina dy = 2. Pegar d = 3 gildir g < ds < 3 og begar
d >4 gildir 3 < d, < d.

I sidari hlutanum skodum vid sérstaed tré en pau skiptast i kritisk og undirkritisk
tré. Vio synum ad i sumum tilfellum likjast kritisk tré almennum trjam og faerum
rok fyrir pvi ad i 60rum tilfellum geti pau verid hao likani. Vid getum okkur til um
markgildi likindamals & undirkritisk tré par sem tré med nakvaemlega einn hniit-
punkt af 6endanlegu stigi fast med likunum einn. Vid sénnum ad slik slembitré hafa

Hausdorftvidd dy = oo og litrofsvidd dy > 2 med efri mork sem hao eru likani.
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Introduction

The generic structure of random geometrical objects is of interest in many branches
of physics ranging from condensed matter physics to quantum gravity, see e.g. |1| and
[2]. An interesting problem is to define and study dimensions of random geometries.
There are many possible definitions of dimensions which agree on the lattice Z?
viewed as a graph and on smooth manifolds, but they can differ on general graphs
and random geometries. One way to define a notion of dimension is to study random
walk or diffusion on the geometry. The spectral dimension is defined to be d if the
probability that a random walker returns to its starting point, averaged over the
random geometries, behaves as t=%/2 for large number of steps ¢. It is equivalently
defined if the averaged heat kernel at coinciding points viewed as a function of time
has this behavior at large time ¢. The spectral dimension was first introduced by
Alexander and Orbach in [3].

The spectral dimension has been studied analytically for certain classes of ran-
dom trees in [4-7|. It is convenient to study random walk on trees since trees have
no loops and therefore a general walk can be cut into separate walks on smaller
trees. This gives recurrence relations which make explicit calculations easier. In [§]
the spectral dimension of so called bundled structures is studied. They consist of
a single graph called base and a collection of graphs called fibers. The fibers are
attached to the base by identifying exactly one vertex of each fiber to a vertex of
the base. A random walk can be separated into walks on the base and walks on the
fibers in the same way as for trees. Diffusion properties of the whole graph can then

be deduced from diffusion properties of the base and the fibers.



When graphs can not be cut into pieces like the trees and the bundled structures
it becomes more difficult to do analytical calculations. This is for example the case
for triangulations in quantum gravity. The spectral dimension of triangulations has
been studied numerically in recent years in [9-13].

Another notion of a dimension comes from looking at the growth of the volume
of a ball of size R, denoted B(R), averaged over the random geometry, as R grows
large. In R? for example, we know that the volume of a ball of radius R grows as
R The Hausdorff dimension is defined to be dy if (B(R)) ~ R as R — oo
where (-) denotes average over the random geometry. The Hausdorff and spectral
dimension do not agree in general but it is not well understood which properties of
graphs make them differ.

In Chapter 2 we study the spectral dimension of so called random brushes. They
are bundled structures with a base Z¢ viewed as a graph and the fibers are linear
graphs of random lengths. This is a generalization of combs studied in [6] where
the base was Z!. We prove inequalities between generating functions for first return
probabilities on bundled structures which allow us to investigate properties of the
spectral dimension and to find bounds on the spectral dimension of random brushes.

In Chapter 3 we study non-generic trees which are a special type of simply
generated trees. Simply generated trees are random trees of a fixed size where
each tree is given a weight which depends only on the order of its vertices. Simply
generated trees correspond to critical or subcritical Galton-Watson processes which
are conditioned on the total progeny. In [7] generic trees are studied and it is shown
that their probability measure, when the size goes to infinity, is concentrated on
trees with exactly one infinite branch with finite critical Galton-Watson outgrowths.
Their spectral dimension is shown to be dy = 4/3. We will generalize this partially
to certain kind of non-generic trees which still correspond to critical Galton-Watson
processes. We then conjecture that there is a limiting measure on non-generic trees
which correspond to subcritical Galton-Watson processes using arguments from 14—
16]. The trees are characterized by having exactly one vertex of infinite order with
subcritical Galton-Watson outgrowths. We find that their Hausdorff dimension is
dy = oo and that their spectral dimension obeys d, > 2 with a model dependent

upper bound.



Spectral dimension of random

brushes

In |6] the spectral dimension of various ensembles of random combs was calculated.
In this part we generalize the monotonicity results of |6] which allows us to find

bounds on the spectral dimensions of graphs which we call brushes and define below.

A graph is a set of vertices linked together by a set of edges. In this section
we only consider graphs which are locally finite, i.e. each vertex is linked to only
finitely many other vertices, and connected meaning that any vertex can be reached
from another vertex by following edges. For convenience we single out one vertex
and call it the root. A simple random walk on a graph G starts at the root and
travels to adjacent vertices with equal probability in discrete timesteps. Let pg(t)
be the probability that a simple random walk on G is back at the root after ¢ steps.
If

pa(t) ~ ="/ (2.1)

as t — oo then we say that dg is the spectral dimension of the graph G. Here the
meaning of f(x) ~ z® as x — 0 is that for any € > 0 there exist positive constants

c1 and ¢y, which may depend on ¢, such that
1?7t < f(x) < cor™ € (2.2)

for  small enough.

Some graphs have the property that every random walk beginning and ending



at the root has an even number of steps. Then we have to replace pg(t) with pe(2t)

in the above definition. In particular this is the case for brushes and trees.

The existence of ds is not guaranteed for individual graphs but its ensemble
average can be shown to be well defined in many cases [6,7]. In the case of locally
finite and connected graphs the spectral dimension is independent of the starting
site of the random walk. To see this we let ¢ be any vertex other than the root.
We choose some path between r and ¢ which has some length 7. Let py and p’» be
the probabilities that a random walk follows this path from 7 to ¢ and from 7 to r
respectively. Let pg;(t) be the probability that a random walk starting at ¢ returns

to ¢ at time ¢t. Then

pa(t +2T) > prpei(Hpr > prpa(t — 2T) (p7)*. (23)

This shows that pg;(t) ~ pa(t) as t — oo.

Let us view Z% as a graph with j, k € Z? neighbours if their distance is 1 and
let the origin of Z¢ be the root. The probability of a random walk returning to the
root on Z¢ after t steps has the property that

pra(20)tY? — C(d) (2.4)

as t — oo where C'(d) only depends on d. Therefore the spectral dimension of Z? is
d.

Let N; be a linear chain of length /, i.e. the graph obtained be connecting nearest
neighbours in {0, 1,...,¢} with a link. Let 0 be the root of N;. Similarly, let N
be the infinite linear chain with root at 0. A d-brush is a graph constructed by
attaching one of the graphs N;, [ € Ny U {oo}, to each vertex of Z¢ by identifying
the root of N, with a vertex in Z¢, | = 0 corresponding to the empty chain. In a

brush B we will refer to Z% as the base and the linear chains as bristles.

A random brush is defined by letting the length of the bristles be identically
and independently distributed by a probability measure on Ny U {occ}. The case
d =1 corresponds to the combs studied in [6] which were shown to have a spectral

dimension in the interval [1, 3]. We will show that the spectral dimensions of random
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brushes satisfy

| W

1< d, <3, df d=1,
d, =2, if d=2,
gg d, <3, if d=3,
3< d, <d, it d>4 (2.5)

In the next section we define the generating functions we use to analyze the
spectral dimension. We then establish a generalized monotonicity lemma which will

directly imply the stated bounds on d;.

2.1 Generating functions

Consider a locally finite and connected graph G. Let pl(t) be the probability that
a random walk is at the root at time ¢ the first time after t = 0 (p5(0) = 0). We

define the return generating function
Qal2) = pal)?! (2.6)
t=0
and the first return generating function

Po(z) = 3 ()" (2.7)

By decomposing a return to the root into first return, second return etc. we find

that the return generating function can be written as

Qal(z) = 3 Pa(2) = ﬁb() (2.8)

where the exponent n in the sum counts the contribution from the n-th return and
the geometric sum is calculated in the second step.

The function Pg(z) is analytic in the unit disc and |P(2)| < 1 for |z| < 1. If
Pg(z) — 1 as z — 1 then Qg(z) clearly diverges in which case the random walk

is recurrent and returns to the root eventually with probability one. If Pg(z) /4 1

5



as z — 1 then the random walk is transient and returns to the root eventually
with probability less than one. If G has a spectral dimension d, then by integral

comparison we see that

T P T

(1 — 2)%/271=" otherwise

where n is the smallest nonnegative integer for which Qg)(z) diverges as z — 1.

When the generating functions are even functions of z it is convenient to intro-
duce a new variable x through
P=1-x (2.10)

where = € [0,1]. This is always the case for graphs which have the property that
every random walk beginning and ending at the root has an even number of steps.
We will denote the generating functions in x with the same symbol as the generating
functions in z which hopefully causes no confusion. In the same way as above we

see that if G has a spectral dimension d, then

1 itn=d,/2-1
(n) s
T) ~ 2.11
¢ (@) { (—1)nx%/2=1="  otherwise (2.11)

where n is the smallest nonnegative integer for which QgL)(x) diverges as x — 0.

In some cases it is possible to find a nice formula for the generating functions.
Take for example the linear graph N;. By decomposing a first return random walk
on N; into a first step, then arbitrary many first returns to the next neighbour of the
root and finally a last step back to the root we get the following recurrence relation

for the first return probability generating functions of N,

Lo [>1. (2.12)

Pra(r) = 2- P(x) >

with boundary condition Pj(z) = 1 — z. This is solved in |6] for finite and infinite [
giving
(14 3~ (1= V5

O = =V Ve

(2.13)

and

Po(z)=1—x. (2.14)

6



respectively. This shows that the graphs are recurrent and for every finite [ the

spectral dimension is zero but for the infinite half line the spectral dimension is one.

2.1.1 Random brushes

Let p be a probability measure on NgU {oo}. Let B be the set of all d-brushes. We
define a probability measure 7 on B? by letting the measure of the set of d-brushes
Q) which have bristles at ny, no, ..., ni, € Z¢ of length ¢y, 45, ..., ¢; be

m(Q) = [T @) (2.15)

This formula defines the measure 7 uniquely. The set B¢ together with 7 is a random

brush. We define the averaged generating functions

P(x) = (Pp(r))x (2.16)

and

Q(x) = (Qp(x))x (2.17)

where (), denotes expectation with respect to 7. We say that a random brush has
the spectral dimension d, if Q(z) obeys the relation (2.11).

2.2 A generalized monotonicity lemma

In [6] it was shown that the first return generating function P(x) is a decreasing
function of the length of the teeth attached to the base. A similar result was obtained
in |7] for trees showing that P(z) decreases when branches are added to a tree. In
this section we prove similar results for more general graphs. Lemma 1 deals with
recurrent bases and Lemma 2 deals with transient bases.

Let G; and G5 be rooted graphs. Assume that G; can be constructed from Go
by attaching rooted graphs F'(i) by their roots to sites i # r of G5. We call the
graph G4 a bundled structure with base G9 and fibers F'(i). Let the roots of G and
G be the same vertex (regarding Go as a subgraph of Gy).



Lemma 1

Fa,(2) < FPoy(2) (2.18)

with equality if and only if all the F(i)’s are recurrent and z = 1.

G1

Figure 2.1: An example of a bundled structure G; constructed from G, and the
F(i)’s.

Proof: We can write Pg,(z) as the sum over random walks w which start and
end at the root without intermediate visits to the root. This condition is denoted
'w: FR on G5’ where FR stands for ’first return’. Each walk has a weight which is

the product of one over the order of vertices visited by the walk

|w|—1

We,(w) = [ (0c.(w)™ (2.19)

t=0

and each step of a walk has a factor z associated with it so

Pe,(2)= Y We,(w)z" (2.20)



where o¢,(w;) is the order of the vertex w; on G2 where the walk w is located at
time ¢ and |w| is the number of steps in w.

Now consider a random walk w’ on G which starts at the root. Let w be the
subwalk of w’ which only travels on G5. If we look at the walk w at time ¢ and
location w; then w can be a subwalk of many different walks w’ corresponding to all
possible visits into the graph F'(w;) before returning back to the walk on Gs. The

weight of these visits is

i (MPFM (2 ))n - <0F(W)(jt) (2.21)

n—0 aGl( ) WPF(Wt)(Z)>

where n counts the number of visits and the factor in front of Pp,,)(2) changes the
order of the root of F'(w;) to o¢, (wi) = 0, (wi) + Tp,)(wi). The weight of the first
step back into Gy after these visits to F'(wy) is

1

oG, (wt>

z. (2.22)

Now replace the original weight og,(w;)™'2 of w at each point w; # wy by the
product of the factors (2.21) and (2.22). This newly weighted w then accounts for

every random walk on G; which has w as a subwalk on G5. Thus we can write

|w|—1
z
PG (Z) = oG u} z
1 w: an Ga 2 (o) H <0'02 (wy) + O'F(wt)(Wt>(1 — Pry (z)))
= > Koo W, )2 (2.23)
w: FR on G2

where in the last step we defined

|w]—1
W) = UGz(wt)
Kowe.(z) = |1 o O gt T e ) L CE)

Since Pr,,)(2) < 1 with equality if and only if F'(w;) is recurrent and z = 1 it is
clear that K¢, ¢,(2;w) <1 for all z with equality if and only if all the graphs F'(w;)
for a given w on Gy are recurrent and z = 1. When we consider all such random

walks we get the inequality (2.18).



Lemma 2 If there exists an n > 1 such that Pc(g_l)(z) is continuous on the closed
interval [0, 1] and if all the F(i)’s are recurrent then for any z €)0, 1] there exists a
¢ €]z, 1] such that

P (&) = P (©). (2.25)
Proof: We define
dn—l
HGl,Gz(Z;n) = Z KGMGQ(Z;(‘U)WGQ((‘U)Wzlw' (2'26)

w: FR on G2

where K¢, g, is defined as above. Every derivative of a (first) return generating
function is a positive increasing function of z € [0, 1] since the power series have no
negative coefficients. It is easy to verify that the function K¢, ¢,(2) has the same

properties. Therefore we get by differentiating (2.23) n times

Fgl(2) = i(?) > KgiGz(z;w)WGQ(w)(ZIwI)

i=0 w: FR on G2

(n—i)

Z Z KG1 GZ(Z w WG < >
w: FR on G2
(n—1)
+ n Z Kg, a,(z0)Wa, (w ( )
w: FR on G2
> Z KG1,G2(Z w WG2 <Z|w|>(
w: FR on G2
(n—1)
-+ Z KGl GZ(Z w WG2 <Z|w|>

w: FR on G2

= Hg, g,(%n). (2.27)

In the first step we used the binomial formula for the n-th derivative of a product.
In the second step every term of the binomial sum was thrown away except for: =n
and ¢ = n — 1. In the third step the n in front of the second sum was replaced by

one and the final step is obvious from the definition of Hg, ¢, (2;n).

With the same argument as in the proof of Lemma 1 it holds that
He, 6,(z5m) < Pg;_l)(z). We have equality when z = 1 since all the F'(i)’s are
recurrent and because Pgi_l)(z) and therefore also Hg, ¢,(2;n) are continuous on

[0,1]. Then since Hg, ¢,(z;n) and Pg;_l)(z) are positive and increasing functions

10



of z we get that
HG1,G2(1; n) B HG1,G2 (Z; n)

> 1. (2.28)
n—1 n—1 —
PGV - P Y(z)

By a generalized mean-value theorem [17| there exists a & €]z, 1] such that

HGhGQ(l;n) - HG1,G2(Z;n) o HlGﬁ,Gg(éQ”)

= (2.29)
n—1 n—1 n
PEV() - PETV() P&, (€)
Then for any z €]0, 1] there exists a £ €]z, 1[ such that
PE(&) < Hy, g, (6m) < PE(E). (2.30)
]

From the above lemmas we get the following theorem.

Theorem 1 Assume that all the F(i)’s are recurrent and that Gy and G have
spectral dimensions ds, and ds, respectively. If Gy is recurrent then Gy is recurrent
and ds, > dg,. If Gy is transient then Gy is transient and dg, < ds,.

Proof: First consider the case when G is recurrent. If all the F'(i)’s are recurrent
Lemma 1 shows that Pg, (1) = Pg,(1) = 1 and therefore G; is also recurrent.
Assuming the existence of dg, and d,, and using (2.9) and Lemma 1 along with (2.8)
we get

cr(1 = 2)% /274 < Qg (2) < Qg (2) < g1 — z)de2/2717e (2.31)

for z close to 1 where € > 0 is arbitrary and ¢; and ¢, are positive constants which
may depend on e. Then
(1= z)aldsa—d)=c 5 ¢ (2.32)

where ¢ is a positive constant. By choosing € < i|d52 — dg,| and sending z — 1 we
see that it must hold that dy, > d,.

Now consider the case when G is transient. Again, if all the F(i)’s are recurrent
Lemma 1 shows that Pg, (1) = Pg,(1) < 1 and therefore G is also transient. First
note that if some n-th derivative Qg?(z), i = 1,2 diverges as z — 1 then from (2.9)
we get

) (1) P (2)

11

~ ng)(z) as z —1 (2.33)



since Pg, (1) < 1. By Lemma 2 there exists a sequence & < 1 such that & — 1 as

k — oo and
P (&) < PE(g) (2.34)

for all & where n is the lowest positive integer for which Pg;)(z) diverges as z — 0.
We then see that Pc(ﬁ)(z) also diverges as z — 1 and if n is not the lowest integer for
which that happens then clearly d;, < d,,. If however n is also the lowest integer
for which Pg:)(z) diverges then we get from (2.34), (2.33) and (2.9) that

Cl(l . gk)d52/2—1—n+e S 02(1 . gk)dsl/2—1—n—e (235)

for k large enough where € > 0 is arbitrary and c¢; and ¢, are positive constants which
may depend on e. With the same arguments as before we choose € < |d,, — d,]|
and let k£ — oo to see that d,, < d,,.

O

It is not surprising that attaching recurrent fibers to a recurrent base results in a
recurrent graph. If a random walker on the base happens to travel into a fibre he will
eventually return back to the base with probability one. However the meeting with
the fiber delays the walker and therefore increases the spectral dimension. In the
case of a transient base the time spent in the recurrent fibre reduces the time spent
in the base and therefore the probability of not returning to the root. Therefore the

spectral dimension decreases.

2.2.1 Monotonicity results for random brushes

Now, let’s consider the case when Gy = Z% and instead of having a fixed G; we
consider a random d-brush (B%, 7). We would like to get similar results for random
brushes as in Lemmas 1 and 2. First we note that by Lemma 1 we have for any
B € B? that

P.y(2) < Pg(2) < Pja(z) (2.36)

where *d is the full brush, defined in Section 2.3.1. By integrating with respect to

T we get

Pu(2) < P(2) < Pua(2). (2.37)

12



To get a similar result for random d-brushes as in Lemma 2 we consider the case

d > 2 and we define the functions
H,(z;n) = /HB’Zd(Z;n)d’]T(B) and Hy(2) = /H*de(z;l)dW(B) (2.38)

where the function in the integrand is defined as in (2.26) and n is the smallest
positive integer for which PZ(Z)(z) diverges as z — 1. With the same calculation as
in (2.27) we get

/

— —
I—ia(i')z7n) S 1 and }‘[/b(z)
P (2) Py(2)

<1. (2.39)

We clearly have H,(z;n) < PZ(Z_I)(z) and Hy(2) < P(z) both with equality when
z = 1 because the bristles are recurrent. Since the functions Fa(z;n),PZ(Z_l)(z),
Hy(2) and P(z) are all increasing functions of z on [0,1] we get with the same

argument as in (2.29) that for any z €]0, 1] there exists a £ €]z, 1] such that

L&)

=)
1< © 1< =l (2.40)

~ PR P(£)

These arguments can be generalized by replacing the base Z¢ with any fixed
graph and by replacing the random bristles by any random graph which consists of

a probability distribution on a set of recurrent graphs.

2.3 Bounds on the spectral dimension

Now that we have established these monotonicity results we can find bounds on
the spectral dimension of (random) brushes. First we find the spectral dimension
of brushes which have every bristle infinite. We call such brushes full brushes and
denote them xd . Then we use the monotonicity results to sandwich any brush

between an empty brush and a full brush.

For those graphs which have the property that the (first) return generating func-
tion is an even function of z it is easy to verify that all the inequalities derived
in the previous section hold for generating functions in the variable z defined in
(2.10). This is the case for fixed and random brushes. For convenience we present

the following calculations in the variable x.

13



2.3.1 The full brush

We can relate the first return generating function of the full d-brush to the first
return generating functions of Z¢ and N,,. We use the same argument as in the
proof of the monotonicity lemma. We simply replace all the graphs F'(i) with N
and note that the order of every point in Z? is 2d. Then equation (2.23) becomes

1— Pu(n) L Ve
Pu(r) = <1+Tz) > 1 @T_pj(x)
d

w: FR on Z¢ t=0 2

(1 + \;—Cf)PZd (ven () (2.41)

where we used (2.14) and defined z,e, through

1 —
VT T = 2 (2.42)
14+

We see that 2., = v/x/d+ O(z). By differentiating (2.41) once and comparing with
(2.11) we find the spectral dimension of the full brush

d41  if1<d<4
d*={2+ Pe=as (2.43)

3 if d > 4.

Note that the spectral dimension is always ds = 3 when d > 4. This comes from
the fact that z],,(z) ~ 27"/? as  — 0 and that |Py,(z)| grows at most like —In(x)
as x — 0 when d > 4. If we replace the infinite bristles with finite ones, all of
which have the same length, then with the same calculation we see that the spectral
dimension remains equal to d.

These results are special cases of a more general result obtained in |8] for bundled
structures. There, the base Z¢ can be replaced by any connected graph G and the

infinite bristle (fibre) can also be replaced by any fixed, connected graph F'.

2.3.2 Results

Any fixed d-brush B can be constructed from Z? by attaching (recurrent) bristles to
it and the full d-brush can be constructed from B by attaching (recurrent) bristles
to it. Therefore, by Theorem 1 in Section 2.2, the spectral dimension of any fixed

d-brush, if it exists, lies between d and d,. This also holds for random brushes as
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is clear from equations (2.37) and (2.40). The spectral dimension for any fixed or
random d-brush, if it exists, therefore obeys the relation (2.5).

It is interesting to note that the spectral dimension of random 2-brushes always
equals 2. In fact, from the relation (2.4) it follows from (2.42) and Lemma 1 that

there exist positive constants ¢; and ¢y such that
c1lIn(z)] < P(x) < ¢ In(z)] (2.44)

for a random 2-brush when x is small enough . This is a more strict condition on
the asymptotic behavior of P(z) than the condition that P(z) ~ 1 as x — 0. The
reason why the spectral dimension is always 2 is that when we construct a 2-brush
B by attaching bristles to Z? we get a similar scenario as in (2.41) namely that
Pp(x) ~ Pg2(xen(x)) as © — 0 where x, () is some function of x. If e, (z) ~ x©
as © — 0 then the logarithm in P2 does not see the exponent o and behaves as if
no bristles were attached.

It is also interesting that for d > 4 the lower bound on the spectral dimension
always equals 3. In fact it is easy to see that attaching a single infinite bristle to Z¢
with d > 4 reduces the spectral dimension to 3. We can show this by attaching the
infinite bristle to the root of Z? since the spectral dimension is independent of the
starting site of the random walks. We call the resulting graph d . The first return
generating function for this graph is

2d—1 1

o Pral@) + 5 Pc(@). (2.45)

Pra(x) = 2d

Since d > 4 equations (2.11) and (2.4) show that |Q7,,(x)| diverges at most as — In(x)
as © — 0 which is slower than the divergence of Q’_(x). Therefore by differentiating
(2.45) we get

Q'La(2) ~ Ply(z) ~ Pi(z) ~ 2™/ (2.46)

as x — 0 and therefore by (2.11) the spectral dimension is d;, = 3. From this and
the lower bound in (2.5) it follows from equations similar to (2.40) that if a random
d-brush with d > 4 has a nonzero probability of having one or more infinite bristles
its spectral dimension equals 3.

We find with similar arguments that adding a single (or finitely many) bristles
to Z3 gives the spectral dimension 3. However if we add infinitely many bristles the

spectral dimension can be lowered as is seen e.g. in the case of the full 3-brush.
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Non-generic trees

A tree is a connected graph with no loops. We consider rooted planar trees where
the root has order one and is denoted r. Planar means that if we imagine the trees
to be embedded in the plane then two trees are the same if one can be deformed
into the other without links crossing each other. Let I'y be the set of all such trees
having N links and let I" be the set of all locally finite rooted planar trees. We define

a metric on ' by

dr(r, ') = inf {——

R>0'R+ 1 |Br(7) = Br(T')} (3.1)

where Bgr(7) is the subtree of 7 spanned by vertices at distance less than or equal
to R from the root. We denote the number of links in a tree 7 with |7| and refer to
it as the size of the tree.

In this section we study a model of random trees which are often called simply
generated trees. It is defined by a set of positive branching weights w,,,n > 1. Given

these branching weights we define the finite volume partition function for trees of

size N
Zn = > [] we (3.2)

Tel'N ieT\r

and a probability distribution vy on I'y by

on(r) = Zy" [ wor T €T, (3.3)

1E€T\T

The set I'y equipped with the probability measure vy is our model of a random

tree of size V. We are interested in determining how a typical tree looks like when N

17



Figure 3.1: A tree with weight w{ wy w3 w? w;.

is large or even when N — oo. Some desireable parameters would be the Hausdorff
and spectral dimension. In [18| the case w, = 1, Vn is studied. There it is shown
that when N — oo the probability measure vy converges weakly to a probability
measure on [' which is concentrated on trees with one infinite branch with finite
outgrowths. In |7] the same is shown to be true for so called generic trees which
are defined in the next section. There it is established that the spectral dimension
is ds = 4/3. The Hausdorff dimension of generic trees is dg = 2 [2]. In this part of
the thesis we discuss what is known about non-generic trees and try to find similar

results as in the generic case.

3.1 Some useful tools

We define a generating function for the branching weights
g(z) = anz"_l (3.4)
n=1
and a generating function for the finite volume partition function
Z(0) =Y Zn¢™. (3.5)
N=1
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The contribution to Z from trees for which the vertex next to the root has order
k is CwpZ(¢)*~!. By summing over k we get the following relation between the

generating functions
Z(0) = ¢ weZ(O)* = Ca(Z(C))- (36)
k=1

Let p and (y be the radii of convergence of the generating functions g and Z
respectively. Here we will always consider branching weights such that p > 0. We

define Zy = lim¢_.¢, Z(¢). From the above relation we see that Z, is finite and
Zy < p. (3.7)

When Z, < p we have a generic ensemble of infinite trees but when the equality
holds we have a non-generic ensemble. The generic case is easier to analyze because
the function ¢ is analytic in a neighbourhood of a disk centered at zero and with
radius Zy. Note that when p is infinite we always have a generic ensemble.

From the functional equation (3.6) we can relate the coefficients of powers of
Z(() to the branching weights w,,. By Lagrange’s Inversion Theorem (see e.g. [19])

we get

k o kv
N2 =2 Y wwn = S0 69
Ni+..+Ny=N—Fk i=1
where [2"]{f(z)} stands for the n-th coefficient of the power series f(z). The case
k=1 gives Zy.

3.2 Galton-Watson processes

In this section we discuss a relation between simply generated trees and so called
Galton-Watson processes which can give us some insight in how simply generated
trees look like in the large N limit. A Galton-Watson process is a process for tree
growth which was first studied by Galton and Watson in the late 19th century in
relation to family trees. Since then this process has for example been a model
for populations of neutrons, genes, cosmic rays and more. Standard references for

Galton-Watson processes are e.g. [20,21].
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The process is defined in the following way. We start with a single ancestor (in
general they can be many) which has n offsprings with probability p,, where p, are

non-negative numbers and
> pn=1 (3.9)
n=0

Each offspring then has n offsprings itself with the same probabilities p,, and so on.
For convenience we add a root r to the Galton-Watson trees by linking a vertex of
order one to the ancestor. The process gives a probability measure on the set of all
finite trees
o
pu(r) = H Doi—1, where T E U . (3.10)
ieT\r N=0

We define a generating function for the offspring probabilities

f(z) = paz". (3.11)

Galton-Watson processes are usually divided into three categories depending on the
size of the first moment of the generating function m = f’(1). It is clear that m
represents the mean number of offsprings of each individual. If m > 1 the process
is said to be supercritical and the probability that it survives forever is positive. If
m = 1 the process is said to be critical and it dies out eventually with probability
one. If m < 1 the process is said to be subcritical and it dies out eventually with
probability one and much faster than in the critical case.

The reason why we are interested in Galton-Watson processes in this paper is

the following relation.

Lemma 3 A simply generated tree of size N is a rooted Galton- Watson process with
offspring probabilities
Pn = Gon1 25 (3.12)

which is conditioned on the total size of the trees. The Galton-Watson process can

be either critical or subcritical.

Proof: With the p,, given in (3.12) we get

D =G> wan Zy =%y g(Z) = 1 (3.13)
n=0

n=0
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by using (3.6). Therefore the p, are Galton-Watson offspring probabilities. The first

moment is
00 0o ~ "z
m = ann = CO ann—l—lzg 1— Cog,(Zo) = Zog ( 0) (314)
n=0 n=0 g(ZO)
By differentiating (3.6) with respect to ¢ and rearranging terms we find that
"Z A

9(Z(C)) Z'(¢) ~

and the equality holds for ¢ = (p if and only if Z'({y) = co. This shows that the
process is critical if Z’({p) = oo and subcritical otherwise.
The measure corresponding to these probabilities when conditioned on trees of
size N is then
un(7) = Cn [ por = OnZ5 '@ T wor (3.16)
ier\r ier\r
where 7 € I'y and Cy is a normalization constant. From (3.3) we see that vy = py

and Cy = Zo(y ™ Zy' which proves the lemma.
O

Since critical and subcritical Galton-Watson processes are relevant when dealing
with simply generated trees we state here some results about standard properties
proved e.g. in [20]. Let (-), denote expectation with respect to the measure x defined
in (3.10). Let h(7) denote the maximum graph distance from the root to any vertex

of 7, referred to as the height of 7.

Lemma 4 For subcritical Galton-Watson trees with mean number of offsprings m

it holds that | R

(1Brl) = 1=

and letting R — oo we find that the expectation value of the size of trees is finite

(3.17)

(1Bl = 7= (3.18)
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Lemma 5 For critical Galton-Watson trees it holds that
(IBrl). = R (3.19)

and if f"(1) < oo

u({r €TIT) > BY) = 7 (21) = +O(R™) (3.20)

The case when f”(1) is infinite in critical processes has been studied e.g. in |22].

There, generating functions of the form
f(s)=s+(1—35)"L(1 —s) (3.21)
are studied where 0 < o < 1 and L is slowly varying. Slowly varying means that
—— —1 as t— 00 (3.22)

for all A > 0. It is shown that

p({T € DIMT) > RY)*L(u({T € T|W(T) > R})) ~ (3.23)

aR
as R — o0o. The generic behaviour in (3.20) therefore changes and becomes model

dependent. Here the meaning of f(z) ~ g(z) as x — oo is that

J(2) — 1 as T — 00. (3.24)

9(x)

3.3 The generic case

Generic random trees are defined by the condition Z; < p as was explained above.

In this case it can be shown [23| that Zx has the generic behaviour
Zy = CN732¢N(1+O(NY) (3.25)

where C'is a constant independent of N. This immediately shows that Z’({) — oo
as ( — (o and thus generic trees correspond to a critical Galton-Watson process

conditioned on the total size N.
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It is shown in |7] using the methods of [18| that the probability measure vy for

generic trees converges weakly to a probability measure v on I'. This means that

/deN—> /fdu, as N — oo (3.26)
r r

for all bounded functions f on I' which are continuous in the topology defined by
the metric dp. Furthermore the measure is shown to be concentrated on trees with
one infinite branch growing from the root with identical and independent critical
Galton-Watson outgrowths distributed by (3.10).

Figure 3.2: A generic tree consists of one infinite branch with critical Galton-Watson
outgrowths. The balloons denote Galton-Watson trees.

The probability of having k left branches and [ right branches growing from a

vertex on the infinite branch is

o(k, 1) = Cowarp 1 ZET. (3.27)

The outgrowths are free in the sense that there is no condition on their size. We
can understand this in the following way. As N goes to infinity the size constraint
on the Galton-Watson process is completely taken care of by the one infinite branch.
The rest of the graph then grows freely like a critical Galton-Watson process.

As is explained in [18], to prove the convergence of the measure it is sufficient to

show that for any value of R > 0 the following holds

Property 1
vn({T € ' |Bg(1)| > K}) — 0 as K — o0 (3.28)

uniformly in N.
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Property 2 The sequence

(vn({T €T : Br(7) = 70})) yen (3.29)
1s convergent for each finite tree 1o € I.

Both properties are proven for generic trees in Appendix A in |7]|. The first property
shows that the order of vertices stays finite as N — oo. This seems to fail in some
cases for non-generic trees as will be discussed later. The second property is also
true in many non-generic cases as will now be proved.

Assume that Zy has the asymptotic behaviour
Zn =~ CN7¢GNL(N) (3.30)

for large N, where C' > 0 is a constant and L is slowly varying. We also assume
that

L(N'")
o <L(N)> < D, for all N (3.31)

where D > 0 and 0 < a < 1 are constants and that L(N) grows or decays slower
than any power of N. This is for example true for any power of logarithms. In the
generic case we always have § = 3/2 but in non-generic ensembles the existence of §
is not always guaranteed. However it seems to be possible to construct non-generic
models with any § > 3/2 as we shall later see.

Let 79 be a finite graph and let M be the number of vertices in 7y at graph
distance R from the root. We can decompose any tree 7 for which Bg(7) = 79 into
the tree 79 and rooted subtrees whose roots are at graph distance R — 1 from the
root, of 7y (see Figure 3.3). Note that the roots of these subtrees are vertices of 7.

Then we can write

vn({T €T : Bp(t) = 10}) = W(n) Z5* > 112~ (3.32)

Ni+..+Ny=N+M—|ro| i=1

where

W(m) = H We (i) (3.33)

i€BR—1(m0)\r
is the contribution from vertices in 7y at a distance less than R from the root. The

Zy, in the last product in (3.32) is the contribution from the subtree attached to
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Figure 3.3: The tree 7y in the case R = 4 and M = 6. The balloons denote all
possible rooted trees attached to 7y at a distance R = 4 and their roots are in 7.

vertex 7 of 7.

Now choose a positive constant A. The contribution to (3.32) from terms for
which N; > (N + M — 75)/M and N; > A for some pair of indices ¢ # j can be

estimated from above with

M
W (7o) M? > zy' 1 2w
=1

Ni+...+Ny =N+M—|rg|
N1>(N+M—74)/M,Ny>A

_ NM ’ L(M) 1 '
< W M2 M—|7o| - _ A o 2N, "
>~ (TO) 0 N + M — ‘7’0‘ IIZI\%X ( L(N) ) N3,~;M>1 NQgO g NZCO

< Cln) Y Zn(” (3.34)

where C'(7) only depends on 7. Since Zj is finite the last expression goes to zero
as A — oo. By estimating the remaining contribution to (3.32) and letting A — oo
it then follows as in |7| that

vn({r € T : Br(r) = 70}) — MW (1) ZM ¢l (3.35)

as N — oo which proves Property 2 for all ensembles which have a relation like in
(3.30).
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An important observation in these calculations is that when N gets larger all
the mass tends to gather into one subtree attached to 7y and the sizes of the other
subtrees are bounded by the constant A. In general this leaves two possibilities of
how simply generated trees obeying (3.30) look like in the large N limit. Either
the subtree with the large mass becomes an infinite branch as N goes to infinity, as
always happens in the generic case, or the order of some of its vertices becomes infi-
nite. There is some evidence from numerical calculations and analytical arguments
that infinite vertices occur in a particular model for non-generic trees |14, 15|. This
will be discussed in more detail later.

When the convergence of the measure has been established in [7] it is shown that
the spectral dimension of the resulting infinite random graph is d;, = 4/3 and the
Hausdorff dimension is dg = 2. In the proof it is important that the trees have
one infinite branch with identically and independently distributed critical Galton-

Watson outgrowths with f”(1) < oo, therefore obeying the relation (3.20).

3.4 The three phases

In the non-generic case Zy = p as was explained above. Since all models with infinite

p are generic we can take p to be finite when we study non-generic trees. In fact

we can choose p = 1 without loss of generality by redefining the branching weights
n—1

wy, — wpp" . This redefinition does not change the probability distribution vy

since

H Wy, — H Wy, p” "t = pN ! H We, , Teln (3.36)

1ET\T ieT\r tET\T
g; = 2N — 1.
We start with a set of branching weights w,, which give p = 1 and at this stage

where we used that -, \,

the model can be either generic or non-generic. We fix the values of w,, for n > 2

but for now we let w; be a free parameter of the model. Define

_g9(2)
WZ) === (3.37)

From (3.6) we see that h(Z) = 1/((Z) for Z < Z,. Differentiating h we get

o 9Z)[,9(Z)
W(Z) =5 {ng 1} (3.38)
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and again

9'(2) 2,
— =h'(Z). .

A Zh (2) (3:39)

The genericity condition can be interpreted as A having a minimum at Z = Z; < 1.

hl/(z) —

For any Z, < 1 we can choose wy = > >0 (n—2)w,Zy~ " making Zo%Z0) — 1 Then

9(Zo)
h'(Zy) = ¢"(Zo)/Zy > 0 which shows that the minimum is quadratic. Note that
OZ((ZZS)) = m where m is the mean number of offsprings defined in (3.14). We can

clearly make any model with p = 1 generic by choosing
wy < Z(n — 2w, = w, (3.40)
n=2
where w, is a critical value for w; which depends on w, for n > 3. It is interesting

to note that the critical value is independent of wsy. Also note that if w,. = oo, i.e. if

g'(z) diverges as z — 1, we always have a generic ensemble.

h(Z) 4 h(Z) » h(Z) &

a) b) c)

Figure 3.4: The three possible scenarios. a) Generic, quadratic minimum at Z.
b) Critical, quadratic minimum at Zy, = p = 1 if ¢”(1) < oo. «¢) Subcritical,
R'(1) # 0. The solid lines are also graphs of the function 1/{(Z2).

The next possible scenario is that h has a minimum at Z = Z; = 1. This happens
when w; = w, or in other words when m = % = 1. We see that although this is a

non-generic ensemble, the trees are still critical Galton-Watson trees conditioned on
the total size. They will be referred to as critical trees. We see that h”(1) = ¢”(1) > 0

which shows that the minimum is quadratic if ¢”(1) is finite.
Finally, by choosing w; > w,, h has no minimum and m = % < 1. In this case

the trees are non-generic, subcritical Galton-Watson trees conditioned on the total
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size. They will be referred to as subcritical trees.
To summarize, every model for which ¢ has a finite radius of convergence has at
most three phases. A generic phase when w; < w,, a critical phase when w; = w,

and a subcritical phase when w; > w,.. If w. = oo there is only the generic phase.

3.5 A toy model

A simple model which has the properties in the previous section is the model
w, =n"P B €R forn >2and w; > 0 free. It is clear that p = 1. This model has
the advantage that it is possible to make explicit calculations. It has been studied

in [14 16] both in the context of random trees and "balls in boxes" models.

Critical%
‘ Sub-critical

Generic

2 3 B

Figure 3.5: A diagram showing the three possible phases of trees. The critical line
is determined by the equation w; = w..

We see right away that the case § < 2 is always generic since then ¢'(z) — oo as
z — 1. The condition w; = w, gives a relation between w; and § which determines
where the phase transition happens for any 3. We call this relation the critical line
and it is shown in Figure 3.5. Above the critical line we get subcritical trees but
below it and to the left of it we get generic trees.

In [15] it is shown by expanding the function h around Z = Z; and inverting the

expansion, that if there exists an exponent 0 as in (3.30) it obeys

3 if wy < w, or if w; = w, and 3 >3
0= % if wy =w, and <3 (3.41)
ﬁ ifw1>wc.
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The model can give any value of § > 3/2. We notice that on the critical line the
value § = 3 plays a special role. It corresponds to the values of (3, for which ¢"(1)
goes from being finite to being infinite. We will interpret this in the next section

and discuss generalizations beyond the n=? model.

3.6 Critical trees

The critical value of w; which separates generic and subcritical trees is defined by
w; = w.. In the toy model in the previous section the exponent 0 for critical
trees agrees with the exponent for generic trees when ¢”(1) is finite. The condi-
tion ¢”(1) < oo actually guarantees the generic behaviour (3.20) of critical Galton-
Watson processes . After the convergence of the measure has been established in |7],
this is in fact the only condition that is used to prove that the value of the spec-
tral dimension of generic trees is ds = 4/3. Therefore it is tempting to make the

following conjecture.

Critical trees for which g"(1) is finite share the properties of generic trees,

having spectral dimension ds = 4/3 and Hausdorff dimension dg = 2.

For now we will have to settle on the less general result in Theorem 2. First we

prove the following lemma.

Lemma 6 Consider critical trees which obey (3.30), (3.31) and ¢g"(1) < co. Then
d=3/2.

Proof: As was mentioned in the beginning of Section 3.4 the condition ¢”(1) < oo
for critical trees implies that h(Z) has a quadratic minimum at Z = 1. We can

therefore do the following expansion

B h//(l)
2

h(Z) — h(1) (1—2)*+o0(1 - 2)% (3.42)

By inverting this and remembering the definition of A we find that

2

iy @ = QY oG = O (3.43)

Q
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We now use Theorem 5 in chapter XIIL5 in 24| (a Tauberian theorem) to find that

q
Y NZnGY = Cq'L(g) (3.44)

N=1

where C' > 0 is a constant and L is slowly varying. Since the trees obey (3.30) and
(3.31) this shows that 6 = 3/2.

Theorem 2 Consider critical trees which obey (3.30) and (3.31) . If
Zl{:5/2wk+1 < oo the trees share the properties of generic trees, having spectral

dimension ds = 4/3 and Hausdorff dimension dg = 2.

Proof: To prove this it is enough to verify the convergence of the measure vy as
explained above. Note that the condition in the theorem implies that ¢"”(1) < oo
and therefore the previous lemma shows that 6 = 3/2 and that Property 2 is true.
All that is left is to prove is Property 1 and for later convenience we will do it for
an arbitrary J.

We show (3.28) by induction on R. The case R = 1 is trivial so we next consider

the case R = 2. We can make the following estimate

ww{reT: B =k+1}) = ZZ'wen Y. []%w

Ni+.. A Npy=N—1i=1

ZNlCé\h i
< Cokwpya Z N HZNiCO '

Ni+..+Np=N-1 ZnGo i=2
Ny >(N-1)/k

k
< Ohuea(y) e () X TTawg!

< C'E"PPwry (3.45)

where C,C” > 0 are numbers independent of & and N. In the last step we used
Zoy = 1. Then we find

vn({T €T 1 [Bo(r)| > K}) < C" ) k' Pwps. (3.46)
k=K
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If this sum is finite it tends to zero as K — oo uniformly in N proving the case
R=2.
Now assume that (3.28) holds for some R > 2. Since the set of balls Bg(7) with

volume at most K is finite for each fixed K it is enough to show that
vn({T €T :|Bry1(7)| > K, Br(7) = 19}) — 0 as K — (3.47)

uniformly in N for every finite tree 75 of height R. With a slight generalization of

the arguments in |7| we can show that
vn({T € ' 1 |Br1(7)| > K, Br(T) = 70})

o M-1
< " (Zkl+5wk+1> > w (3.48)

k=1 k> (K —|7o|)/M

where C” > 0 only depends on 75 and M is the number of vertices in 7y at distance
R from the root. This goes to zero uniformly in N as K — oo if the last two sums

are finite.
O

The case ¢”(1) = oo for critical trees is more difficult to treat. It is not possible to
show the convergence of the measure with the direct approach used here and in [7].
If the convergence could be established it would be possible to find the spectral
dimension for some specific models like (3.21) . This model actually includes the

case w, = n~% w; = w, with 2 < 8 < 3 and L constant. Then (3.23) becomes
u({r € T|h(T) > R}) ~ R7>. (3.49)

By assuming the existence of the measure and using this relation, a direct application

of the methods of 7] gives a lower bound on the spectral dimension

g—1

d, > 2 :
=23 -3

(3.50)

This lower bound is the same as the claimed exact value of the spectral dimension
in [5,16]. It is not possible to find an upper bound with the methods of |7| since
they rely on ¢”(1) < oc.
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3.7 Subcritical trees

For now there are no rigorous results on the limiting behaviour of the measure on
subcritical trees. In this section we will however give some arguments for the large
size behaviour of subcritical trees which allow us to cook up a possible limiting

measure.

To begin with we consider only the model of Section 3.5. In the relation (3.41)
we see that for subcritical trees 6 = 3. In this case Zy(}' behaves exactly like wy,.
When we try to prove the convergence of the measure the proof of Property 1 goes
seriously wrong since k'70~% = k and the sum of this never converges. Although
this is of course no disproof of Property 1 this exact cancellation between ( and o
indicates a different behaviour. It is in fact natural to expect a dramatically different
limiting behaviour because subcritical trees correspond to subcritical Galton-Watson
processes. This seems to hold even beyond the n™? model. If we for example let
w, = e V" and w; > w, then by repeated differentiation of (3.6) we see that Zn¢l
falls faster than any power of N, and in that way behaves similar to w,, .

As was explained in Section 3.3 there are two possible scenarios as the tree size
grows large. Either there emerges exactly one infinite branch with finite outgrowths
or one or more vertices of infinite order appear. We will from now on refer to vertices
of infinite order as traps. If Property 1 is in fact not true in the subcritical case
we expect traps to occur. It is argued in [14,15] with numerical calculations and

analytical arguments that exactly one trap occurs . For large finite N its size is

— g
g(1)
subcritical Galton-Watson process. We cannot prove this but we can check if this

estimated to be (1 —m)N where m < 1 is the mean value of offsprings of the
is consistent with our picture of subcritical trees being size conditioned subcritical
Galton-Watson trees.

First, observe the behaviour of the mean size of unconditioned subcritical Galton-
Watson trees (3.18) with m. The mean size (|Bl), is always finite so it is not
impossible to imagine that by conditioning the Galton-Watson process on very large
trees of fixed size, the limiting distribution would have trees of bounded height. This
would indicate the occurrence of a trap. When m is small, (|B|), is small and so
the trees are crumpled. Therefore it is natural to expect the trap size to increase as
predicted. When m — 1 the mean size goes to infinity and the trees become longer
and are stretched towards the critical case. The trap size would then go to zero as

predicted.

32



Secondly, we can prove that there can occur at most one trap. We can estimate
the probability that there exist two vertices, ¢ and j such that o(i) > N and
o(j) > €;N, €,¢; > 0. We draw the trees as in Figure 3.6 where we assume that
the order of the vertex j is p. Each balloon Ny, ..., N,_; along with the link to j is
a tree of size Nj 4+ 1 with root j. The balloon labelled with NV, along with the link
to j is a tree of size N, 4+ 1 with root r and one marked vertex j of order one. The
partition function for the balloon with the marked vertex is GZNPH/@wl because
we can choose the marked vertex in e(7) ways where e(7) is the number of vertices

in 7 of order one (excluding the root). It is easy to convince oneself that

0ZN+1

8w1

wq < NZn41. (3.51)

The partition function for each of the other balloons is Zy, 1. Finally the weight
of the vertex j is w,. We get the following estimate by summing over all these

configurations

vn({T € I'y|3i,j € 7 such that o(j) > ejN and o(i) > ¢;N})

02y 07z
-1 +1 Np+1
SIS (SIS oS | RN SRR | EA
N>p>e;N Ni+..4+Np=N—-p 1 Ni+..4Np=N—-p 1
Nize;N Np>e; N
Ni+1
S C NZ wNCO Z Z (N —l—l HZNk‘HC kt
W_/
<const. N>p>e; N N1+N1+>1\:pNN P k=1
Ni1+1 Ni+1
< CN D> > [ ]ZN1+1C ' > HZNk—i—lC *
———
N>p>e;N N1>e; N N76 Na+..4+Np=N—-p—N; k=2
< CEZ’EJNl - Z <ZZ"+1 n+1) CéufaNz_é’

N>p>e;N

Here, C() and Cé,) are positive numbers which only depend on their subscripts.
Since 0 > 2 the last expression goes to zero as N — oo. For convenience we left the
slowly varying function out of these calculation but it enters as in (3.45) and can be

estimated as before.
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3.7.1 A candidate for a limiting measure

From the above arguments we are ready to make an educated guess on what the
limiting measure on subcritical trees might look like. We assume that exactly one
trap emerges when the size goes to infinity. We also assume that the trap takes
care of the size constraint on the conditioned Galton-Watson process just as the
infinite branch did in the generic case. Therefore the rest of the graph grows like an

unconditioned, subcritical Galton-Watson process.

Figure 3.6: A graph with a vertex j of large order p and another vertex of large
order inside one of the balloons.

By looking at Figure 3.6 we can imagine the vertex j to be the trap, the balloons
labelled with Ny, ..., N,_; to be subcritical Galton-Watson trees with root j and
the balloon labelled with N, to be a subcritical Galton-Watson tree with root r
and one marked vertex j (the trap) of order one. We assume that each balloon
grows independent of the others. We know the probability measure for the balloons
with unmarked vertices, it is simply p defined in (3.10) and (3.12). To check for
consistency, note that the expectation value of the size of each of the balloons, when
N is large, is approximately (|Bwl|), = 1/(1 —m) and the expected number of
balloons is (1 —m)N (the order of j). These two numbers multiplied together, give
the total size N which shows consistency.

We denote the probability measure for rooted Galton-Watson trees with one trap
with p*. It can be constructed from p by noticing that the probability for each tree

to occur is the same as before

w(r) =0 I wew (3.52)

ieT\{r.j}

but we exclude the weight of the trap and there is a different normalization constant
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D. To find the normalization constant we note that for each unmarked tree 7 we
get e(7) marked trees where e(7) denotes the number of vertices in 7 of order one

(excluding the root). Therefore

1 = N YA 1
BIZQJ)“Z ) 1 w"“’_gzawjlv 0= (3.53)

N=1 Tel'n er\{r,j}

where we found the last step by differentiating (3.6) with respect to w; and using
Zo = 1. Therefore D =1—m
We can look at the measure p* in the following way. Each tree for which the

shortest path between the root and the trap equals h can be drawn as in Figure 3.7.

Figure 3.7: A possible description of infinite, subcritical trees. The tree has the
graph M), as a base with the probability p(h) given in (3.54) and it has finite sub-
critical Galton-Watson outgrowths. The trap is denoted with an asterisk.

We call the linear subgraph which starts at the root and ends at the trap Mj,.
We denote the vertex with graph distance ¢ from the root on the subgraph M) with
s;. Each balloon attached to one of the vertices s;, grows independently according
to pu. The probability distribution of the length A is

plh) = D< 2 Cowz“““)h_l =(1- h+1(§: (n+1 w2+"> -
n=0

= (1= m)g() () = (1 — mymh (3.54)

Note that the probabilities p(h) sum to one. Since m < 1, p(h) decays exponentially
which means that the probability of the trap being close to the root is relatively
high. The conditional probability of having k left branches and [ right branches

attached to a vertex s; given that M) is a subgraph of the tree is

o(k,1) = %§0w2+k+z (3.55)
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and is identical for each vertex.

To summarize, a possible description of infinite subcritical trees is the following.
There occurs exactly one trap and its distance from the root, h, is distributed by
p(h). Subcritical Galton-Watson trees grow from the subgraph M, according to ¢
and p. The trap has infinitely many subcritical Galton-Watson trees growing from
it distributed by p. We will not worry about the outgrowths from the trap since
a random walk which hits the trap will never return back to the root and balls
centered on the root with radius greater than the distance to the trap have infinite
volume. This means that the trap outgrowths neither affect the spectral dimension
nor the Hausdorff dimension.

We would like to say something about the spectral and Hausdorff dimension of
the above random tree. First we consider some simple random tree models which

are related to the subcritical trees.

3.7.2 Examples of random trees with one trap

Consider the graph M; mentioned in the previous section. It looks like N; but it

Figure 3.8: The graph M; with a trap denoted with an asterisk.

has a trap at the opposite end of the root. If a random walk hits the trap we say
that it returns to the root with probability zero. For a fixed graph M; it is therefore
obvious that the spectral dimension is infinite because the random walk eventually
goes to the trap with probability one. If we define the trap to have infinite volume
the graph also has an infinite Hausdorff dimension. This seems like the end of the
story but it turns out that we can get a finite spectral dimension by considering
a random graph where we put a probability distribution on the length [ and make
sure that the trap has a high probability of being far from the root. The Hausdorff

dimension is however always infinite.
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To find the first return generating function of M; we use the recurrence relation
in (2.12) replacing N; with M, but with a different boundary condition Py, () = 0.
To solve this we use the methods of Appendix A in [6]. The result is very similar to
the result for NV, in (2.13)

1+vo)'+ (1)
1+ Vo) = (1 =)

The square root in this formula is actually deceiving because Py, is in fact a rational

Pay() =1 -z

(3.56)

function for all [. By expanding the brackets using the binomial formula we can write

the corresponding return probability generating function as

Ry(x)
= 3.57
Quile) = (357)
where R; and S; are the polynomials
2,0, o
Ri(x) = 2 (22, N 1)1’ and Si(z) = 2 (22)1’ . (3.58)

From these expressions one can see that QE\ZZ(O) is a polynomial in [ of degree 2n+-1.
In particular QE\ZI)(O) is finite for all [ showing that the spectral dimension is indeed
infinite for a fixed [. Now, pick a probability distribution p; = ¢/=® on the set
{M;|l > 1} and define a return generating function for the corresponding random

graph .
Q(z) =Y piQu(x). (3.59)
=1

The convergence or divergence of this sum or its derivatives can now be determined
by inserting = 0 and finding the highest exponent of /. From that we can conclude
that if the graph has a spectral dimension d; it obeys a — 2 < dy < a + 2. In the
case when 1 < a < 2 it is in fact easy to show by comparing the sum (3.59) with
an integral that d, = a. This relation probably holds for higher values of a but it
becomes messier to confirm since it involves taking higher and higher derivatives of
Q-

These arguments show that we can get a finite spectral dimension for the random
graph in whatever range we like. The bounds on dg are like we expected. By

decreasing a the probability of having the trap close to the root decreases and the
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spectral dimension is lowered. We note that if p; decreases faster than any power of
[ then the spectral dimension is always infinite. In the subcritical random trees this
probability decreases exponentially which implies that they might have an infinite
spectral dimension. But the graph M; has no branches and it turns out that it
approximates the subcritical trees poorly.

We look at another model of a tree where we attach ¢ single links to each vertex
of M; as is shown in Figure 3.9. We call the resulting graph M;,,. Let’s call the
graph which is made of the bundle of ¢ single links F, and let the vertex of order ¢

be the root. The first return generating function for Fj is

Figure 3.9: The graph M;, made by attaching a graph F, to each vertex of M
except the root.

Pp,(r) =1—u. (3.60)

We can use the methods of Section 2.2 to find the first return generating function

for M;.,. The function K¢, ¢, in (2.24) is simply

2 |w|—1
Ko (r:0) = (57— (3.61)

so the first return generating function becomes

Pag, (2) = (1+ 52) Pay (=) (3.62)

where we defined )
La?+ (14 q)x
(1+ %x)Q

zy(x) = (3.63)

We see that x,(0) = 0. Repeated differentiation of z,(x) shows that xfln)(O) is a
polynomial in ¢ of degree n. Therefore, repeated differentiation of Quy (7) shows

that Qg@iq (0) is a polynomial in [ of degree 2n + 1 and in ¢ of degree n. For any
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fixed graph of this kind the spectral dimension is therefore infinite.
Now let’s make both ¢ and [ random according to some distributions 7, and p;

respectively. Since
Qg@?q(()) = A, "¢ 4+ lower powers of [ and g A, # 0 constant  (3.64)

we can clearly make any derivative of the average of Qu,, (x) diverge as x — 0 by
tuning the probabilities. This gives a finite spectral dimension which depends on
both distributions. What is more interesting is that for any p, we can make any
derivative diverge with a suitable choice of r,. This means that even though p,
drops exponentially the branches attached to M, can slow the random walker down
so that it has little probability of meeting the trap which results in a finite spectral
dimension. This effect might give us a finite spectral dimension of subcritical trees.

By attaching graphs more complicated than Fj to M; we can slow the random
walker even further down. For example, consider a rooted tree which has a root of
order one and a single vertex of order g,. Attach ¢ copies of it to every vertex of
M; except the root. Then with the same analysis as above we find that

QY (0) = B> q'qy + lower powers of [ and ¢ B, # 0 constant (3.65)

Ml;q1q2

where we have denoted the resulting graph with M;.,,,,. If we distribute ¢; and g,
independently with the same probability distribution we have a very similar situation
as in (3.64). However, if we for example put ¢; = go = ¢ and put the probability

distribution on ¢ we make the resulting random graph less transient.

3.7.3 Dimensions of the subcritical limiting measure

To conclude we would like to say something about the spectral and Hausdorff di-
mension of the proposed subcritical random tree. First of all we can right away
deduce that the Hausdorff dimension is dy = oo since there is a nonzero probability
of having the trap at a finite distance from the root.

The spectral dimension could however be finite even though p(h) drops expo-
nentially, since the branches attached to M} could serve to slow the random walker
down on its way to the trap. This needs to be carefully checked.

Let P*(x) and Q*(z) be the first return and return probability generating func-

tions averaged with respect to the measure p*. We construct graphs M., like in
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the previous section and compare their return probability generating function to
P*(z) and Q*(x) using the monotonicity lemma from Chapter 2. First consider a

subcritical random tree. The probability that a vertex has at least ¢ branches is

alg) = > (k1) (3.66)

k+l>q

The probability that the number of branches of each vertex of M, is at least ¢ is
then

br(q) = a(g)"™". (3.67)

Then the probability that there are exactly ¢ branches at some vertex of M), and at

least ¢ branches at all the other vertices is

cn(q) = bn(q) — bu(g +1). (3.68)

Let I be the set of trees which have M, as a subgraph and let I'®? be the set of
trees which have M, as a subgraph and at least one vertex on M), of order q. We
then define

Qn(z) = Qr (x)du* (r|T") (3.69)

TETh

as the return probability generating function averaged over the branches of M, and

Quale) = [ Qula)d (I (3.70)

as the return probability generating function averaged over the branches of M}.,.
We define P,(z) and Py, () in the same way. We can then write

= p(h)Qu(x) =D p(h)en(q)Qnig(z) (3.71)
h=1 q=0 h=1

and

=D p(h)Pulx) =YY p(h)cn(q) Puy(2). (3.72)

=0 h=1

=}

We start by finding a lower bound on the spectral dimension. Let Q(z) be the same
as in (3.59) with p, = p(h) from (3.54). By the monotonicity lemma of Chapter 2
we have Qp,(z) < Qyy, () for all h. Therefore, by (3.71) Q*(x) < Q(z). Now Q(0)
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is finite because of the choice of pj, and therefore Q*(0) is finite and so the random
tree is transient and dy > 2. This bound is model independent and it is not clear if

it is optimal.

Now we would like to find an upper bound. Since we have just shown that
subcritical random trees are transient it is clear that we have to compare derivatives

of return generating functions. We therefore use the methods of Section 2.2.1. Define

Hh;q(a:;n):/ ) HﬂMh;q(:E;n)dp*(ﬂFh?q) (3.73)
Tel'va

where the integrand has the same definition as in Section 2.2.1 and n is chosen such
that (—1)""'P* ™=1(0) < co. An example of such an n is n = 1 but we will make

the choice more optimal later. With the same methods as in (2.27) we get
(—1)"Hj, (;n) < (—1)" Py (x). (3.74)

We have (—1)"=V [, (z;n) < (—1)("_1)P$hfq1)(x) with equality in z = 0. Therefore
by using the generalized mean value theorem as before, we find that for every
z €]0, 1] there exists a £ €0, z[ such that

(~1)"B(E) = (-1 (). (3.75)

By summing over h and ¢ we get

(AP 2 (1)

q=0

p(h)en(a) Py (€). (3.76)

Mg

>
Il

1

We would like to find if and how this diverges when & — 0 to get an upper bound
on the spectral dimension. We start by throwing away every term of the sum over
h except h = 2. From (3.62) and (3.63) we find

1—x
P = 3.77
MZ,q(x) 2 —l— qx ( )
and it is easily proved by induction that
n—1
m oy (4 (@ +2)
PMz’q(x) =(—=1)"n 'W, forn > 1. (3.78)
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Therefore

(~)"P* ™(¢) > (1 —m)Gn! Z Wornd” 3 fq‘g Dlat2) 3 q9)
B+1
= (1—m)Gn! Z ¢ (q(;j)qg)nflq +2) (3.80)

Note that for every £ > 0 this sum converges but if we put £ = 0 it diverges given
that 0 < n + 2. We are now ready to make an optimal choice of n. Choose n such
that n+ 1 < 3 < n+ 2. Consider first the possibility that (—1)""'P* =1 (0) = oo.
In this case d, < 2n < 2(8 — 1). If however (—1)""'P* ®=1)(0) < oo the choice of n
fullfills the condition explained below (3.73) and we can therefore use the estimate

n (3.80). We then compare the last sum in (3.80) to an integral and get

X n—1 —B+1 0 n+1-0
Zq (¢+1) (g+2) ~ C’/ 7t dt, as £—0
(2 4+ g&)ntt 1 (24

q=0
yn+1—ﬁ

_ Cgﬁ—n—2/£ PR (3.81)

where C' > 0 is a constant. If 3 < n + 2 the last integral is convergent even when
¢ — 0. In this case

(—1)mPr (&) > P2 (3.82)

where C” > 0 is independent of £. Then we see from (2.11) that the spectral
dimension has an upper bound dy < 2(4 — 1). If however § = n + 2 the singular
behaviour in front of the integral disappears and we have to perform the integral.
We find that it diverges like a logarithm as € — 0 and we get the same upper bound
as before.

We have therefore shown that the spectral dimension of the subcritical trees is
in the interval 2 < d; < 2(8—1) for all 3 > 2. It is proposed in [5] that the spectral
dimension of subcritical trees equals 2 which is clearly in this range.

In all of the above discussion we have worked with w, = n™?, w; > w.. If we
assume that the measure only depends on the trees being subcritical then we could
for example take w,, ~ n %, w; > w.. Then (3.79) shows that we get the same

bounds on the spectral dimension as before.
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Conclusions

In Chapter 2 we found inequalities between first return generating functions of bun-
dles structures, generalizing the monotonicity lemmas in [6,7]. These monotonicity
results allowed us to investigate how the spectral dimension of a graph changes when
recurrent graphs are attached to it. It turns out that recurrent graphs stay recurrent
and their spectral dimension increases but transient graphs stay transient and their
spectral dimension decreases. This gives bounds on the spectral dimension of ran-
dom brushes and in the same way it is possible to deal with general random bundled
structures with a fixed base and random fibers. Similar methods were used to find
bounds on the spectral dimension of the conjectured limiting measure on subcritical

trees. This case was slightly different since the transient base M; was also random.

The methods used here to study the spectral dimension only work for bundled
structures for which the diffusion properties of the base and the fibers are known. It
would be interesting to understand the properties of the spectral dimension of more

general graphs.

In Chapter 3, non-generic trees were studied. They were divided into two cate-
gories, critical trees and subcritical trees, depending on weather they are related to
critical or subcritical Galton-Watson processes. It was shown that in any model for
which the generating function of the branching weights, g, has a finite radius of con-
vergence the trees can have three phases: generic, critical and subcritical depending

on the weight of the leaves w.

A conjecture was made, that all critical trees for which ¢”(1) < oo share the

properties of generic trees. A less general statement was proved and some possible
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results in the case ¢”(1) = oo were discussed. We might need fancier methods to deal
with critical trees, than the straight forward estimates used to prove Properties 1 and
2. One idea is to use saddle point methods to approximate the sums encountered, in
the large N limit. However, saddle point methods usually rely on conditions similar
to the genericity condition in the tree model.

A conjecture was made on a limiting measure for subcritical trees using argu-
ments from [14-16]. The measure is concentrated on trees with exactly one trap with
infinitely many finite subcritical Galton-Watson outgrowths, one of them containing
the root. One idea to prove the existence of this measure could be to show that the
vy probability that a tree has height greater than h goes to zero, uniformly in N as
h — oo. The measure was shown to have Hausdorff dimension dg = oo and spectral
dimension dy > 2 with a model dependent upper bound. The measure is interesting
in itself, even though it would turn out to be the wrong limiting measure, since it
is an example of a random graph with a trap which can still have a finite spectral

dimension.
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